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1 Introduction

Massive form factors are important building blocks for various physical quantities involving

heavy quarks. Among them are static quantities like anomalous magnetic moments but

also production cross sections and decay rates. Furthermore, form factors are the prime

examples for studying the infrared behaviour of QCD amplitudes.

We consider QCD corrections to the quark-photon vertex. The latter can be

parametrized as follows,

V µ(q1, q2) = ū(q1)Γ
µ(q1, q2)v(q2) , (1.1)

where the colour indices of the quarks are suppressed and ū(q1) and v(q2) are the spinors of

the quark and anti-quark, respectively. The momentum q1 is incoming and q2 is outgoing

with q21 = q22 = m2.

The vertex function Γµ(q1, q2) can be decomposed into two scalar form factors which

are usually introduced as

Γµ(q1, q2) = Qq

[

F1(q
2)γµ − i

2m
F2(q

2)σµνqν

]

, (1.2)

where q = q1−q2 is the outgoing momentum of the photon and σµν = i[γµ, γν ]/2. Qq is the

charge of the considered quark. F1 and F2 are often referred to as electric and magnetic

form factors.
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Figure 1. Sample diagrams contributing to F1 and F2 at one-, two- and three-loop order. Solid,

curly and wavy lines represent quarks, gluons and photons, respectively. In our calculation the

closed fermion loops only involve massless quarks.

Sample Feynman diagrams can be found in figure 1. Two-loop QCD corrections to the

electric and magnetic form factors for the heavy quark vector current have been computed

for the first time in ref. [1] (axial vector and anomaly contributions have been considered

in [2, 3]) where analytic results have been obtained. An independent cross check of the two-

loop results for F1 and F2 has been performed in [4] where also O(ǫ2) and O(ǫ) terms have

been added to the one- and two-loop results, respectively. The results have been used to

obtain predictions for the three-loop form factor F1 in the high energy limit, by exploiting

evolution equations and the exponentiation of infrared divergences (see also ref. [5] for

earlier considerations).

In this paper we compute the three-loop form factor in the planar limit, keeping the ex-

act mass dependence. After expanding our exact result for small quark masses we can com-

pare to the high-energy results of [4] mentioned above, and complete them by determining

the unknown constants in the 1/ǫ and ǫ0 part. We furthermore provide power-suppressed

terms.

Massive form factors have infrared divergences that are well understood. After the

ultraviolet renormalization, all poles in dimensional regularization are given in terms of the

cusp anomalous dimension [6, 7], and the beta function. The three-loop cusp anomalous

dimension was computed in refs. [8, 9]. By verifying the infrared pole structure at the

three-loop order, we provide a first independent check of the result of refs. [8, 9] (in the

planar limit).

In the static limit, the infrared divergences disappear, and F1 and F2 are finite. In

fact, F1 vanishes and F2 determines the anomalous magnetic moment of a heavy quark

which has been considered at two-loop order in ref. [10]. A dedicated calculation at three

loops has been performed in ref. [11] which serves as a welcome check for our exact result

expanded for q2 → 0.
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The remainder of the paper is organized as follows. In section 2 we provide technical

details on the calculation of the amplitudes. In particular we briefly describe the renor-

malization procedure. The infrared structure of the form factors is presented in section 3.

Our results for F1 and F2 are discussed in section 4 including the three-loop results for the

static limit, the high-energy limit and for small quark velocities. We conclude in section 5.

2 Setup and calculation

The form factors F1 and F2 appearing in eq. (1.2) are conveniently computed with the help

of projectors which are applied to Γµ(q1, q2). Using the kinematics defined in eq. (1.2) we

have (i = 1, 2)1

Fi =
1

Qq
Tr

{

(q1/ +m)

[

aFi
γµ + bFi

(q1,µ + q2,µ)

2m

]

(q2/ +m)Γµ(q1, q2)

}

, (2.1)

with

aF1 =
1

4(1− ǫ)(s− 4m2)
, bF1 =

(3− 2ǫ)m2

(1− ǫ)(s− 4m2)2
,

aF2 = − m2

(1− ǫ)s(s− 4m2)
, bF2 = −2m2(2m2 + s− sǫ)

(1− ǫ)s(s− 4m2)2
, (2.2)

and s = q2. It is convenient to introduce the dimensionless variable

s

m2
= −(1− x)2

x
. (2.3)

Then the low-energy, high-energy and threshold limits correspond to x → 1, x → 0 and

x → −1, respectively. Note that for x > 0 we have s < 0 and thus the form factors do not

have imaginary parts. The same is true for x ∈ C with |x| = 1. For 0 < s < 4m2 we have

that x is on the upper half of the unit circle.

It is convenient to write the perturbative expansion of Fi (i = 1, 2) in the form

Fi =
∑

n≥0

(αs

4π

)n
F

(n)
i (x) , (2.4)

with F
(0)
1 = 1 and F

(0)
2 = 0. In the large-Nc limit we furthermore have that F

(1)
i ∼ Nc,

F
(2)
i ∼ N2

c , Ncnl, and F
(3)
i ∼ N3

c , N
2
c nl, Ncn

2
l , where nl counts the number of closed

massless quark loops and Nc is the number of colours. Note that we do not consider

contributions with massive closed fermion loops. In eq. (2.4) we suppress the scale

dependence of αs and F
(n)
i .

The calculations performed in this paper use the groundwork performed in ref. [12]

where all scalar integral families up to three loops, which are needed for the massive form

factors F1 and F2 in the large-Nc limit, have been classified and the corresponding master

integrals have been computed analytically in terms of Goncharov polylogarithms [13].2 We

1Note that there is a typo in eq. (11) of [1]: [4/s− 2 + 2ǫ] should read [4/s+ 2− 2ǫ].
2We follow the conventions of ref. [12].
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use in particular the information from figure 1 of ref. [12] where eight three-loop families are

defined. This information is used to generate with the help of the programs qgraf2.0 [14]

and q2e/exp [15–17] amplitudes for F1 and F2 which are expressed in terms of linear

combinations of integrals from the eight three-loop families. We also use formulae for

reduction of Goncharov polylogarithm values at sixth roots of unity derived in [18].

For the reduction to master integrals we use the program FIRE5.2 [19–22] in combi-

nation with LiteRed [23, 24]. Once the reduction for each family is complete we use the

program tsort, which is part of the latest FIRE version [21] (implemented in the command

FindRules) and based on ideas presented in ref. [20], to obtain relations between primary

master integrals, and to arrive at a minimal set. This leads to 89 master integrals needed

for the large-Nc limit of F1 and F2.

In our calculation we allow for a general QCD gauge parameter ξ but set ξ2 terms

(ξ = 0 corresponds to Feynman gauge) to zero before performing the reduction to master

integrals. The bare form factors still contain linear ξ terms which only drop out after

renormalization. This serves as a welcome check for our calculation.

The ultraviolet renormalized form factors are obtained by renormalizing the strong

counpling constant αs in the MS scheme and the heavy quark mass on-shell. Both coun-

terterms are needed to two-loop accuracy and are well-known in the literature. Note,

however, that for the on-shell mass counterterm higher order ǫ terms are needed. The

latter can be found in ref. [25].

In this context we would like to mention that in ref. [1] an non-standard version of the

MS scheme has been employed as can bee seen from eq. (24) of that paper. The quantity

C(ǫ), which enters the definition of the renormalization constant, induces π2 terms which

enter the ǫ0 part of the two-loop form factor. See also the discussion in ref. [5] on this

subject.

A further ingredient to the renormalization procedure is the on-shell wave function

renormalization constant for the external heavy quarks which is needed to three-loop order

and can be found in refs. [25, 26].

3 Infrared divergences of massive form factors

Form factors of massive particles have infrared divergences originating from exchanges of

soft particles. The latter can be described in the eikonal approximation. In this way,

the infrared divergences of the form factors can be mapped to ultraviolet divergences of

Wilson lines [27]. The relevant Wilson line has the geometry of a cusp formed by the

particle momenta. It obeys a renormalization group equation that is governed by the cusp

anomalous dimension [6, 7, 28].

Applying this correspondence to the original form factors, one has

F = ZF f , (3.1)

where Z is an infrared renormalization factor (in minimal subtraction), F is the ultraviolet-

renormalized form factor, and F f is finite both in the ultraviolet and infrared. In other

words, all infrared poles of F are reproduced by Z.
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Z satisfies the following renormalization group equation

[

2βD(αs, ǫ)αs
∂

∂αs
+ Γcusp(φ, αs, ǫ)

]

Z(αs, ǫ) = 0 , (3.2)

where αs is the renormalized strong coupling and βD is the D-dimensional β function,

βD = ǫ+
∑

i≥1

βi−1

(αs

4π

)i
, (3.3)

with

β0 =
11

3
CA − 4

3
Tnl ,

β1 =
34

3
C2
A − 4CFTnl −

20

3
CATnl . (3.4)

Here CF = (N2
c −1)/(2Nc) and CA = Nc are the quadratic Casimir operators of the SU(Nc)

gauge group in the fundamental and adjoint representation, respectively, nl is the number

of massless quark flavors, and T = 1/2.

The perturbative expansions of Γcusp and Z have the form

Γcusp =
∑

i≥1

Γ(i)
cusp

(αs

π

)i
,

Z = 1 +
∑

1≤j≤i

zi,j
ǫj

(αs

π

)i
. (3.5)

Solving eq. (3.2) to three loops, one finds

z1,1 = −1

2
Γ(1)
cusp ,

z2,2 =
1

16
Γ(1)
cusp(β0 + Γ(1)

cusp) ,

z2,1 = −1

4
Γ(2)
cusp ,

z3,3 = − 1

96
Γ(1)
cusp(β0 + Γ(1)

cusp)(β0 + 2Γ(1)
cusp) ,

z3,2 =
1

96
(β1Γ

(1)
cusp + 4β0Γ

(2)
cusp + 12Γ(1)

cuspΓ
(2)
cusp) ,

z3,1 = −1

6
Γ(3)
cusp . (3.6)

The cusp anomalous dimension in QCD was computed to three loops in [6–9].

In this way, one can see explicitly the poles generated by the right-hand side of eq. (3.1).

We have verified that this equation correctly predicts all infrared poles in F1 and F2 to

three loops.
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4 Results

4.1 Structure of results for form factors

Before presenting explicit results we briefly discuss the general structure of our analytic

expressions.

All relevant master integrals were computed analytically in ref. [12]. From this it is

clear that the form factors are given in terms of iterated integrals, with certain rational

prefactors. The required set of integration kernels are

d log x , d log(1 + x) , d log(1− x) , d log(1− x+ x2) . (4.1)

We sometimes refer to the arguments of the logarithms x, 1−x, 1+x, 1−x+x2 as letters.

Up to two-loop order and for the three-loop fermionic contributions (i.e. the n1
l and

the n2
l terms) we observe only master integrals with letters x, 1− x and 1+ x. This means

that all of them can be expressed in terms of usual harmonic polylogarithms [29, 30].

On the other hand, the non-fermionic three-loop part has the additional letter 1−x+

x2. Introducing the complex roots of this polynomial, r1,2 = (1 ± i
√
3)/2, one can write

d log(1− x+ x2) = d log(x− r1) + d log(x− r2). In this way, all results can be written in

terms of Goncharov polylogarithms. See ref. [12] for more details.

At three-loop order we observe that r1 = eiπ/3 plays a special role for the form factors

F1 and F2 since the coefficients of the Goncharov polylogarithms develop poles up to sixth

order in x− r1. We could show that these poles are artificial by expanding the Goncharov

polylogarithms around x = eiπ/3. The analytic expressions for the finite result for F1 and

F2 for x = r1 are quite lengthy and can be found (for µ2 = m2) in the ancillary file.

4.2 Analytical results

We refrain from providing the results for the full three-loop form factors since the ana-

lytic expressions are too lengthy. All results which are discussed in this section can be

downloaded from https://www.ttp.kit.edu/preprints/2016/ttp16-053/.

It is instructive to consider the form factors F1 and F2 in various kinematical regions

which have already been mentioned in the Introduction. They are discussed in the remain-

ing part of this section. In section 4.3 they are numerically compared to the exact result.

4.2.1 Low-energy: s ≪ m
2 or x → 1

We start with the limit s ≪ m2 which we obtain by expanding the Goncharov polyloga-

rithms in the master integrals for x → 1. The expansion has to be carried out carefully

since there are higher order poles in 1/(1 − x) in the prefactor. In fact, we expand all

master integrals up to order (1 − x)9 and obtain F1 and F2 up to order (1 − x)4. For the

presentation in the paper we write x = eiφ and we restrict ourselves to expansion terms up

– 6 –
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to order φ2, which for µ2 = m2 are given by

F
(1)
1 = φ2Nc

[

− 1

3ǫ
− 1

4

]

,

F
(2)
1 = φ2

{

Ncnl

[

− 1

9ǫ2
+

5

27ǫ
+

2π2

27
+

283

324

]

+N2
c

[

11

18ǫ2
+

π2

9 − 47
27

ǫ
+

4ζ(3)

3
− 5π2

54
− 5581

1296

]}

,

F
(3)
1 = φ2

{

Ncn
2
l

[

− 4

81ǫ3
+

20

243ǫ2
+

4

243ǫ
− 56ζ(3)

81
− 58π2

243
− 7381

4374

]

+N2
c nl

[

44

81ǫ3
+

4π2

81 − 415
243

ǫ2
+

16ζ(3)
27 + 2051

972 − 40π2

243

ǫ
+

7ζ(3)

27
− 16π4

81
+

2380π2

729

+
958687

34992

]

+N3
c

[

− 121

81ǫ3
+

1340
243 − 22π2

81

ǫ2
+

−10ζ(3)
27 − 473

54 + 340π2

243 − 2π4

27

ǫ

− 5ζ(5)− 46π2ζ(3)

9
+

7127ζ(3)

324
+

70π4

81
− 8977π2

2916
− 4961563

69984

]}

,

F
(1)
2 = Nc

[

1 +
1

6
φ2

]

,

F
(2)
1 = Ncnl

[

− 25

9

]

+N2
c

[

355

36
+

2π2

3

]

+ φ2

{

+Ncnl

[

− 31

54

]

+N2
c

[

− 1

3ǫ
+

23π2

90
− 19

27

]}

,

F
(3)
2 = Ncn

2
l

[

634

81
+

8π2

27

]

+N2
c nl

[

4ζ(3)

3
− 28451

324
− 6π2

]

+N3
c

[

80ζ(3)

3
+ 8π2ζ(3)− 20ζ(5) +

104147

648
+

481π2

27
− 2π4

3

]

+ φ2

{

Ncn
2
l

[

467

243
+

4π2

81

]

+N2
c nl

[

− 1

9ǫ2
+

2

3ǫ
+

4ζ(3)

5
− 7π2

5
− 190889

19440

]

+N3
c

[

11

18ǫ2
+

−31
12 − π2

9

ǫ
− 6ζ(5) +

12π2ζ(3)

5
+

407ζ(3)

36
− 23π4

90
+

22849π2

4320

− 3236461

155520

]}

. (4.2)

Note that F2(x = 1) is finite and agrees with eqs. (54) and (55) of ref. [11] after adapting

the large-Nc limit. F1(x = 1) = 0 is a welcome check of our calculation, see also [31].
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4.2.2 High-energy: s ≪ m
2 or x → 0

We expand all master integrals for x → 0 up to order x6 which is sufficient to obtain

F1 and F2 up to order x4. For illustration we show the one-, two and three-loop results

including the first power-suppressed corrections of order x1. It is convenient to write the

n-loop component of Fi in the high-energy limit as follows

F
(n)
i =

∑

k≥0

f
(n,k)
i,lar xk . (4.3)

Our results for F1 read (for µ2 = m2)

f
(1,0)
1,lar = Nc

[

(

−1

ǫ
− 3

2

)

lx −
1

ǫ
− l2x

2
+

π2

6
− 2

]

,

f
(2,0)
1,lar = Ncnl

[

(

− 1

3ǫ2
+

5

9ǫ
+

π2

9
+

209

54

)

lx

− 1

3ǫ2
+

5

9ǫ
+

l3x
9
+

19l2x
18

− 4ζ(3)

3
− 7π2

54
+

106

27

]

+N2
c

[

(

1

2ǫ2
+

2

ǫ
+

29

72

)

l2x + lx

(

17

6ǫ2
− 2

9ǫ
+ 5ζ(3)− 11π2

18
− 2795

216

)

+
7

3ǫ2

+

(

1

2ǫ
+

19

18

)

l3x +
−ζ(3)− 13

18

ǫ
+

7l4x
24

+
34ζ(3)

3
− 31π4

180
+

337π2

216
− 487

27

]

,

f
(3,0)
1,lar = Ncn

2
l

[

− 4

27ǫ3
+

20

81ǫ2
+ lx

(

− 4

27ǫ3
+

20

81ǫ2
+

4

81ǫ
− 8ζ(3)

27
− 38π2

81
− 4919

729

)

+
4

81ǫ
− l4x

27
− 38l3x

81
+

(

−203

81
− 2π2

27

)

l2x +
32ζ(3)

9
+

29π4

405
− 61π2

243
− 3668

729

]

+N2
c nl

[

53

27ǫ3
+

(

1

6ǫ2
− 41

36ǫ
− 5π2

24
− 275

81

)

l3x +
−4ζ(3)

9 − 316
81 + π2

54

ǫ2

+ l2x

(

1

3ǫ3
+

1

9ǫ2
+

−481
108 − 5π2

36

ǫ
− 7ζ(3)

9
− π2

4
+

4687

648

)

+ lx

(

62

27ǫ3
+

π2

54 − 713
162

ǫ2
+

22ζ(3)
9 − 961

324 − 71π2

324

ǫ
− 115ζ(3)

9
+

π4

20
+

8659π2

1944

+
56296

729

)

+

(

− 1

18ǫ
− 89

72

)

l4x +
106ζ(3)

27 − 349
324 − 13π2

162

ǫ
− l5x

8
+

164ζ(5)

3

− 8π2ζ(3)

9
− 4684ζ(3)

81
− 293π4

1620
− 9979π2

1944
+

500201

5832

]

+N3
c

[

− 175

27ǫ3
+

(

− 1

4ǫ2
− 10

9ǫ
− π2

9
+

1141

432

)

l4x +
31ζ(3)

9 + 1375
162 − 5π2

27

ǫ2

+ l3x

(

− 1

6ǫ3
− 13

6ǫ2
+

14
9 − π2

8

ǫ
− 49ζ(3)

6
+

37π2

72
+

6373

324

)
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+ l2x

(

− 7

3ǫ3
+

−97
36 − π2

12

ǫ2
+

−11ζ(3)
2 + 463

27 + 19π2

72

ǫ
− 629ζ(3)

36
− π4

9
+

593π2

432

+
1535

36

)

+ lx

(

− 467

54ǫ3
+

ζ(3) + 1645
162 − 29π2

108

ǫ2
+

−281ζ(3)
18 + 4369

216 − 161π2

648 + 16π4

135

ǫ

+15ζ(5)− 13π2ζ(3)

36
+

4297ζ(3)

54
− 71π4

360
− 31609π2

1944
− 669127

5832

)

+

(

− 5

24ǫ
− 3

8

)

l5x +
−550ζ(3)

27 − 7π2ζ(3)
18 + 6ζ(5) + 637

54 − 161π2

648 + 16π4

135

ǫ
− l6x

8

− 875ζ(5)

3
− 16ζ(3)2

3
+

113π2ζ(3)

18
+

33197ζ(3)

162
+

2039π6

17010
− 1727π4

1080

+
23773π2

1296
− 554267

2916

]

,

f
(1,1)
1,lar = Nc

[

lx − 2

]

,

f
(2,1)
1,lar = Ncnl

[

− l2x
3
− 37lx

9
+

π2

9
+

50

9

]

+N2
c

[

(

−1

ǫ
+ π2 − 161

12

)

l2x

+ lx

(

1

ǫ
− 48ζ(3) +

31π2

6
+

799

36

)

+
2

ǫ
− l3x − 122ζ(3) +

17π4

30

+
449π2

36
− 1003

18

]

,

f
(3,1)
1,lar = Ncn

2
l

[

4l3x
27

+
74l2x
27

+

(

1090

81
+

4π2

27

)

lx −
16ζ(3)

9
− 122π2

81
− 1412

81

]

+N2
c nl

[

l2x

(

− 1

3ǫ2
+

23

6ǫ
+ 20ζ(3)− 203π2

36
+

1307

27

)

+ lx

(

1

3ǫ2
+

−4
3 − π2

18

ǫ
+

448ζ(3)

3
+

34π4

45
− 3823π2

108
− 31109

324

)

+
2

3ǫ2
+

(

1

6ǫ
− 2π2

3
+

779

54

)

l3x +
−5− π2

18

ǫ
+

5l4x
9

− 208ζ(5)

+ 464ζ(3) +
101π4

270
− 2972π2

81
+

44921

162

]

+N3
c

[

l3x

(

1

2ǫ2
+

40
3 − π2

ǫ
+ 40ζ(3)− 197π2

72
− 3095

108

)

+ l2x

(

11

6ǫ2
+

48ζ(3)− 41
6 − 71π2

12

ǫ
− 130ζ(3) +

17π4

10
+

11π2

9
− 13525

108

)

+ lx

(

− 10

3ǫ2
+

169ζ(3) + 457
12 − 323π2

18 − 17π4

30

ǫ
+ 96ζ(5) + 2π2ζ(3)− 3391ζ(3)

3

– 9 –



J
H
E
P
0
1
(
2
0
1
7
)
0
7
4

+
401π4

72
+

8221π2

72
− 1451

81

)

− 14

3ǫ2
+

(

3

4ǫ
− 3π2

2
+

1319

72

)

l4x

+
124ζ(3) + 109

2 − 469π2

36 − 17π4

30

ǫ
+

5l5x
8

+ 2154ζ(5) + 18ζ(3)2 − 139π2ζ(3)

3

− 24647ζ(3)

9
− 799π6

1260
+

5291π4

2160
+

122195π2

648
− 149093

324

]

, (4.4)

with lx = log(x). It is interesting to note that the leading term f
(3,0)
1,lar contains lx up to

sixth order whereas for f
(3,1)
1,lar the highest power is five, in agreement with the investigations

of ref. [32] in the framework of QED. In that reference the leading behaviour of F1 in the

limit x → 0 has been considered and the coefficient of l6x has been determined. Translated

to QCD, this correspond to sub-leading colour factors C3
F . For F2 we get the following

expansion coefficients

f
(1,0)
2,lar = 0 ,

f
(2,0)
2,lar = 0 ,

f
(3,0)
2,lar = 0 ,

f
(1,1)
2,lar = −2lxNc ,

f
(2,1)
2,lar = Ncnl

[

2l2x
3

+
50lx
9

− 2π2

9

]

+N2
c

[

(

2

ǫ
+

53

6

)

l2x +

(

2

ǫ
− 2π2 − 67

18

)

lx + 2l3x

+ 44ζ(3)− 77π2

18
+ 6

]

,

f
(3,1)
2,lar = Ncn

2
l

[

− 8l3x
27

− 100l2x
27

+

(

−1268

81
− 8π2

27

)

lx +
32ζ(3)

9
+

100π2

81

]

+N2
c nl

[

(

2

3ǫ2
− 13

3ǫ
+

13π2

18
− 787

27

)

l2x

+ lx

(

2

3ǫ2
+

π2

9 − 4

ǫ
− 76ζ(3)

3
+

109π2

6
+

12773

162

)

+

(

− 1

3ǫ
− 296

27

)

l3x +
π2

9ǫ
− 10l4x

9
− 2060ζ(3)

9
− 8π4

135
+

1000π2

81
− 122

3

]

+N3
c

[

(

− 1

ǫ2
− 23

3ǫ
+

19π2

12
+

277

27

)

l3x

+ l2x

(

− 17

3ǫ2
+

3π2

2 − 17
3

ǫ
− 13ζ(3) +

133π2

36
+

7201

54

)

+ lx

(

− 14

3ǫ2
+

−42ζ(3)− 15
2 + 56π2

9

ǫ
+

754ζ(3)

3
− 41π4

30
− 2050π2

27
+

2255

162

)
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+

(

− 3

2ǫ
− 227

36

)

l4x +
−44ζ(3)− 6 + 85π2

18

ǫ
− 5l5x

4
− 732ζ(5) +

77π2ζ(3)

3

+
4697ζ(3)

3
+

329π4

540
− 39005π2

324
+

548

3

]

. (4.5)

Note that the coefficients f
(n,k)
i,lar contain logarithmic terms in x which leads to a diver-

gent behaviour of F
(n)
i for x → 0. For this reason we subtract f

(n,0)
i,lar when comparing with

the exact result (cf section 4.3). In ref. [4] some of the pole parts for F1 of the leading

three-loop coefficient f
(3,0)
1,lar have been predicted using evolution equations. However, the

ǫ0 term, the sub-leading terms of order xn with n ≥ 1, and the results for f
(3,n)
2,lar are new

(see also subsection 4.4). Finally, we want to remark that higher order ǫ terms for the one-

and two-loop coefficients can be found in the ancillary file.

4.2.3 Threshold: s → 4m2 or x → −1

To obtain the threshold limit we expand the master integrals up to order (1 + x)6. After

inserting the expanded results into the expressions for the form factors it is convenient to use

x =
2β

1 + β
− 1 , (4.6)

where

β =

√

1− 4m2

s
, (4.7)

is the velocity of the produced heavy quarks. Note that the ultravioletly renormalized

form factors develop poles up to order 1/βn where n = 1, 2, 3 is the number of loops.

On the other hand, the bare form factors have poles up to 1/β2n (cf. ref. [4] where bare

two-loop results are presented). Since the resulting expressions are quite large we refrain

from displaying them in the paper but refer to the ancillary file which comes together

with this paper. It is, however, instructive to look into the cross section σ(e+e− → QQ̄),

where Q is a heavy quark. Close to threshold it is determined by the virtual correction,

i.e., the form factors F1 and F2, since the contributions from real radiation are suppressed

by a relative factor β3. In fact, we can write

σ(e+e− → QQ̄) = σ0β

[

|F1 + F2|2 +
|(1− β2)F1 + F2|2

2(1− β2)

]

(4.8)

= σ0
3β

2

[

1− β2

3
+

αs

4π
∆(1) +

(αs

4π

)2
∆(2) +

(αs

4π

)3
∆(3) + . . .

]

.

where σ0 = 4πα2Q2
Q/(3s). Our calculation of F1 and F2 determines the first three terms

for each ∆(n) in the expansion for β → 0. Note that individually F1 and F2 still contain

poles in ǫ, however, the combination given in eq. (4.8) is finite. For the one-, two- and

– 11 –
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three-loop corrections we have

∆(1) = Nc

[

π2

β
− 8 + β

2π2

3

]

+ . . . ,

∆(2) = Ncnl

[

1

β

(

4

3
π2 log(2β)− 10π2

9

)

+
44

9

]

+N2
c

[

π4

3β2
+

1

β

(

− 22

3
π2 log(2β)− 41π2

9

)

− 32

3
π2 log(2β)− 56ζ(3) +

5π4

9
+

109π2

9
+

49

9
− 16

3
π2 log(2)

]

+ . . . ,

∆(3) = Ncn
2
l

1

β

(

16

9
π2 log2(2β)− 80

27
π2 log(2β) +

8π4

27
+

100π2

81

)

+N2
c nl

[

1

β2

(

8

9
π4 log(2β) +

16π2ζ(3)

3
− 20π4

27

)

+
1

β

(

− 176

9
π2 log2(2β) +

634

27
π2 log(2β)− 16π2ζ(3)

3
− 88π4

27
− 617π2

324

)]

+N3
c

[

1

β2

(

− 44

9
π4 log(2β)− 88π2ζ(3)

3
− 10π4

27

)

+
1

β

(

484

9
π2 log2(2β)− 32

3
π4 log(2β)− 392

27
π2 log(2β)− 146π2ζ(3)

3
− π6

4

+
677π4

27
+

761π2

162
− 16

3
π4 log(2)

)]

+ . . . , (4.9)

where the ellipses refer to higher order terms in β. The one- and two-loop expressions agree

with the large-Nc limit of refs. [33–35] and the three-loop terms agree with refs. [36–38].3

At n-loop order the leading term of ∆(n) behaves as (αs/β)
n which is determined by the

Sommerfeld factor4 S = z/(1− e−z) with z = CFαsπ/β. It is interesting to note that the

series expansion of S has no term of order α3
s and thus ∆(3) starts at order 1/β2 which is

confirmed by our explicit calculation.

In the context of effective theories an important quantity derived from the form factor

F1 is the matching coefficient between QCD and non-relativistic QCD of the vector current.

It is obtained by considering the on-shell photon-quark vertex for q2 = 4m2. Due to the

singularities in 1/β (see above) it is not possible to obtain the matching coefficient from

the general result for F1. Rather a dedicated calculation is necessary which has been

performed in [40] to three-loop order using semi-analytical methods. The planar master

integrals of [40] have been computed in [12] as by-product of the calculation of all master

integrals used in this calculation.

3We thank Andreas Maier for providing the result for Π(3),v(z) in eq. (A.6) of ref. [38] and the corre-

sponding two-loop expression in terms of Casimir invariants.
4See e.g. ref. [39].

– 12 –



J
H
E
P
0
1
(
2
0
1
7
)
0
7
4

−0.6−0.4−0.2 0.0 0.2 0.4 0.6 0.8 1.0

x

0

5

10

15

20

25

30

35

40

R
e
(F

(1
)

1
| ǫ0

)

−0.6−0.4−0.20.0 0.2 0.4 0.6 0.8 1.0

x

−100

0

100

200

300

400

500

600

R
e
(F

(2
)

1
| ǫ0

)

−0.6−0.4−0.20.0 0.2 0.4 0.6 0.8 1.0

x

−6000

−4000

−2000

0

2000

4000

6000

R
e
(F

(3
)

1
| ǫ0

)

−0.6−0.4−0.20.0 0.2 0.4 0.6 0.8 1.0

x

−40

−35

−30

−25

−20

−15

−10

−5

0

Im
(F

(1
)

1
| ǫ0

)

−0.6−0.4−0.20.0 0.2 0.4 0.6 0.8 1.0

x

−14000

−12000

−10000

−8000

−6000

−4000

−2000

0

Im
(F

(2
)

1
| ǫ0

)

−0.6−0.4−0.20.0 0.2 0.4 0.6 0.8 1.0

x

−180000

−160000

−140000

−120000

−100000

−80000

−60000

−40000

−20000

0

Im
(F

(3
)

1
| ǫ0

)

Figure 2. Real and imaginary parts of ǫ0 one-, two- and three-loop contribution of F1 as a function

of x. The leading high-energy term (i.e. f
(n,0)
1,lar from eq. (4.3)) is subtracted so that F1 is zero for

x = 0. The solid (black) lines show the exact result and the short-dashed (blue) lines represent the

high-energy approximations including terms up to order x4. The long-dashed (red) curves contain

low-energy expansion terms up to order (1−x)4. The number of light fermions is set to zero (nl = 0).

4.3 Numerical results

This subsection is devoted to the numerical evaluation of the form factors which we perform

with the help of ginac [41, 42]. In figures 2 and 3 F1 and F2 are shown as a function of x

where the leading term of eq. (4.3) is subtracted to obtain a regular behaviour for x = 0

(which corresponds to s = ∞). From left to right the one-, two- and three-loop results

are shown and the upper plots correspond to the real and the lower ones to the imaginary

parts. Note that the latter are zero for x > 0. One observes that the expansions for s ≫ m2

(which include terms up to order x4) provide a good approximation to the exact result in

the interval −0.3 . x . 0.3 which corresponds to 0.18 & m2/s & −0.61. On the other

hand, the approximations obtained for s ≪ m2 (which include terms up to order (1− x)4)

agree with the exact result for x & 0.4.

Figure 4 shows the dependence of F1 (top plots) and F2 (bottom plots) as a function

of φ where x = eiφ. In this region the form factors are real. One observes good agreement

of the expanded and exact result up to φ ≈ 0.5 which corresponds to s/m2 . 0.25.

4.4 Checks

Our result has passed several cross checks and consistency relations which we describe in

this subsection.

We have successfully compared our bare and UV-renormalized one- and two-loop re-

sults (expanded up to O(ǫ0)) to the expressions provided in refs. [1, 4] after taking the

large-Nc limit. Note that in [1] a different renormalization scheme has been used which

leads to a difference in the finite contribution proportional to π2. This is due to the factor

– 13 –
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Figure 3. Real and imaginary parts of ǫ0 one-, two- and three-loop contribution of F2 as a function

of x. The same notation as in figure 2 has been used.
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Figure 4. One-, two- and three-loop contribution of F1 (ǫ
0 terms) as a function of φ (with x = eiφ).

The solid (black) lines shows the exact result and the dashed (blue) lines represent approximations

including terms up to order (1 − x)4. The number of light fermions is set to zero (nl = 0). Note

that in this region F1 and F2 have no imaginary parts.
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Γ(1+ ǫ) which is present in the counterterm for the strong coupling constant in eq. (24) of

ref. [1] (see also discussion above).

For the UV-renormalized two-loop form factor F2 we agree with ref. [4] including O(ǫ1)

terms. For F1 we disagree with the order ǫ term of ref. [4] in a term which is independent

of Goncharov polylogarithms. The difference of our result and the one of [4] reads

−
(αs

4π

)2
N2

c ǫ
1037x3

2(1 + x)6
. (4.10)

In our expression there is no 1/(1 + x)6 term at all. Such a term leads to a different low-

energy and threshold behaviour. In particular, the O(ǫ1) term of the renormalized two-loop

form factor would have a stronger divergence than the expected 1/β2 behaviour, cf. the an-

cillary file to this paper. Furthermore, a term as in eq. (4.10) influences via renormalization

the ǫ0 terms of the three-loop F1 which would lead to different low-energy and threshold ex-

pansions than the ones discussed in section 4.2. In particular, F1(x = 1) would be different

from zero and the agreement of ∆(3) in eq. (4.9) with the literature would be destroyed.

As a further cross check we also compared with predictions of three-loop corrections

to F1 in the high-energy limit which have been obtained in ref. [4] on the basis of evolution

equations. We find agreement including the log(x)/ǫ terms. The remaining 1/ǫ and the ǫ0

terms cannot be predicted using the method of ref. [4]. However, these terms are contained

in our result.

From the 1/ǫ pole of our result we can extract with the help of eq. (3.6) the cusp

anomalous dimension Γcusp up to three-loop order in the large-Nc limit. Up to two-loop

order we find agreement with refs. [7, 43] and at three loops we can reproduce the results

of [8, 9]. This is the first independent check of (part of) the results obtained in [8, 9] using

a completely different method.

We have checked that the renormalized form factors have the correct static limit. In

particular, F1(0) vanishes and F2(0) agrees with the explicit calculation of the three-loop

corrections to the anomalous magnetic moment of a heavy quark which was performed in

ref. [11].

For x ∈ (0, 1] we have that s ≤ 0. Thus the results for the form factors have to be

real. Since the individual Goncharov polylogarithms are complex-valued this is a useful

cross check.

Similarly, if x = eiφ with either φ ∈ [0, π] or φ ∈ [−π, 0] (i.e. x is on the upper or lower

semi-circle) we have that s is below threshold with 0 ≤ s/m2 ≤ 4. Again, the form factors

must be real-valued.

5 Conclusions and outlook

In this paper we evaluated for the first time massive three-loop form factors, in the planar

limit. As a byproduct, we confirmed the recent result for the three-loop cusp anomalous

dimension in the large-Nc limit, which describes the infrared divergences of the form factors.

We expressed the results analytically in terms of Goncharov polylogarithms. The latter

allow for a straightforward numerical evaluation.
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We investigated analytically the low-energy, threshold, and high-energy limits, and

derived expressions containing logarithmically enhanced as well as power suppressed terms.

It would be interesting if some of these expansions could be obtained from effective field

theory methods. See for example refs. [44, 45] for work on power-suppressed terms.

Our results can be used to predict infrared divergent terms at higher loop orders, via

renormalization group equations, along the lines of refs. [4, 5].
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