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Introduction. Compactification to 4-dimensional anti-de Sitter (AdS4) are of relevance

to several aspects of string theory. In particular, they are central in the CFT3/AdS4
correspondence. They can also be a first step toward obtaining a de Sitter vacuum if one

devise a way to break supersymetry in a controlled way.

In type IIA, several AdS4 vacua have been found without [1–5] or with [6–14] sources

(this is a non exhaustive list of examples). On the contrary, in type IIB, there have been

far less studies. Some results have been found with sources [15–18] but only one example

without sources [3] (even if the solution is singular in the compactified description). It is

to remedy to this state of affairs that we looked for more sourceless vacua in type IIB.

This type of vacua also presents two advantages. The first one is, as we already mentioned,

their use in the CFT3/AdS4 correspondence. The second one is the validity of such vacua.

Indeed, in most known examples with sources, the sources are smeared and one can ask if

this assumption is well-founded. Getting rid of the sources also gets rid of this problem.

In order to find sourceless vacua, we use the pure spinors formalism developed in [19–

21]. This permits to obtain linear algebraic equations for the SUSY equations. We are

left, thanks to the integrability theorem [10, 22, 23], with the Bianchi identities which are

quadratic and differential. Since these are not solvable in all generality, one has to devise

a way to solve them. Taking inspiration from [24], where parts of the quadratic equations

were in fact linear and permitted to solve the whole system of quadratic equations, we put

in place a semi-algorithmical method to solve the equations. We also had to take care of
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the differential part which was absent from [24]. This method can be easily generalized to

all type of problems with the same characteristics. Thanks to it, we were able to recover

an example of the known sourceless vacuum [3] and discover two new vacua which are a

priori sourceless. A more careful study shows that these solutions are singular and we give

for one of these examples a possible interpretation in terms of sources.

This paper is organized as follows. In section 1, we present the supersymmetry condi-

tions in the framework of generalized geometry applied to our specific case. In section 2,

we expose the method to solve the quadratic equations. Finally in section 3, we give three

examples of vacua, one of them already known that we recover thanks to our method and

two new ones.

1 The supersymmetry conditions

We are interested in N = 1 SUSY AdS4 vacua in type IIB theories. That is to say that

the manifold the theory lives on is of the type:

ds2 = e2Ads2(4) + ds2(6) , (1.1)

with A the warp factor. As discussed in [15, 25] such solutions are only possible when the

compactification manifold have SU(2) structure group. Let us recall that a manifold is

said to be of SU(2) structure if it admits a complex one form z, a real and a holomorphic

two-form, j and ω, that are globally defined and satisfy

zxz̄ = 2 , zxz = z̄xz̄ = 0 , (1.2a)

j ∧ ω = 0 , (1.2b)

zxj = zxω = 0 , (1.2c)

j ∧ j =
1

2
ω ∧ ω̄ . (1.2d)

In order to study N = 1 vacua with non trivial fluxes, it is convenient to use the

language of Generalized Complex Geometry [26, 27]. We will give here a lightning review

restricted to our specific case, for some more details, see for example [16, 24] and references

therein.

The idea is to express the ten-dimensional supersymmetry variations as differential

equations on a pair of polyforms defined on the internal manifold. In our case they are

Φ− = −eA

8
z ∧ (k⊥e

−ij + ik‖ω) , (1.3)

Φ+ =
eAeiθ

8
ezz̄/2(k‖e

−ij − ik⊥ω) , (1.4)

where z, j and ω are the forms defining the SU(2) structure, A the warp factor and θ a free

parameter. The parameters k‖ and k⊥ (k2‖ + k2⊥ = 1) are related to the choice of structure

on the internal manifold. When k‖ = 0 and k⊥ = 1 the structure is strict SU(2), while the

general case where both k‖ and k⊥ are non-zero is often referred to as dynamical SU(2)
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structure.1 When k‖ and k⊥ are non zero and constant, we speak of intermediate SU(2)

structure rather than dynamical SU(2) structure [28].

As shown in [20], for type IIB compactifications to AdS4 the ten-dimensional super-

symmetry variations are equivalent to the following set of equations on the pure spinors Φ±

(d−H∧)(e2A−φΦ−) = −2µeA−φReΦ+ , (1.5a)

(d−H∧)(eA−φReΦ+) = 0 , (1.5b)

(d−H∧)(e3A−φ ImΦ+) = −3e2A−φ Im(µ̄Φ−)−
1

8
e4A ∗ λ(F ) , (1.5c)

where φ is the dilaton and F is the sum of the RR field strength on M , F = F1 + F3 + F5

and where λ acts on a form as the transposition of all indices

λ(ωp) = (−)⌊p/2⌋ωp . (1.6)

The ten-dimensional fluxes are defined in terms of F by

F(10) = vol4 ∧ λ(∗F ) + F . (1.7)

The complex number µ determines the size of the AdS4 cosmological constant

Λ = −3|µ|2. (1.8)

It is convenient to introduce the rescaled forms

ω̂ = eiθω , (1.9)

ẑ =
µ̄

|µ|z , (1.10)

but for simplicity of notation, we will drop the ˆ symbols in the rest of the paper.

Plugging the explicit form of (1.3) and (1.4), into the SUSY variations (1.5a)–(1.5c),

one can deduce the general conditions for AdS4 N = 1 SUSY vacua in terms of the forms

z, ω, j and the fluxes. As discussed in [16], (1.5a) implies

k‖ = 0 or cos θ = 0 . (1.11)

We will choose the first case namely a strict SU(2) structure. In this case, the equa-

tions (1.5a)–(1.5c) become:

(d−H∧)(e3A−φz ∧ e−ij) = 2|µ|e2A−φ(ωI − zRzIωR) (1.12a)

(d−H∧)
(

e2A−φ(ωI − zRzIωI)
)

= 0 (1.12b)

(d−H∧)
(

e4A−φ(ωR + zRzIωI)
)

= −3|µ|e3A−φ Im(z ∧ eij) + e4A ∗ λ(F ) (1.12c)

with R and I denoting the real and imaginary part.

1When k‖ = 1 and k⊥ = 0 the internal manifold is said to be of SU(3) structure. We will not consider

this case here.
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2 Description of the method

In this section, we present the semi-algorithmical method used to find new sourceless vacua

in N = 1, AdS4 in type IIB. In fact this method can be extended to all problems where

parts of the equations are linear, i.e. of the type (2.5), and parts of the equations are

quadratic/differential, i.e. of the type (2.6).

2.1 Step 0: definitions

Let ei be a 6D vielbein on the internal manifold. Define:

z1 = eA(e1 + ie2) z2 = eA(e3 + ie4) z3 = eA(e5 + ie6) (2.1)

Then

z = z1 (2.2)

j =
i

2
(z2 ∧ z2 + z3 ∧ z3) = e2A(e34 + e56) (2.3)

ω = z2 ∧ z3 = e2A
(

e35 − e46 + i(e36 + e45)
)

(2.4)

define a SU(2) structure on the internal manifold. Moreover define

dei = −1

2
f i

jke
jk dA = dAie

i dφ = dφie
i F1 = F1ie

i

F3 = F3iω
i
3 F5 = F5iω

i
5 H = Hiω

i
3

where ωi
k are the canonical real basis of k-forms on a 6-dimensional manifold (for example

ω3i = {e123, e124, . . .}).
We are looking for a sourceless solution in type IIB with a strict SU(2) structure

internal manifold. That is to say that we have to solve for (1.12a)–(1.12c) and for the

sourceless Bianchi identities dH = 0 and dHF = 0. We will also require that d
(

d(ei)
)

= 0

in order to constrain more the system and be sure to obtain a well-defined manifold at the

end of the day.

We also define the following set of variables:

Ti = {f i
jk, dAi, dφi, F1i, F3i, F5i, H3i}

to which we will add the parameter T0 = |µ|. It is important to put this parameter with

the variables in order to obtain fully linear (2.5) and fully quadratic (2.6) equations. We

can claim we have a solution when we find a set of Ti that solves the aforementioned

equations. Indeed, all the equations of motion are solved in this case (see for example [19]

and references therein).

2.2 Step 1: obtaining linear constraints

The equations (1.12a)–(1.12c) are linear in the Ti’s and of the form:

E1i =

{

∑

k

α k
i Tk = 0

}

(2.5)

We can easily solve for them and thus eliminate some of the Ti’s.
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2.3 Step 2: eliminating the derivative in the quadratic equations

The rest of the equations are quadratic in the Ti’s and are of the form:

E2i =

{

∑

j,k

α
jk
i (dT )jk +

∑

j,k

β
jk

i TjTk = 0

}

(2.6)

where we defined d(Ti) = (dT )ije
j . If these equations are quadratic in the Ti’s, they are

linear in the (dT )ij ’s so we can “solve” for them to simplify the system and obtain two sets

of equations of the type:

E3i =

{

∑

j,k

α
jk
i (dT )jk +

∑

j,k

β
jk

i TjTk = 0

}

(2.7)

E4i =

{

∑

kl

α kl
i TkTl = 0

}

(2.8)

Maybe it can be better explained with an example. Assume the system E2i is composed

of two equations (dT )12 + T1T2 = 0 and (dT )12 + (T2)
2 = 0, “solving” for (dT )12 means

keeping one of the two equations unchanged, and replace (dT )12 in the other one to obtain

the system E4i: T1T2 = (T2)
2. In other words, we are splitting E2i in two, one part, E3i

with all the (dT )ij ’s and the other, E4i with only Ti’s.

2.4 Step 3: simplifying the leftover quadratic equations

We can still simplify a bit the system of equations E4i (2.8). Indeed, in general, all the

equations are not independent and there exists a simple trick to easily get a minimal system.

Simply define (TT )ij = TiTj , with i ≤ j. Then the system is linear in these new variables

and by solving it, one obtains a minimal system in the (TT )ij ’s. One just has to go back to

the Ti’s to have simplified E4i. Moreover while solving for the (TT )ij ’s, we can make it so

that (TT )0j appears as much as possible. It will help us get simpler equations for step 4.

2.5 Step 4: adding linear constraints

The goal of this step is to obtain a linear constraint from the set of quadratic constraints

to simplify the original problem. This is inspired by [24] where some linear conditions were

hidden in the quadratic constraints and permitted to fully solve these equations.

Having simplified the system in steps 2 and 3, some equations may immediately give

such a linear constraint:

• One of the equation can be of the form
∑

i(
∑

k α
k
i Tk)

2 = 0. Then the linar constraints

are
∑

k α
k
i Tk = 0 for all i.

• One of the equations can be of the form T0
∑

k α
kTk = 0. Since T0 = |µ|, which is

non-zero since the external manifold is AdS, one can conclude
∑

k α
kTk = 0 which is

linear.
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If one is not in one of the case above, one has to make an assumption. The system can

often give an hint on what is a sensible assumption or not. Indeed, some equations are

simpler than other and help make a choice. But how can one find these simpler equations

in a system which can be quite complicated? The answer is to look at the eigenvalues of

αkl seen as a matrix in (2.8). The equations with a small number of non-zero eigenvalues

are usually sufficiently simple to make sensible assumptions (see section 3.1 for an explicit

example).

2.6 Step 5: going back to step 1

We are now going back to step 1 with the additional linear constraints obtained in step 4.

We are forced to do all the work again for the following reason. Assume you had for

example the equation (dT )11 = (T2)
2 in the system E3i (2.7) and that you found T1 = 0

as a linear constraint in step 4. Then it implies (dT )11 = 0 and so (T2)
2 = 0 in step 2

which will give the linear constraint T2 = 0 in step 4. This is the strength of the method:

simplify sufficiently the quadratic constraints to spot the linear constraints hidden in them

to be able to discover even more linear constraints.

Thus we are going from step 1 to step 4 to step 1 again until one of the three following

things happen:

• The system has no solution: it means that one of the assumptions made in step 4 is

wrong and should be discarded or that there is no solution within the ansatz one was

given.

• E4i (2.8) is empty then one can go to the final step.

• E4i (2.8) is not empty but is sufficiently simple to be able to find a non linear solution

of it. Then one can go to the final step.

2.7 Final step: solving the last equations

Ideally at this point both E3i and E4i defined in step 2 are empty but this is often not the

case. Nevertheless, they are usually sufficiently simple to be solved by traditional methods.

To sum up, the above steps take care of the linear parts of the equations and of some of the

quadratic constraints by assuming some linear constraints. What is left are the differential

and quadratic parts. An explicit example of this step will be given in section 3.1.

3 Examples of new vacua

In this section we give some examples of solutions found by the above method. One of

them is already known as a Lüst-Tsimpis solution [3]. The other two, as far as the author

knows, are two new vacua in type IIB.

3.1 An example of Lüst-Tsimpis solution

We will give an example of a Lüst-Tsimpis solution [3]. In this section we will also give a

detailed account of how the method works in this particular case.
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First of all we assume that there is no vector or tensor in the torsion classes as they

do in [3]. These are linear constraints in our variables Ti’s so can already be put in step 1.

We will also require de2 = de3 = 0 that is to say, we want e2 = dx2 and e3 = dx3, x2 and

x3 being coordinates. This requirement is also linear and can be put in step 1. Finally, we

will require that all the variables are functions of only x2 and x3. Part of this requirement

is linear (for example, dAj = 0 for j 6= 2, 3). The other part is differential and means that

(dT )ij = 0 for j 6= 2, 3 and appears in step 2.

We run the algorithm from step 1 to step 3 and take a look at the resulting system

E4i (2.8). It contains several simple equations: |µ|
(

f4
15 − 5|µ|

2

)

= |µ|f4
45 = |µ|f4

46 =

|µ|(f5
35 − f4

34) = |µ|f5
45 = 0. We add these linear (since |µ| 6= 0) constraints to step 1.

Then we rerun the algorithm from step 1. In step 4, we obtain only one equation in

E4i namely: (f4
25)

2 + 4(dA2)
2 − 5|µ|2

4 = 0. We are in the case where there is no obvious

linear constraint. So we will make a choice: f4
25 = 0 and dA2 =

√
5|µ|
4 to solve it.

We rerun the algorithm from step 1 and find that E4i is empty. So we go to the final

step and take a look at E3i (2.7). There are 4 equations in it (the projections on e2 and e3

of the two following expressions):

d(f4
34) =

(

2(f4
34)

2 − f4
34f

6
36

)

e3 (3.1)

d(f6
36) =

(

5|µ|2 − 2(f4
34)

2 + 2f4
34f

6
36 + (f6

36)
2
)

e3 (3.2)

There exists a simple solution to this system: f4
34 = 0 and f6

36(x
3) =

√
5|µ| tan

(√
5|µ|(x3−

x0)
)

with x0 an integration constant. With this, E3i and E4i are empty which means we

have successfully solved all the relevant equations.

Let’s now give explicitly the results. We have:

de1 = 2|µ|(e36 + e45) de2 = d(dx2) = 0 de3 = d(dx3) = 0 (3.3)

de4 = −5

2
|µ|e15 − f6

36e
56 de5 =

5

2
|µ|e14 + f6

36e
46 de6 = −f6

36e
36

The fluxes, dilaton and warp factor being:

F1 = 0 (3.4a)

F3 =
|µ|e−2A

2

(
√
5(−e135 + e146)− e234 − e256

)

(3.4b)

F5 = 3|µ|e13456 (3.4c)

H =
|µ|e2A

2

(
√
5(e134 + e156) + e235 − e246

)

(3.4d)

φ = 4A =
√
5|µ|x2 (3.4e)

with f6
36(x

3) =
√
5|µ| tan

(√
5|µ|(x3 − x0)

)

with x0 an integration constant. This is a

solution of the N = 1 SUSY equations, the sourceless Bianchi identities and d
(

d(ei)
)

= 0

and so of all the equations of motion. Moreover, there are no vectors and no tensors in the

torsion classes.

In order to understand more this solution, it is useful to give a coordinate expression

of the metric or at least identify each part of the space. In that regard, one can take the

– 7 –
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following change of variables:

e1 =
2ẽ1

5|µ| +
2f(x3)dx6

5|µ|
√

5|µ|2 + f(x3)2
e2 = dx2 e3 = dx3 (3.5)

e4 =
ẽ4√
5|µ|

e5 =
ẽ5√
5|µ|

e6 =
dx6

√

5|µ|2 + f(x3)2

with f(x3) =
√
5|µ| tan

(√
5|µ|(x3 − x0)

)

with x0 an integration constant and the triplet

{ẽ1, ẽ4, ẽ5} parametrizing a SU(2) dẽ1 = ẽ45, dẽ4 = −ẽ15, dẽ5 = ẽ14. If one wants to see

explicitly the squashed Sasaki-Einstein of Lüst-Tsimpis [3], we now give the correspondence

with their objects (note that for us WLT = |µ| and cLT = 0):

uLT =
5|µ|
6

e1

dtLT = e2

γLT = −5|µ|2
6

(e36 + e45)

αLT =
5

6
|µ|2

(

sin(θLT)(e
34 + e56) + cos(θLT)(e

35 − e46)
)

βLT =
5

6
|µ|2

(

cos(θLT)(e
34 + e56)− sin(θLT)(e

35 − e46)
)

with θLT a constant.

3.2 A new solution with constant dilaton

Applying the method to more complex cases, we were able to identify two new vacua. Here

we present the first one which has the particularity to have a constant dilaton. We will

make an ansatz on the solution to make the method converge more rapidly (this ansatz

has been found by trial and error from the general case). We will assume that de3 = dx3

and that all the variables depend on x3 only. We will also assume that de2 = −f2
23e

23,

de4 = −f4
34e

34 and de5 = −f5
35e

35. Then some iterations of the algorithm give the following

algebra:

de1 =
(

4dA3(x3)− dφ3(x3)
)

e13 + 2|µ|(e36 + e45) (3.6a)

de2 =
(

4dA3(x3)− dφ3(x3)
)

e23 (3.6b)

de3 = d(dx3) = 0 (3.6c)

de4 = −f4
34(x3)e

34 (3.6d)

de5 = −
(

dφ3(x3) + f4
34(x3)

)

e35 (3.6e)

de6 = 5|µ|e13 − f6
23(x3)e

23 −
(

2dA3(x3)− dφ3(x3)− f4
34(x3)

)

e36

+
(

4dA3(x3)− 2dφ3(x3)− 2f4
34(x3)

)

e45 (3.6f)

with dA = dA3(x3)e
3 and dφ = dφ3(x3)e

3. Moreover, in order to verify the Bianchi

identities and d
(

d(ei)
)

= 0, the four functions verify the following equations (which are the

– 8 –
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system E3i (2.7) in this case):

(dA3)
′ =

5|µ|2
2

+ 6(dA3)
2 + dA3f

4
34 +

1

2
(f6

23)
2 (3.7a)

(dφ3)
′ = 10dA3dφ3 − 2(dφ3)

2 + dφ3f
4
34 + (f6

23)
2 (3.7b)

(f4
34)

′ = 10|µ|2+16(dA3)
2−16dA3dφ3+4(dφ3)

2−6dA3f
4
34+4dφ3f

4
34+3(f4

34)
2 (3.7c)

(f6
23)

′ = 4dA3f
6
23 (3.7d)

Unfortunately, the author hasn’t been able to solve these equations in all generality. But

there exists the following more simple solution (which is the above one with dφ = 0,

f4
34 = 4dA3 and f6

23 = 0):

de1 = 4dA3(x3)e
13 + 2|µ|(e36 + e45) (3.8a)

de2 = 4dA3(x3)e
23 (3.8b)

de3 = d(dx3) = 0 (3.8c)

de4 = −4dA3(x3)e
34 (3.8d)

de5 = −4dA3(x3)e
35 (3.8e)

de6 = 5|µ|e13 + 2dA3e
36 − 4dA3e

45 (3.8f)

The fluxes, dilaton and warp factor being:

F1 = 0 (3.9a)

F3 = e2A
(

4dA3(x3)e
125 + |µ|(−3e234 + 2e256)

)

(3.9b)

F5 = 3e4A|µ|e13456 (3.9c)

H = e2A
(

4dA3(x3)e
124 + |µ|(3e235 + 2e246)

)

(3.9d)

φ = 0 (3.9e)

dA3(x3) =
|µ|
2

tan
(

5|µ|(x3 − x0)
)

(3.9f)

A(x3) = − 1

10
log

(

cos
(

5|µ|(x3 − x0)
)

)

(3.9g)

with x0 an integration constant. This is a solution of the N = 1 SUSY equations, the

sourceless Bianchi identities and d
(

d(ei)
)

= 0 and so of all the equations of motion.

We then put its expression in coordinates by the following change of variables:

e1 = 2|µ|f(x3)
2

5 ẽ1 +
2|µ|

dA3(x3)f(x3)
3

10

dx6 (3.10a)

e2 = f(x3)
1

5dx2 (3.10b)

e3 = dx3 = dA3(x3)f(x3)
17

10dx′3 (3.10c)

e4 = f(x3)
1

5dx4 (3.10d)

e5 = f(x3)
1

5dx5 (3.10e)

e6 = 4dA3(x3)f(x3)
2

5 ẽ1 +
10

f(x3)
3

10

dx6 (3.10f)
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with dẽ1 = dx′3 ∧ dx6 + dx4 ∧ dx5 and f(x3) =
1

5|µ|2

2
+10dA3(x3)2

. Unfortunately, the author

has not been able to obtain an explicit change of variables to go from x3 to x′3.

3.3 A new solution with non constant dilaton

3.3.1 The solution

Another solution arose from the method described, one with non constant dilaton. Once

again to make the method converge more rapidly one takes an ansatz (this ansatz has been

found by trial and error from the general case). We will assume that de3 = dx3 and that

all the variables depend on x3 only. We will also assume that de4 = −f4
34e

34 and H = 0.

After some iterations of the algorithm, one obtains:

de1 = dA3(x3)e
13 + 2|µ|(e36 + e45) (3.11a)

de2 = dA3(x3)e
23 (3.11b)

de3 = d(dx3) = 0 (3.11c)

de4 =
|µ|2

dA3(x3)
e34 (3.11d)

de5 = 2|µ|e14 − dA3(x3)e
35 − |µ|2

dA3(x3)
e46 (3.11e)

de6 = 2|µ|e13 − dA3(x3)e
36 +

|µ|2
dA3(x3)

e45 (3.11f)

The fluxes, dilaton and warp factor being:

F1 = e−φ
(

|µ|e1 − 2dA3(x3)e
6
)

(3.12a)

F3 = e2A−φ
(

dA3(x3)e
125 − 3|µ|e234 + |µ|e256

)

(3.12b)

F5 = 3|µ|e13456 (3.12c)

H = 0 (3.12d)

dA = dA3(x3)e
3 =

|µ|
2

tan
(

2|µ|(x3 − x0)
)

e3 (3.12e)

A = −1

4
log

(

cos
(

2|µ|(x3 − x0)
)

)

(3.12f)

dφ = dφ3e
3 = 3dA3(x3)e

3 (3.12g)

φ = 3A+ cst (3.12h)

with x0 an integration constant. This is a solution of the N = 1 SUSY equations, the

sourceless Bianchi identities and d
(

d(ei)
)

= 0 and so of all the equations of motion.

– 10 –
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Once again a coordinate expression is useful. Do the following change of variables:

e1 = cos(2|µ|x4) cos(X) sin(X)
1

4dx1 + sin(2|µ|x4) cos(X) sin(X)
1

4dx5 + sin(X)
5

4dx6

(3.13a)

e2 = sin(X)
1

4dx2 (3.13b)

e3 =
dX

2|µ| (3.13c)

e4 = cos(X)dx4 (3.13d)

e5 = − sin(2|µ|x4) sin(X)
1

4dx1 + cos(2|µ|x4) sin(X)
1

4dx5 (3.13e)

e6 = − cos(2|µ|x4) sin(X)
5

4 dx1 − sin(2|µ|x4 sin(X)
5

4dx5 + cos(X) sin(X)
1

4dx6 (3.13f)

with X =
(

2|µ|(x3 − x0)
)

+ π
2 . Note that eA = sin(X)−

1

4 . We give the expression of the

metric in the (x1, x2, X, x4, x5, x6) system of coordinates:

gij =























1 0 0 0 0 0

0 1 0 0 0 0

0 0 1

4|µ|2
√

sin(X)
0 0 0

0 0 0 cos(X)2√
sin(X)

0 0

0 0 0 0 1 0

0 0 0 0 0 1























(3.14)

One can also calculate the Ricci scalar: R = |µ|2 1−3 cos(2X)

(sin(X))
3
2

which goes to infinity when X

goes to 0. This shows that, a priori, this space is singular. Around 0, this metric doesn’t

have the form of the D-brane metric so one has to better understand this singularity. In

order to do that, let’s look at the ten dimensional metric around X = 0 at first order:

ds2 =
1√
X

ds2(4) + (dx21 + dx22 + dx25 + dx26) +
dX2

4|µ|2
√
X

+
dx24√
X

(3.15)

Then define x̃ =
√
X

|µ| , the metric around 0 becomes:

ds2 =
1

|µ|x̃(ds
2
(4) + dx24) + (dx21 + dx22 + dx25 + dx26) + |µ|x̃dx̃2 (3.16)

This shows that this system can be mapped to a D5-D7 intersecting system which are delo-

calized in the {1, 2, 5, 6} directions. For example D5 along x1, x4 and D7 along x2, x4, x5, x6.

Indeed, we are in the case of a system similar to (10) of [29] with only one transverse direc-

tion for both branes (the x̃ direction), and H5 = H7 = |µ|x̃ being the associated harmonic

function. Similarly according to equation (478) of [30], one has e−2φ = H5H
2
7 = |µ|3x̃3

which corresponds to the dilaton value on the solution aroundX equal zero: e−2φ = e−6A =

sin(X)
3

2 =X→0 X
3

2 = |µ|3x̃3.

– 11 –
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3.3.2 T-dual solution

One can see that there exists several isometric directions for this solution (at first sight dx1,

dx2, dx5, dx6). To illustrate this, we will explicitly give the T-dual along the dx2 = eAe2

direction. The resulting solution in IIA is:

de1 = dA3(x3)e
13 + 2|µ|(e36 + e45) (3.17a)

de2 = dA3(x3)e
23 (3.17b)

de3 = d(dx3) = 0 (3.17c)

de4 =
|µ|2

dA3(x3)
e34 (3.17d)

de5 = 2|µ|e14 − dA3(x3)e
35 − |µ|2

dA3(x3)
e46 (3.17e)

de6 = 2|µ|e13 − dA3(x3)e
36 +

|µ|2
dA3(x3)

e45 (3.17f)

The fluxes, dilaton and warp factor being:

F0 = F4 = H = 0 (3.18a)

F2 = eA−φ(|µ|e12 − 2dA3e
15 + 2dA3e

26 − 3|µ|e34 + |µ|e56) (3.18b)

F6 = 3e5A−φ|µ|e123456 (3.18c)

dA = dA3(x3)e
3 =

|µ|
2

tan
(

2|µ|(x3 − x0)
)

e3 (3.18d)

A = −1

4
log

(

cos
(

2|µ|(x3 − x0)
)

)

(3.18e)

dφ = dφ3e
3 = 3dA3(x3)e

3 (3.18f)

φ = 3A+ cst (3.18g)

Note that the space the solution lives on is the same in both IIA and IIB. But in IIA,

contrary to IIB, we have, the following SU(3) structure:

z1 = eA(ie1 − e2) z2 = eA(e3 + ie4) z3 = eA(ie5 − e6) (3.19)

z = z1 (3.20a)

j =
i

2
(z2 ∧ z2 + z3 ∧ z3) = e2A(e34 + e56) (3.20b)

ω = z2 ∧ z3 = e2A
(

− e35 + e46 + i(−e36 − e45)
)

(3.20c)

Ω = z ∧ ω (3.20d)

J =
i

2
z ∧ z̄ + j (3.20e)

Φ+ = − ieA

8
e−iJ (3.20f)

Φ− = − ieA

8
Ω (3.20g)
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Conclusion and outlooks. In this paper, we managed to identify two new vacua in

type IIB which are explicit. It is a step forward in identifying the web of vacua in type II.

We also have been able to discover a new IIA solution by applying T-duality along an

isometric direction on one of the solutions. One caveat should be pointed out: these

solutions are indeed sourceless if the space is smooth which is not guaranteed by the

analysis. Indeed, one could find localized sources (or partially localized sources as we did

for the second example) but it is not in the scope of this paper.

To obtain these new vacua, we devised a semi-algorithmical method which can be

applied to lots of other similar situations. Indeed, one can apply it to type IIA to discover

new vacua (and we should be able to easily recover the one we found here), or to type IIB

with dynamic SU(2) structure instead of the strict SU(2) structure we restricted to in

this paper. More generaly, one can apply it to all problems with a linear part and a

quadratic/differential part of the type (2.5), (2.6). In that respect, one can see this paper

as a proof of concept for the method.

There is also lots of room for improvement for the method depending on which prob-

lems one applies it to. Indeed, in this paper we restricted to having only one parameter

which had to be non zero |µ|. In fact it is quite common to find other linear combina-

tions of variables to be non zero. Then one can modify step 3 and step 4 to take that

into account and be provided with even more linear constraints. Another improvement

concerns the automatization. In step 4, it is quite common to have constraints of the type

(
∑

i α
iTi)(

∑

βiTi) = 0. One can incorporate this case in the algorithm to build a tree of

assumptions (here one branch is given by (
∑

i α
iTi) = 0 and the other by (

∑

βiTi) = 0)

instead of just choosing one.
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