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E-mail: adel.bilal@lpt.ens.fr, Laetitia.Leduc@ulb.ac.be

Abstract: We study the gravitational action induced by coupling two-dimensional non-

conformal, massive matter to gravity on a compact Riemann surface. We express this

gravitational action in terms of finite and well-defined quantities for any value of the mass.

A small-mass expansion gives back the Liouville action in the massless limit, the Mabuchi

and Aubin-Yau actions to first order, as well as an infinite series of higher-order contribu-

tions written in terms of purely geometric quantities.

Keywords: 2D Gravity, Models of Quantum Gravity

ArXiv ePrint: 1606.01901

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP01(2017)089

mailto:adel.bilal@lpt.ens.fr
mailto:Laetitia.Leduc@ulb.ac.be
https://arxiv.org/abs/1606.01901
http://dx.doi.org/10.1007/JHEP01(2017)089


J
H
E
P
0
1
(
2
0
1
7
)
0
8
9

Contents

1 Introduction and generalities 1

1.1 Introduction and motivation 1

1.2 Massive versus massless matter 3

1.3 Mabuchi and Aubin-Yau actions 5

2 Some technical tools 6

2.1 The heat kernel 6

2.2 Local ζ-functions and Green’s function at coinciding points 7

2.3 Perturbation theory 7

3 The gravitational action 8

3.1 Variation of the determinant 8

3.2 The massless case 9

3.3 The massive case 10

3.4 Small mass expansion 12

1 Introduction and generalities

1.1 Introduction and motivation

Ever since the seminal paper by Polyakov [1] it has been known that conformal matter

coupled to 2D gravity gives rise to an “effective” gravitational action that is the Liou-

ville action

SL[g0, g] ≡ SL[g0, σ] =

∫
d2x
√
g0

(
σ∆0σ +R0σ

)
, g = e2σg0 . (1.1)

More precisely, the Liouville action captures the dependence on the metric of the partition

function Z
(c)
mat of conformal matter of central charge c. If we consider two metrics g0 and

g = e2σg0 then

ln
Z

(c)
mat[g]

Z
(c)
mat[g0]

=
c

24π
SL[g0, g] . (1.2)

For more general “matter” (plus ghost) partition functions one defines a general gravita-

tional action as

ln
Zmat[g]

Zmat[g0]
= −Sgrav[g0, g] . (1.3)

Being defined as the logarithm of a ratio of partition functions computed with two different

metrics, any gravitational action satisfies a cocycle identity

Sgrav[g1, g2] + Sgrav[g2, g3] = Sgrav[g1, g3] . (1.4)
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The simplest example of a gravitational action satisfying this cocycle identity is the “cos-

mological constant action”

Sc[g0, g] = µ0

∫
d2x(
√
g −√g0) = µ0(A−A0) . (1.5)

As we will recall below, this action must be present as a counterterm to renormalize the

divergences that are present in (1.2) in addition to SL. Gravitational actions other than the

Liouville or cosmological constant actions can be constructed and have been studied mainly

in the mathematical literature, like the Mabuchi and Aubin-Yau actions [2–5]. These latter

functionals crucially involve not only the conformal factor σ but also directly the Kähler

potential φ and do admit generalizations to higher-dimensional Kähler manifolds. In the

mathematical literature they appear in relation with the characterization of constant scalar

curvature metrics [5]. Their rôles as two-dimensional gravitational actions in the sense

of (1.3) have been discussed in some detail in [6]. In particuler, ref. [6] has studied the

metric dependence of the partition function of non-conformal matter like a massive scalar

field and shown that a gravitational action defined by (1.3) contains these Mabuchi and

Aubin-Yau actions as first-order corrections (first order in m2A where m is the mass and A

the area of the Riemann surface) to the Liouville action. The partition function of quantum

gravity at fixed area, with a gravitational action being a combination of the Liouville and

Mabuchi actions, has been studied at one loop in [7] and at two and three loops in [8].

While the results of [6] concerned the first order in an expansion in m2A, in the present

note we will derive a few results that are valid exactly at finite m. Ideally one would like

to study some general matter action where non-conformal terms ∼ ciOi have been added

to some conformal theory and obtain exact results in these couplings ci. We are going to

be much less ambitious and simply study a single massive scalar field with action

Smat[g,X] =
1

2

∫
d2x
√
g
[
gab∂aX∂bX +m2X2

]
=

1

2

∫
d2x
√
g X(∆g +m2)X , (1.6)

and try to establish some exact results valid for finite m. Here ∆g is the Laplace operator

for the metric g, defined with a minus sign, so that its eigenvalues are non-negative:

∆g = − 1
√
g
∂a(g

ab√g∂b) . (1.7)

In the remainder of this section, we discuss some basic differences between the massive

and massless cases and define the matter partition functions in both cases. Then we briefly

recall the Mabuchi and Aubin-Yau actions and their variations. In section 2, we summarize

some technical tools involving heat kernels, zeta functions and their perturbation theory.

Section 3 then gives the computation of the gravitational action for the massive scalar field,

providing explicit formulae for its dependence on the metric in terms of manifestly finite

and well-defined quantities. Maybe not too surprisingly, some of our massive formulae will

look somewhat similar to those that can be found in [6] for the massless case. However,

let us insist that our results are exact in m and valid for any finite mass. Nevertheless,

we will write them in a way that immediately allows for a small mass expansion, thus
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recovering the Liouville action in the zero-mass limit and the Mabuchi and Aubin-Yau

actions as the first-order corrections. The higher-order corrections are similarly expressed

in terms of purely geometric objects, but do not seem to have any known counterparts in

the mathematical literature, nor is it clear to us whether they can be written as integrals

over the manifold of local quantities.

1.2 Massive versus massless matter

One should keep in mind that adding the mass term is not just a perturbation by some

operator that has a non-zero conformal weight. This is due to the (would-be) zero-mode of

the scalar field that is absent from the action for zero mass but obviously plays an important

rôle for non-zero mass. In particular, this means that the relevant quantities of the massive

theory are not simply given by those of the massless theory plus order m2 corrections. This

is most clearly examplified by the Green’s function G(x, y) of the operator ∆g +m2. The

latter is hermitian and has a complete set of eigenfunctions ϕn with eigenvalues λn ≥ m2:

(∆g +m2)ϕn(x) = λnϕn(x) , n = 0, 1, 2, . . . . (1.8)

Clearly, the eigenfunctions ϕn do not depend on m (i.e. ϕn = ϕ
(0)
n ), while λn = λ

(0)
n +m2.

The eigenfunctions which may be chosen to be real, are orthonormalized as∫
d2x
√
g ϕn(x)ϕk(x) = δnk . (1.9)

As is clear from (1.7), ∆g always has a zero mode and, hence,

λ0 = m2 , ϕ0 =
1√
A
. (1.10)

We always refer to ϕ0 as the zero-mode, even in the massive case. The Green’s function

for m 6= 0 is given by

G(x, y) =
∑
n≥0

ϕn(x)ϕn(y)

λn
, (∆g +m2)G(x, y) =

1
√
g
δ(x− y) . (1.11)

In general, if B is any quantity defined for m 6= 0, we will denote by B(0) the corresponding

quantity for m = 0. But, for m = 0, the Green’s function is not simply G(0) since λ
(0)
0 = 0

and, obviously, the zero-mode must be excluded from the sum. Then

G̃(0)(x, y) =
∑
n>0

ϕn(x)ϕn(y)

λ
(0)
n

, ∆gG̃
(0)(x, y) =

1
√
g
δ(x− y)− 1

A
. (1.12)

The subtraction of 1
A on the r.h.s. ensures that, when integrated

∫
d2x
√
g . . ., one correctly

gets zero. We will consistently put a tilde over the various quantities we will encounter if

the zero-mode is excluded from the sum.1 In particular, using (1.10), we can write for the

massive Green’s function

G(x, y) =
1

m2A
+ G̃(x, y) , (∆g +m2)G̃(x, y) =

1
√
g
δ(x− y)− 1

A
, (1.13)

1Except for determinants missing the zero-mode, where we will write det′ following the usual notation.
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where G̃ has a smooth limit as m → 0. Moreover, the smallest eigenvalue contributing in

G̃ is λ1 = λ
(0)
1 + m2 with λ

(0)
1 > 0 being of order 1

A . Thus, if Am2 � 1, one can expand
1
λn

=
∑∞

r=0(−)r m2r

(λ
(0)
n )r+1

, resulting in

G(x, y) =
1

m2A
+ G̃(0)(x, y) +

∞∑
r=1

(−m2)rG̃
(0)
r+1(x, y) , (1.14)

where

Gr(x, y) =
∑
n≥0

ϕn(x)ϕn(y)

λrn
, G̃(0)

r (x, y) =
∑
n>0

ϕn(x)ϕn(y)

(λ
(0)
n )r

. (1.15)

Clearly, the massive Green’s function does not equal the massless one plus order-m2 cor-

rections: their is a crucial 1
m2A

term in (1.13) and (1.14).

The matter partition function is defined with respect to the decomposition X =∑
n≥0 cnϕn as

Zmat[g] =

∫
DgXe−Smat[g,X] =

∫ ∞∏
n=0

dcn√
2π
e−

1
2

∑
n≥0 λnc

2
n =

(
det(∆g +m2)

)−1/2
. (1.16)

In the massless case, since λ
(0)
0 = 0, the integration over c0 would be divergent and instead

one replaces it by a factor
√
A. Thus

Z
(0)
mat[g] =

∫
D(0)
g Xe−S

(0)
mat[g,X] =

√
A

∫ ∞∏
n=1

dcn√
2π
e−

1
2

∑
n>0 λ

(0)
n c2n =

(
det′∆g

A

)−1/2

. (1.17)

Of course, the determinants det and det′ are ill-defined and need to be regularized. We will

use the very convenient regularization-renormalization in terms of the spectral ζ-functions:

ζ(s) =
∞∑
n=0

λ−sn , ζ̃(s) =
∞∑
n=1

λ−sn , (1.18)

and similarly for ζ̃(0)(s). By Weil’s law (see e.g. [9]), the asymptotic behaviour of the eigen-

values for large n is λn ∼ n
A and, hence the spectral ζ-functions are defined by converging

sums for Re s > 1, and by analytic continuations for all other values. In particular, they

are well-defined meromorphic functions for all s with a single pole at s = 1 with residue
1

4π (see e.g. [9]). A straightforward formal manipulation shows that ζ ′(0) ≡ d
dsζ(s)|s=0

provides a formal definition of −
∑

n≥0 lnλn, i.e. of − ln det(∆g +m2):

Zmat[g] = exp

(
1

2
ζ ′(0)

)
, Z

(0)
mat[g] = A1/2 exp

(
1

2
(ζ̃(0))′(0)

)
. (1.19)

There is a slight subtlety one should take into account, see e.g. [9]. While the field X

is dimensionless, the ϕn scale as A−1/2 ∼ µ where µ is some arbitrary mass scale (even if

m = 0), and the cn as µ−1. It follows that one should write DgX =
∏
n
µdcn
2π . This results

in Zmat =
(∏

n
λn
µ2

)−1/2
, so that every ζ ′(0) is changed into

ζ ′(0)→ ζ ′(0) + ζ(0) lnµ2 . (1.20)
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The regularization-renormalization of determinants in terms of the ζ-function may

appear as rather ad hoc, but it can be rigorously justified by introducing the spectral reg-

ularization [9]. The regularized logarithm of the determinant then equals ζ ′(0) + ζ(0) lnµ2

plus a diverging piece ∼ AΛ2(ln Λ2

µ2
+ const), where Λ is some cutoff. This diverging piece

just contributes to the cosmological constant action (1.5), and this is why the latter must

be present as a counterterm, to cancel this divergence.

Thus, finally

Sgrav[g0, g] = −1

2

(
ζ ′g(0) + ζg(0) lnµ2

)
+

1

2

(
ζ ′g0(0) + ζg0(0) lnµ2

)
,

S(0)
grav[g0, g] = −1

2
ln

A

A0
− 1

2

(
(ζ̃(0)
g )′(0) + ζ̃(0)

g (0) lnµ2
)

+
1

2

(
(ζ̃(0)
g0 )′(0) + ζ̃(0)

g0 (0) lnµ2
)
,

(1.21)

where the first line refers to the massive case and the second line to the massless one.

1.3 Mabuchi and Aubin-Yau actions

Let us briefly recall the basic properties of the known gravitational actions. While the Liou-

ville action (1.1) can be written in terms of g0 and the conformal factor σ, the Mabuchi and

Aubin-Yau actions are formulated using also the Kähler potential φ. They are related by

g = e2σg0 , e2σ =
A

A0

(
1− 1

2
A0∆0φ

)
, (1.22)

where ∆0 denotes the Laplacian for the metric g0 with area A0 =
∫

d2x
√
g0. The Mabuchi

action on a Riemann surface of genus h can then be written as [6]

SM[g0, g] =

∫
d2x
√
g0

[
2π(h− 1)φ∆0φ+

(
8π(1− h)

A0
−R0

)
φ+

4

A
σe2σ

]
, (1.23)

while the Aubin-Yau action takes the form

SAY[g0, g] = −
∫

d2x
√
g0

[
1

4
φ∆0φ−

φ

A0

]
. (1.24)

As already mentioned, they both satisfy a cocycle identity analogous to (1.4) and were

shown [6] to appear in Sgrav in the term of first order in an expansion in m2A. Note that

SM = 8π(1 − h)SAY +
∫

d2x
√
g0

(
4
Aσe

2σ −R0φ
)
. Eq. (1.22) relates the variations δσ and

δφ as

δσ =
δA

2A
− A

4
∆δφ and δ

(
e2σ

A

)
= −1

2
∆0δφ . (1.25)

It is then straightforward to show that the variations of the Liouville, Mabuchi and Aubin-

Yau actions are given by

δSL[g0, g] = 4π(1− h)
δA

A
− A

4

∫
d2x
√
g∆Rδφ ,

δSM[g0, g] = 2
δA

A
−
∫

d2x
√
g

(
R− 8π(1− h)

A

)
δφ ,

δSAY[g0, g] =
1

A

∫
d2x
√
g δφ . (1.26)
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Thus the Liouville and Mabuchi actions obviously admit the constant scalar curvature

metrics as saddle-points at fixed area. Although not obvious from the previous equation,

the variation of the Aubin-Yau action when restricted to the space of Bergmann metrics is

similarly related to metrics of constant scalar curvature [5].

2 Some technical tools

2.1 The heat kernel

The heat kernel and integrated heat kernel for the operator ∆g +m2 are defined in terms

of the eigenvalues and eigenfunctions (1.8) as

K(t, x, y) =
∑
n≥0

e−λnt ϕn(x)ϕn(y) , K(t) =

∫
d2x
√
g K(t, x, x) =

∑
n≥0

e−λnt . (2.1)

The corresponding K̃, K(0) and K̃(0) are defined similarly. The heat kernel K is the

solution of(
d

dt
+ ∆g +m2

)
K(t, x, y) = 0 , K(t, x, y) ∼ 1

√
g
δ(x− y) as t→ 0 . (2.2)

Note that it immediately follows from either (2.1) or (2.2) that the massless and massive

heat kernels are simply related by

K(t, x, y) = e−m
2tK(0)(t, x, y) . (2.3)

As is also clear from (2.1) (and Weil’s law λn ∼ n
A), for t > 0, K(t, x, y) is given by a

converging sum and is finite, even as x → y. For t → 0 one recovers various divergences,

in particular ∫ ∞
0

dtK(t, x, y) = G(x, y) (2.4)

exhibits the short distance singularity of the Green’s function which is well-known to be

logarithmic.

The behaviour of K for small t is related to the asymptotics of the eigenvalues λn for

large n, which in turn is related to the short-distance properties of the Riemann surface.

It is thus not surprising that the small-t asymptotics is given in terms of local expressions

of the curvature and its derivatives. Indeed, one has the well-known small t-expansion:

K(t, x, y) ∼ 1

4πt
e−(`2/4t)−m2t

[
a0(x, y) + t a1(x, y) + t2 a2(x, y) + . . .

]
(2.5)

where `2 ≡ `2g(x, y) is the geodesic distance squared between x and y as measured in the

metric g. For small t, the exponential forces `2 to be small (of order
√
t) and one can use

normal coordinates around y. This allows one to obtain quite easily explicit expressions

for the ar(x, y) in terms of the curvature tensor and its derivatives. They can be found e.g.

in [9]. Here, we will only need them at coinciding points y = x, where

K(t, x, x) ∼ 1

4πt

[
1 +

(
R

6
−m2

)
t+ . . .

]
. (2.6)

Let us note that in the massless case and if the zero-mode is excluded one has instead

K̃(0)(t, x, x) ∼ 1
4πt

[
1 +

(
R
6 −

4π
A

)
t+ . . .

]
.
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2.2 Local ζ-functions and Green’s function at coinciding points

Local versions of the ζ-functions are defined as

ζ(s, x, y) =
∑
n≥0

ϕn(x)ϕn(y)

λsn
, (2.7)

and similarly for ζ̃(s, x, y), etc. Note that ζ(1, x, y) = G(x, y), while for s = r = 2, 3, . . .

these local ζ-functions coincide with the Gr(x, y) defined above in (1.15). They are related

to the heat kernel by

ζ(s, x, y) =
1

Γ(s)

∫ ∞
0

dt ts−1K(t, x, y) . (2.8)

For s = 0,−1,−2, . . ., Γ(s) has poles and the value of ζ(s, x, y) is entirely determined by

the singularities of the integral over t that arise from the small-t asymptotics of K. As

shown above, the latter is given by local quantities on the Riemann surface. In particular,

ζ(0, x, x) =
R(x)

24π
− m2

4π
and ζ̃(0, x, x) =

R(x)

24π
− m2

4π
− 1

A
. (2.9)

On the other hand, the values for s = 1, 2, 3, . . . or the derivative at s = 0 cannot be

determined just from the small-t asymptotics and require the knowledge of the full spectrum

of ∆g +m2, i.e. contain global information about the Riemann surface.

Clearly, ζ(1, x, y) = G(x, y) is singular as x → y. For s 6= 1, ζ(s, x, y) provides a

regularization of the propagator. More precisely, it follows from (2.8) that ζ(s, x, x) is a

meromorphic function with a pole at s = 1 and that the residue of this pole is a0(x,x)
4π = 1

4π .

Thus [9]

Gζ(x) = lim
s→1

[
µ2(s−1)ζ(s, x, x)− 1

4π(s− 1)

]
(2.10)

is well-defined. (Here µ is an arbitrary scale.) This is an important quantity, called the

“Green’s function at coinciding points”. One can give an alternative definition of Gζ by

subtracting the short distance singularity from G(x, y) and taking x→ y, see e.g. [10, 11].

More precisely [9] the relation is

Gζ(y) = lim
x→y

[
G(x, y) +

1

4π

(
ln
`2g(x, y)µ2

4
+ 2γ

)]
. (2.11)

One can show [9] that both definitions of Gζ are equivalent and define the same quantity.

Again, the same relations hold between G̃ζ(y), G̃(x, y) and ζ̃(s, x, x). Note that Gζ(y)

contains global information about the Riemann surface and cannot be expressed in terms

of local quantities only.

2.3 Perturbation theory

We want to study how the eigenvalues λn and eigenfunctions ϕn change under an infinitesi-

mal change of the metric. Since g = e2σg0, the Laplace operator ∆g and hence also ∆g+m2

– 7 –
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only depend on the conformal factor σ and on g0: ∆g = e−2σ∆0 and thus under a variation

δσ of σ one has

δ∆g = −2δσ∆g ⇒ 〈ϕk|δ∆g|ϕn〉 = −2(λn −m2)〈ϕk|δσ|ϕn〉 , (2.12)

where, of course, 〈ϕk|δσ|ϕn〉 =
∫

d2x
√
g ϕkδσϕn. One can then apply standard quantum

mechanical perturbation theory. The only subtlety comes from the normalisation condi-

tion (1.9) which also gets modified when varying σ [6, 9]. One finds

δλn = −2(λn −m2)〈ϕn|δσ|ϕn〉 , (2.13)

δϕn = −〈ϕn|δσ|ϕn〉ϕn − 2
∑
k 6=n

λn −m2

λn − λk
〈ϕk|δσ|ϕn〉ϕk . (2.14)

Let us insists that this is first-order perturbation theory in δσ, but it is exact in m2. Note

the trivial fact that, since λ0 = m2 and ϕ0 = 1√
A

, one has consistently

δλ0 = 0 , δϕ0 = δ
( 1√

A

)
. (2.15)

3 The gravitational action

3.1 Variation of the determinant

Recall from (1.21) that the gravitational action is defined as Sgrav[g0, g] =

−1
2

(
ζ ′g(0)− ζ ′g0(0)

)
− 1

2 (ζg(0)− ζg0(0)) lnµ2. Our goal is to compute δζ ′(0) ≡ δζ ′g(0) and

δζ(0) ≡ δζg(0) and express them as “exact differentials” so that one can integrate them

and obtain the finite differences ζ ′g2(0)− ζ ′g1(0) and ζg2(0)− ζg1(0).

From (2.13) one immediately gets, to first order in δσ,

ζg+δg(s) =
∑
n≥0

1

(λn + δλn)s
= ζg(s) + 2s

∑
n≥0

λn −m2

λs+1
n

〈ϕn|δσ|ϕn〉 , (3.1)

As noted before, δλ0 = 0 and, hence, there is no zero-mode contribution to the second

term. Thus2

δζ(s) = δζ̃(s) = 2s

∫
d2x
√
g δσ(x)

[
ζ̃(s, x, x)−m2ζ̃(s+ 1, x, x)

]
. (3.2)

For m 6= 0, the term in brackets could have been equally well written as ζ(s, x, x)−m2ζ(s+

1, x, x), but the writing in terms of the ζ̃ is valid for all non-zero and zero values of m. It

follows that

δζ ′(0) = 2

∫
d2x
√
g δσ(x) ζ̃(0, x, x)

−2m2

∫
d2x
√
g δσ(x) lim

s→0

[
ζ̃(s+ 1, x, x) + sζ̃ ′(s+ 1, x, x)

]
δζ(0) = −2m2

∫
d2x
√
g δσ(x) lim

s→0

[
sζ̃(s+ 1, x, x)

]
. (3.3)

2Note that [6] contains an equation that looks similar but is different since it is obtained by doing a

first-order perturbation expansion in m2 of the determinant.
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As recalled above, ζ̃(s, x, x) has a pole at s = 1 with residue 1
4π , hence

ζ̃(s, x, x) = ζ̃reg(s, x, x)+
1

4π(s− 1)
⇒ lim

s→0

[
ζ̃(s+1, x, x)+sζ̃ ′(s+1, x, x)

]
= ζ̃reg(1, x, x) .

(3.4)

From (2.10) one sees that ζ̃reg(1, x, x) = G̃ζ(x)− 1
4π lnµ2. Using also (2.9) we find3

δζ ′(0) =
1

12π

∫
d2x
√
g δσ(x)R(x)− δA

A

−2m2

∫
d2x
√
g δσ(x)

(
G̃ζ(x) +

1

4π
− 1

4π
lnµ2

)
,

δζ(0) = −m
2

2π

∫
d2x
√
g δσ(x) . (3.5)

Since Gζ = G̃ζ + 1
m2A

, we arrive at two equivalent expressions for δζ ′(0) + δζ(0) lnµ2:

δζ ′(0) + δζ(0) lnµ2 = δζ̃ ′(0) + δζ̃(0) lnµ2

=
1

12π

∫
d2x
√
g δσ(x)R(x)− δA

A

−2m2

∫
d2x
√
g δσ(x)

(
G̃ζ(x) +

1

4π

)
=

1

12π

∫
d2x
√
g δσ(x)R(x)− 2m2

∫
d2x
√
g δσ(x)

(
Gζ(x) +

1

4π

)
.

(3.6)

As it stands, this result is exact in m and holds whether m2A is small or not. Let us insists

that the Gζ and G̃ζ appearing on the right-hand side are the massive ones. The first line

is the appropriate way of writing to study the small m2 asymptotics, as G̃ζ has a smooth

limit for m→ 0.

3.2 The massless case

Let us quickly show, how in the massless case one recovers the well-known Liouville action.

For m = 0 one has δζ̃(0)(0) = 0 and (3.6) immediately gives

δζ̃(0)′(0) =
1

12π

∫
d2x
√
g δσ(x)R(x)− δA

A
. (3.7)

Note that the last term precisely cancels the variation of the −1
2 ln A

A0
in S

(0)
grav[g0, g],

cf (1.21), and one gets the well-known result

δS(0)
grav[g0, g] = − 1

24π

∫
d2x
√
g δσ(x)R(x) = − 1

24π
δSL[g0, σ] , (3.8)

cf. eq. (1.26). Of course, this is just the contribution of one conformal scalar field with

c = 1. The determinant that arises from fixing the diffeomorphism invariance gives the

same contribution but with a coefficient + 26
24π , so that overall one gets

S(0)
grav[g0, g]

∣∣∣
ghost + conf matter

=
26− c
24π

SL[g0, σ] . (3.9)

3The result for δζ(0) also follows from (2.9) and the fact that
∫

d2x
√
gR = 8π(1 − h) is a topological

invariant.
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3.3 The massive case

Our starting point is obtained by combining eqs (1.21) and (3.6), using also (3.8):

δSgrav[g0, g] = − 1

24π
δSL[g0, g] +m2

∫
d2x
√
g δσ(x)

(
Gζ(x) +

1

4π

)
. (3.10)

Our task then is to rewrite the second term on the r.h.s. as the variation of some local

functional.

Let us compute δGζ(x). In order to do so, we first establish a formula for δG(x, y)

under a variation δg = 2δσ g of the metric and thus under a corresponding variation

δ∆g = −2δσ∆g of the Laplace operator. One can then either use the definition (1.11) as

an infinite sum and the perturbation theory formula (2.13) and (2.14), or directly use the

defining differential equation (1.11). In any case one finds

δG(x, y) = −2m2

∫
d2z
√
g G(x, z) δσ(z)G(z, y) . (3.11)

To obtain the variation of Gζ , according to (2.11) one needs to subtract the variation of

the short-distance singularity. Now, the geodesic distance `g(x, y) transforms as (see e.g.

appendix A1 of [9])

δ`2g(x, y) = `2g(x, y)
[
δσ(x) + δσ(y) +O((x− y)2)

]
. (3.12)

It follows that

lim
x→y

δ ln
[
µ2`2g(x, y)

]
= 2 δσ(x) . (3.13)

Plugging (3.11) and (3.13) into (2.11) one gets

δGζ(x) = −2m2

∫
d2z
√
g
(
G(x, z)

)2
δσ(z) +

δσ(x)

2π
. (3.14)

Upon integrating this over x one encounters∫
d2x
√
g
(
G(x, z)

)2
=

∫
d2x
√
g
∑
n,k≥0

ϕk(x)ϕk(z)ϕn(x)ϕn(z)

λnλk

=
∑
n≥0

ϕn(z)ϕn(z)

λ2
n

= ζ(2, z, z) . (3.15)

(Note that ζ(2, z, z) = G2(z, z) is finite.) It follows that

δ

∫
d2x
√
g Gζ(x) = 2

∫
d2x
√
g Gζ(x)δσ(x)

−2m2

∫
d2z
√
g ζ(2, z, z)δσ(z) +

1

2π

∫
d2x
√
g δσ(x) . (3.16)

One can then rewrite (3.10) as

δSgrav[g0, g] = δ

[
− 1

24π
SL[g0, g] +

m2

2

∫
d2x
√
g Gζ(x)

]
+m4

∫
d2x
√
g ζ(2, x, x)δσ(x) .

(3.17)
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Note that in the second term, we can replace Gζ by G̃ζ since the difference is
m2

2

∫
d2x
√
g 1
m2A

= 1
2 , whose variation vanishes.

Next, we use (2.8) to rewrite the last term as m4
∫∞

0 dt t
∫

d2x
√
g K(t, x, x)δσ(x), and

establish a formula for the variation of the integrated heat kernel K(t). Since δλ0 = 0

we have

δK(t) = δK̃(t) = −
∑
n>0

t e−λntδλn = 2
∑
n>0

t e−λnt(λn −m2)

∫
d2x
√
g ϕ2

n(x)δσ(x)

= −2t

(
d

dt
+m2

)∫
d2x
√
g K̃(t, x, x)δσ(x)

= −2te−m
2t d

dt

∫
d2x
√
g K̃(0)(t, x, x)δσ(x) , (3.18)

where we used (2.13) and (2.3). It then follows that

1

2

∫ ∞
0

dt

t

(
em

2t −m2t− 1
)
δK̃(t)

= −
∫ ∞

0
dt
(
em

2t −m2t− 1
)( d

dt
+m2

)∫
d2x
√
g K̃(t, x, x)δσ(x)

= m4

∫ ∞
0

dt t

∫
d2x
√
g K̃(t, x, x)δσ(x) = m4

∫
d2x
√
g ζ̃(2, x, x)δσ(x)

= m4

∫
d2x
√
g ζ(2, x, x)δσ(x)− 1

A

∫
d2x
√
g δσ(x) , (3.19)

where we integrated by parts and used (2.8). The boundary terms do not contribute4

since K̃ vanishes at t = ∞ as e−λ1t and λ1 −m2 > 0. Upon inserting this into (3.17) we

finally get

δSgrav[g0, g] = δ

[
− 1

24π
SL[g0, g] +

1

2
ln

A

A0
+
m2

2

∫
d2x
√
g G̃ζ(x)

+
1

2

∫ ∞
0

dt

t

(
em

2t −m2t− 1
)
K̃(t)

]
. (3.20)

Note that in the last term the t-integral is convergent both at t = 0 and at t =∞. This is

immediately integrated as

Sgrav[g0, g] = − 1

24π
SL[g0, g] +

1

2
ln

A

A0
+
m2

2

∫
d2x
(√
g G̃ζ(x; g)−√g0 G̃ζ(x; g0)

)
+

1

2

∫ ∞
0

dt

t

(
em

2t −m2t− 1
)(
K̃(t; g)− K̃(t; g0)

)
. (3.21)

Thus we have expressed the gravitational action Sgrav[g0, g] in terms of (local) function-

als of g and g0 that are all perfectly well-defined without any need of analytical continuation

(contrary to the initial ζ ′(0)). Recall also from our remark at the end of section 1.2 that,

if we define Sgrav[g0, g] through the spectral cutoff regularization of the logarithm of the

4Had we started with δK rather than δK̃ and written this equation for K and ζ(2, x, x), the − 1
A

∫ √
gδσ

would have appeared as the boundary term.
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determinant, the r.h.s. also involves the variation of the cosmological constant action µ0A

with a coefficient µ0 ∼ Λ2(ln λ2

µ2
+ const), to be cancelled by a corresponding counterterm.

With view on the small mass expansion studied below, it will be useful to rewrite (3.14)

to obtain the variation of G̃ζ in terms of quantities that all have well-defined limits as

m→ 0. Recall that G = 1
m2A

+ G̃ and Gζ = 1
m2A

+ G̃ζ . Thus (3.14) can be rewritten as

δG̃ζ(x) =
δσ(x)

2π
− 4

A

∫
d2z
√
g G̃(x, z)δσ(z)− 2m2

∫
d2z
√
g
(
G̃(x, z)

)2
δσ(z) . (3.22)

Using (1.25), we can express δσ in the second term as −A∆δφ/4 (the δA/2A piece doesn’t

contribute since G̃ has no zero-mode). Using the differential equation (1.13) satisfied by

G̃, one finds for the second term

− 4

A

∫
d2z
√
g G̃(x, z)δσ(z) =

∫
d2z
√
g δφ(z) ∆zG̃(x, z)

= δφ(x)− δSAY[g0, g]−m2

∫
d2z
√
g G̃(x, z)δφ(z) , (3.23)

with δSAY given in (1.26). Thus

δG̃ζ(x) =
δσ(x)

2π
+ δφ(x)− δSAY[g0, g]−m2

∫
d2z
√
g
[
G̃(x, z)δφ(z) + 2

(
G̃(x, z)

)2
δσ(z)

]
.

(3.24)

In exactly the same way we also get

δG̃(x, y) =
1

2
δφ(x) +

1

2
δφ(y)− δSAY[g0, g]

−m2

∫
d2z
√
g

[
1

2
G̃(x, z)δφ(z) +

1

2
G̃(y, z)δφ(z) + 2G̃(x, z) δσ(z)G̃(z, y)

]
.

(3.25)

While these are exact relations valid for all m, they are written in a way that makes the

small mass expansions obvious.

3.4 Small mass expansion

Equations (3.20) and (3.21) are non-perturbative in m. However, they are also written in

a way that immediately allows for a perturbative expansion in m, since G̃ζ and K̃ have

smooth limits as m→ 0. The m2 → 0 limits of (3.20) and (3.21) also exhibit an extra term
1
2 ln A

A0
which only gets removed for m2 = 0 due to the difference in the definitions (1.21).

Order m2A contributions. Let us first give the order m2A-correction S
(1)
grav to S

(0)
grav.

Since K̃(t) = e−m
2tK̃(0)(t) and λ

(0)
n ∼ 1

A it follows that∫ ∞
0

dt

t

(
em

2t −m2t− 1
)
K̃(t) = O((m2A)2) . (3.26)

Next, it follows from (1.13) and (1.14), upon letting x → y and subtracting the short-

distance singularity, that

G̃ζ(x) = G̃
(0)
ζ (x) +

∞∑
r=1

(−m2)rG̃
(0)
r+1(x, x) , (3.27)
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so that G̃ζ(x) = G̃
(0)
ζ (x)+O(m2A). Thus the term of order m2A of the gravitational action

can be read from (3.21) as

S(1)
grav[g0, g] =

m2

2

(
AΨG[g]−A0ΨG[g0]

)
=
m2A

2

(
ΨG[g]−ΨG[g0]

)
+ (A−A0)

m2

2
ΨG[g0] ,

(3.28)

where, following [6], we have introduced

ΨG[g] =
1

A

∫
d2x
√
g G̃

(0)
ζ (x; g) . (3.29)

The variation of G̃ζ was given in (3.24) and that of G̃
(0)
ζ immediately follow as

δG̃
(0)
ζ (x) =

δσ(x)

2π
+ δφ(x)− δSAY[g0, g] , (3.30)

so that

G̃
(0)
ζ (x; g) = G̃

(0)
ζ (x; g0) +

σ(x)

2π
+ φ(x)− SAY[g0, g] . (3.31)

This relation has been derived before in [6]. Using (1.22), it it then straightforward to

obtain ([6])

ΨG[g]−ΨG[g0] =
1

8π

∫
d2x
√
g0

[
4

A
σe2σ − 2πφ∆0φ− 4πφ∆0G̃

(0)
ζ (x; g0)

]
. (3.32)

For genus h = 0 and choosing g0 to be the round metric on the sphere, G̃
(0)
ζ (x; g0) is a

constant, and one directly gets the Mabuchi action for h = 0. More generally, for arbitrary

genus, [6] show that

ΨG[g]−ΨG[g0] =
1

8π
SM[g0, g] + h

(
SAY[g0, g]−

∫
d2x
√
gc φ

)
, (3.33)

where gc is the canonical metric on the Riemann surface. Finally, (3.28) becomes

S(1)
grav[g0, g] =

m2A

2

[
1

8π
SM[g0, g] + h

(
SAY[g0, g]−

∫
d2x
√
gc φ

)]
+ (A−A0)

m2

2
ΨG[g0] .

(3.34)

While the last term contributes to the cosmological constant action, the other terms are

to be considered as the genuine order m2A correction to the gravitational action, and it

involves the Mabuchi and Aubin-Yau actions.

Higher-order contributions S(r)
grav for r ≥ 2. It is straighforward to obtain the ex-

pansion in powers of m2 of the terms in (3.20) or (3.21). Denoting the term ∼ m2r by

S
(r)
grav, we obviously have

Sgrav[g0, g] =
∞∑
r=0

S(r)
grav[g0, g] . (3.35)

In particular, using K̃(t) = e−m
2tK̃(0)(t), one has

1

2

∫ ∞
0

dt

t

(
em

2t −m2t− 1
)
K̃(t) =

∞∑
r=2

(−m2)r
(r − 1)

2r!

∫ ∞
0

dt tr−1K̃(0)(t)

=

∞∑
r=2

(−m2)r
(r − 1)

2r
ζ̃(0)(r)

=

∞∑
r=2

(−m2)r
(r − 1)

2r

∫
d2x
√
g G̃(0)

r (x, x) , (3.36)
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and combining this with (3.27), eq. (3.21) yields

S(r)
grav[g0, g] =

(−)r+1

2r
m2r

(
ζ̃(0)(r; g)− ζ̃(0)(r; g0)

)
, r ≥ 2 . (3.37)

Of course, this coincides with the result of the naive expansion of
∑

n≥1 lnλn =∑
n≥1 ln(λ

(0)
n +m2) in powers of m2. One may rewrite S

(r)
grav[g0, g] as a local functional:

S(r)
grav[g0, g] =

(−)r+1

2r
m2r

[ ∫
d2x
√
g G̃(0)

r (x, x; g)−
∫

d2x
√
g0 G̃

(0)
r (x, x; g0)

]
, r ≥ 2 .

(3.38)

It would clearly be desirable to express these S
(r)
grav[g0, g] in terms of more geometric

quantities like the conformal factor or the Kähler potential, as was the case for S
(0)
grav[g0, g]

and S
(1)
grav[g0, g] with the Liouville, Mabuchi and Aubin-Yau actions. To our knowledge,

there does not seem to exist any appropriate functional in the mathematical literature.

Nevertheless, since the G̃
(0)
r are entirely determined in terms of the properties of the Rie-

mann surface, they are purely geometric quantities.

It is not clear whether, for r ≥ 2, these S
(r)
grav[g0, g] can be written as integrals of

local quantities. Just as the Mabuchi and Aubin-Yau functionals that occur for r = 1

can be written in terms of the Kähler potential φ that is related to the conformal factor

σ of the Liouville action (r = 0) by e2σ = A
A0

(
1− 1

2A0∆0φ
)
, cf (1.22), that involves a

second derivative, a guess would be to introduce local fields φr such that φ1 = φ and

φr−1 = fr(∆0φr) with some function fr (possibly depending also on A and A0). We have

much tried to make this precise in some satisfactory way, but given our lack of success we

must leave this important issue as an open problem for further research.
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