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1 Introduction

Three dimensional space is well known to be peculiar from the point of view of conformal

geometry (see e.g. [1]). Indeed, while the Weyl tensor controls the conformal geometry in

dimensions D ≥ 4, this tensor turns out to identically vanish in D = 3. What plays the

role of the Weyl tensor is then the Cotton tensor, which depends on the metric and its

derivatives up to third order and which, in the appropriate dual representation, has the

following properties:

1. It is a rank-two symmetric tensor;

2. It is traceless;

3. It is divergence-free:

4. It is invariant under Weyl rescalings;

5. It controls conformal invariance, in the sense that a necessary and sufficient condition

for a metric to be conformally flat is that its Cotton tensor vanishes.

The Cotton tensor appears in three-dimensional topologically massive gravity [2].

In the case of linearized gravity around a flat background with gij = δij + hij , these

properties for the Cotton tensor

Bij [h] =
1

4
εimn

(
∂j∂n∂

shsm −4∂nhjm
)

+
1

4
εjmn

(
∂i∂n∂

shsm −4∂nhi m
)

(1.1)

read

1. Symmetry:

Bij = Bji, (1.2)

2. Tracelessness:

Bijδij = 0, (1.3)

3. Transverseness:

∂iB
ij = 0, (1.4)

4. Gauge invariance:

δBij = 0 for δhij = 2∂(iξj) + λδij , (1.5)

5. Conformal flatness:

Bij [h] = 0 ⇔ hij = 2∂(iξj) + λδij (1.6)

for some ξj and λ.

We have assumed Euclidean signature, but similar formulas with δij replaced by the

Minkowskian metric of course hold in the case of Minkowskian signature.

Furthermore, one can show that:

6. Any tensor Bij that fulfills (1.2), (1.3) and (1.4) can be written as in (1.1), i.e., is

the Cotton tensor of some hij .
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This property turns out to be crucial when analyzing the constraints of the spin-2 theory

in four dimensions as we shall recall below.

Conformal higher spin gauge fields have received a sustained interest over the years [3–

16]. The gauge symmetries of a conformal bosonic higher spin gauge field of spin s read,

in the free limit,

δhi1···is = s∂(i1ξi2···is) +
s(s− 1)

2
δ(i1i2λi3···is) (1.7)

The gauge transformations parametrized by ξi2···is reduce to the Maxwell gauge transfor-

mations ∂iξ when s = 1 and to linearized diffeomorphisms when s = 2. They will be called

here “spin-s diffeomorphisms” (or “higher spin diffeomorphisms” when we do not need to

specify the explicit value of s > 2). The gauge transformations parametrized by λi3···is
are absent for s = 1 and reduce to linearized Weyl rescalings δi1i2λ when s = 2. They

will be called here “spin-s Weyl transformations” (or “higher spin Weyl transformations”,

or “higher spin conformal transformations”). Similarly, a fermionic conformal higher spin

field of spin s+ 1
2 is described by a tensor spinor Σi1···is with gauge symmetries

δΣi1···is = s∂(i1µi2···is) + sγ(i1ηi2···is). (1.8)

Both sets of gauge transformations are reducible since δhi1···is = 0 for

ξi2···is =
(s− 1)(s− 2)

2
δ(i2i3ψi4···is), λi3···is = −(s− 2)∂(i3ψi4···is),

while δΣi1···is = 0 for µi2···is = γ(i2ζi3···is) and ηi2···is = −∂(i2ζi3···is). One could use this re-

dundancy to impose trace conditions on the gauge parameters but this will not be done here.

We shall from now on focus on the bosonic (integer spin) case. Building the higher spin

conformal geometry amounts to constructing a complete set of invariants under (1.7) out

of the fields and their derivatives. It turns out that the case of spacetime dimension D ≥ 4

is again rather direct and uneventful, because a straightforward generalization of the Weyl

tensor provides the solution. In dimension D = 3, however, the Weyl tensors for higher

spins vanish identically, just as for spin-2. One must introduce the Cotton tensor [4, 17].

The properties of the Cotton tensor were thoroughly explored in the profound work [17]

for spin s = 3. In particular, the analog of the properties 1-5 for s = 3 were explicitly

demonstrated. The purpose of this paper is to extend the analysis of [17] to higher spins,

building on the previous study [4]. We also prove the generalization of property 6 for

all spins.

One motivation for undertaking the present study is that the Cotton tensor plays a

central role in some recent higher spin gauge models in three dimensions [18–22]. Another

motivation comes from SO(2) electric-magnetic duality invariance, as we now discuss.

It has been recognized some time ago that the free Maxwell action in four spacetime

dimensions is invariant under SO(2) rotations in the two-dimensional internal plane of the

electric and magnetic fieds,

E i −→ cosα E i − sinαBi

Bi −→ sinα E i + cosαBi

– 3 –
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It was indeed shown in the pioneering work [23] that, contrary to common belief, this

symmetry is not just an on-shell symmetry leaving the equations of motion invariant, but is

a genuine off-shell symmetry of the action SMaxwell[Aµ] once appropriately extended to the

vector potential Aµ, which is the dynamical variable in the action principle. In the original,

single vector potential formulation, the duality transformations of the vector potential are

non-local in space, but locality can be achieved by going to the Hamiltonian formalism and

solving Gauss’ constraint through the introduction of a second vector potential [23]. In the

formulation with two potentials, SO(2) electric-magnetic duality invariance of the action is

manifest and amounts to rotations in the internal plane of the two vector potentials [23, 24].

These two vector potentials Aai (a = 1, 2) are both gauge invariant under (1.7).

The analysis can be extended to spin 2. Electric-magnetic SO(2)-rotations in the in-

ternal plane spanned by the linearized Riemann tensor and its dual are symmetries of the

free spin-2 theory, not only of the equations of motion, but also of the action itself [25](see

also [26–28] for a different approach and the extension to the cosmological case, respec-

tively). The action can be written in a manifestly duality invariant form by solving the

constraints [25], as for spin 1. This step requires the introduction of one potential for

the spatial metric through the resolution of the so-called Hamiltonian constraint and one

potential for its conjugate momentum through the resolution of the so-called momentum

constraint. Since the metric and its momentum are themselves already potentials for the

gauge invariant (linearized) Riemann tensor, one talks of “prepotentials”. The two pre-

potentials Zaij are rank-2 symmetric tensors and SO(2) duality transformations are simply

rotations in the internal plane of the prepotentials.

Z1
ij −→ cosαZ1

ij − sinαZ2
ij

Z2
ij −→ sinαZ1

ij + cosαZ2
ij

An intriguing feature of the prepotentials is that they are both invariant under the gauge

symmetries (1.7) of conformal spin 2,

δZaij = 2∂(iη
a
j) + δijµ

a (1.9)

The emergence of (linearized) diffeomorphisms and Weyl rescalings is somewhat unex-

pected but turns out to be crucial in the investigation of the theory and the understanding

of its structure [29]. This intriguing feature arises also for gravity in higher dimensions [30]

where the prepotentials are now tensors with different Young tableau symmetries, and for

the fermionic spin 1/2 and spin 3/2 massless fields in four dimensions, where the resolu-

tion of the constraints introduce also prepotentials with the symmetries (1.8) of conformal

fermionic gauge fields [31, 32].

These results have led in [32] to the conjecture that not only for spins 1, 3/2, 2 and

5/2 does the resolution of the constraints of the Hamiltonian formulation lead to prepo-

tentials with the gauge symmetries of conformal gauge fields with respective spins 1, 3/2,

2 and 5/2, but that the same somewhat puzzling property holds for all higher spins. We

establish this conjecture here in the spin-3 case, which exhibits already the new features

characteristic of higher spins. We consider four dimensions, where the dynamical fields are

– 4 –
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three-dimensional tensors and the prepotentials completely symmetric tensors (described

by single-row Young tableaux). We find then that the validity of the conjecture is in fact a

direct consequence of our analysis of higher spin conformal geometry. We also show that the

prepotential formulation is automatically manifestly duality invariant for all spins. While

manifestly duality invariant, it is not, however, manifestly Lorentz-invariant (although it is

of course Lorentz-invariant). As argued in [33], this lack of manifest spacetime covariance

of the manifestly duality-invariant formulations might be the signal that the duality sym-

metries are more fundamental than the spacetime symmetries, which would be emergent

symmetries, in line with the idea that spacetime itself is an emergent concept. Using the

geometric tools developed in this paper, we show in a separate publication [34] that the

Hamiltonian formulation of spins > 3 exhibit the same features.

Our work is organized as follows. In section 2, the definition of the analog of the

Riemann tensor, which contains s derivatives of the spin-s field [35], is recalled and its

main properties are reviewed. The Weyl tensor, defined as the tracefree part of the Rie-

mann tensor, contains therefore also s derivatives of the spin-s field and is recalled to

control the conformal geometry in spacetime dimensions D ≥ 4. It identically vanishes in

dimensions D = 3 for which new tools are needed and to which we then exclusively turn

(sections 3, 4, 5). Equipped with the appropriate mathematical apparatus developed for

general bosonic spins, we then discuss the Hamiltonian formalism for a spin-3 gauge field

and show how the higher spin conformal techniques enable one to solve the constraints

in terms of prepotentials that enjoy remarkable symmetries (section 6). In section 7, we

rewrite the action in terms of the prepotentials and establish manifest SO(2) electric-

magnetic duality invariance. Section 8 is devoted to concluding comments. Finally, two

appendices give our conventions and provide further cohomological insight into the higher

spin Weyl symmetry.

2 Riemann tensor

2.1 Definition and Bianchi identity

We first recall how to construct invariants under the spin-s diffeomorphisms

δhi1···is = s∂(i1ξi2···is) (2.1)

(without trace constraints on the gauge parameters). This question was investigated in [35],

where it is shown that the relevant Riemann tensor involved s derivatives of the spin-s field.

Explicitly, the Riemann tensor is defined by

Ri1j1i2j2···isjs [h] = 2s∂[j1|∂[j2| · · · ∂[js|hi1]|i2]|···is] (2.2)

where the antisymmetrizations are to be carried on each pair of indices (ik, jk) (k =

1, · · · , s), so that the Riemann tensor has the Young symmetry

s boxes︷ ︸︸ ︷
. (2.3)
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The Riemann tensor is invariant under spin-s diffeomorphisms and fulfills the Bianchi

identity

∂[k1Ri1j1]i2j2···isjs = 0. (2.4)

It will be sometimes useful to adopt an index-free notation, in order to emphasize the

concepts. To that end, we shall use the nilpotent differential operators d(s) of order s + 1

introduced in [36, 37],

ds+1
(s) = 0, (2.5)

acting on “well-filled” mixed symmetry tensors with s columns (some of which can be

empty) (see also [38, 39] for a general discussion of cohomological techniques adapted to

tensor fields with arbitrary Young symmetry). In these notations, the gauge transforma-

tions (2.1) read δh = d(s)ξ and the definition of the Riemann tensor is simply R = ds(s)h.

The spin-s diffeomorphism invariance of the Riemann tensor and the Bianchi identity both

follow from (2.5).

Furthermore, the cohomological results of [36, 37] imply: (i) that any tensor of Young

symmetry type (2.3) that fulfills d(s)R = 0 can be written as R = ds(s)h for some completely

symmetric field hi1···is ; and (ii) a necessary and sufficient condition for hi1···is to be pure

gauge, h = d(s)ξ, is that its Riemann tensor vanishes.

One can prove, in fact, the equivalent result that any function of the spin-s field and

its derivatives that is invariant under spin-s diffeomorphisms is a function of the curvature

components and their derivatives only. A direct proof is given in the lucid work [40]. The

equivalence of the two statements is given in appendix B. Hence, the curvature tensor

completely captures spin-s gauge invariance.

The Riemann tensor is not invariant under the spin-s Weyl transformations. Rather,

under these transformations, it transforms as

δRi1j1i2j2···isjs = 2s
s(s− 1)

2
Π
(
∂j1···jsδ(i1i2λi3···is)

)
, (2.6)

where the projection operator Π carries the antisymmetrizations within each pair of indices

(ik, jk). The variation of the Riemann tensor is clearly pure trace since all its terms contain

a δmn-factor with a pair of indices in (i1, j1, i2, j2, · · · , is, js). Therefore, the Weyl tensor,

which is the trace-free part of the Riemann tensor, is Weyl invariant. As the Riemann

tensor, it contains s derivatives of the spin-s field. In dimension D ≥ 4, the Weyl tensor

vanishes if and only if the spin-s field is pure gauge taking into account all the gauge

symmetries of conformal spin s, i.e. hi1i2···is = ∂(i1ξi2···is) + δ(i1i2λi3···is). This is well known

for s = 2 and was established in [17] for s = 3. The demonstration proceeds along the

same lines for s > 3.

Less direct is the case of dimension D = 3 because the Weyl tensor vanishes identically.1

1The vanishing of the Weyl tensor in three dimensions is a well-known fact. It is a direct consequence

of the identities valid in three dimensions

Ri1j1i2j2···isjs =
1

4
εi1j1k1ε

k1m1n1εi2j2k2ε
k2m2n2Rm1n1m2n2···msns

=
1

4
εi1j1k1εi2j2k2ε

k1m1n1εk2m2n2Rm1n1m2n2···msns

=
1

2
εi1j1k1εi2j2k2δ

k1k2R[2]m3n3···msns − εi1j1k1εi2j2k2R
k1k2

[1] m3n3···msns

– 6 –



J
H
E
P
0
1
(
2
0
1
6
)
0
7
3

To control the conformal geometry, one needs in this case the Cotton tensor, which contains

2s− 1 derivatives of the spin-s field [4, 17].

2.2 Einstein tensor

Before moving to the Cotton tensor, we introduce the Einstein tensor, which can be defined

in three dimensions as

Gk1···ks =

(
1

2

)s
εk1i1j1εk2i2j2 · · · εksisjsRi1j1i2j2···isjs (2.7)

It is completely symmetric and equivalent to the Riemann tensor, since the defining rela-

tion (2.7) can be inverted to give

Ri1j1i2j2···isjs = εk1i1j1εk2i2j2 · · · εksisjsGk1k2···ks (2.8)

The Einstein tensor is the dual of the Riemann tensor on all pairs of indices.

The Einstein tensor fulfills the “contracted Bianchi identity”

∂k1G
k1···ks = 0 (2.9)

This is also true for its successive traces

Ḡi1···is−2 ≡ Gi1···is−2

[1] = δis−1isG
i1···is−2is−1is , (2.10)

¯̄Gi1···is−4 ≡ Gi1···is−4

[2] = δis−3is−2Ḡ
i1···is−4is−3is−2 , (2.11)

etc (n = 0, · · ·
[
s
2

]
, with G[0] ≡ G), which obey

∂i1Ḡ
i1···is−2n

[n] = 0, n = 0, · · ·
[s

2

]
. (2.12)

The operation of taking one trace is denoted by one bar, but multiple traces are also

indicated with the subscript [n] rather than multiple bars, where n is the number of traces

being taken. The maximum number of traces that can be taken is equal to the integer part[
s
2

]
of s

2 .

Just as the “contracted Bianchi identity” (2.9) is equivalent to d(s)R = 0 or d(s)
∗G = 0,

where ∗ denotes here the dual on all indices, the successive identities (2.12) can be written

as d(s−2)
∗Ḡ = 0, d(s−4)

∗ ¯̄G = 0, etc, where ∗G[n] are the duals of the successive traces G[n],

which are tensors of Young symmetry type

∗G[n] <>

(s−2n) boxes︷ ︸︸ ︷
,

showing that the Riemann tensor is entirely expressible in terms of its trace R[1]k1k2|k3j3···ksjs =

δj1j2Rk1j1k2j2···ksjs and thus that its traceless part is zero. Here, R[2]m3n3···msns is the double trace

δk1k2R[1]k1k2|m3n3···msns .

– 7 –
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etc. These identities can also be directly verified from the expression of the Einstein tensor

in terms of the derivatives of the fields,

Gk1···ks = εk1i1j1εk2i2j2 · · · εksisjs

∂i1∂i2 · · · ∂ishj1j2···js (2.13)

which implies by contraction that ∗Ḡ = ds−2
(s−2)Ψ, ∗ ¯̄G = ds−4

(s−4)Ξ, etc, for some completely

symmetric tensors Ψ with s− 2 indices,

Ψ <>

(s−2) boxes︷ ︸︸ ︷
,

Ξ with s− 4 indices,

Ξ <>

(s−4) boxes︷ ︸︸ ︷
,

etc, which respectively depend on 2, 4, etc derivatives of the spin-s field. It follows in partic-

ular from these considerations that the equation Ḡ = 0 is equivalent to Ψ = d(s−2)Π, with

Π <>

(s−3) boxes︷ ︸︸ ︷
.

Since the Einstein tensor is equivalent to the Riemann tensor, it fully captures in the

same manner the spin s gauge invariance: any local function of the h’s that is invariant

under the spin-s gauge transformations can be expressed as a function of G and its succes-

sive derivatives. Furthermore a necessary and sufficient condition for h to be pure spin-s

gauge is that its Einstein tensor vanishes.

3 Schouten and Cotton tensors

3.1 Schouten tensor

Under a spin-s Weyl transformation, the Einstein tensor transforms as

δGi1···is =
s(s− 1)

2

(
−∂(i1∂i2µi3···is) + δ(i1i24µi3···is)

)
(3.1)

where

µi3···is = εi3j3k3 · · · εisjsks∂j3···jsλk3···ks (3.2)

The tensor µi3···is fulfills ∂µ1µ
i3···is = 0 and conversely, any tensor that fulfills that equation

can be written as in (3.2) with λk3···ks completely symmetric. This follows again from the

cohomological theorems of [36, 37] applied now to the differential operator d(s−2) defined

in the space of tensors with s− 2 columns, which fulfills ds−1
(s−2) = 0.

The Schouten tensor Si1···is is then defined through

Si1···is = Gi1···is +

[n
2

]∑
n=1

anδ
(i1i2 · · · δi2n−1i2nG

i2n+1···is)
[n] (3.3)

– 8 –
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where the terms added to Gi1···is to define Si1···is involve the successive higher traces of

Gi1···is and are recursively adjusted in such a way that the Schouten tensor fulfills the

crucial property of transforming as

δSi1i2···is = −s(s− 1)

2
∂(i1∂i2νi3···is) (3.4)

under spin-s Weyl transformations, where ν is related to µ as follows

νi3···is = µi3···is +

[n
2

]−1∑
n=1

bnδ
(i3i4 · · · δi2n+1i2n+2µ

i2n+3···is)
[n] (3.5)

One finds that the coefficients an are explicitly given by

an =
(−1)n

4n
s

n!

(s− n− 1)!

(s− 2n)!
, (n ≥ 1) (3.6)

and that the coefficients bn are then

bn = an
(s− 2n)(s− 2n− 1)

s(s− 1)
, (n ≥ 1) (3.7)

In index-free notations, the transformation of the Schouten tensor reads

δS = −d2
(s)ν. (3.8)

The recursive procedure amounts to successively eliminating the terms 4µi1···is−2 ,

4µ̄i1···is−4 involving the Laplacian by adding symmetrized products of δij ’s with multi-

ple traces of the Einstein tensors, with suitable coefficients that are determined uniquely.

In terms of the variables Si1i2···is and νi1i2···is−2 , the Bianchi identity and the condition

∂i1µ
i1i2···is−2 = 0 read respectively

∂i1S
i1i2···is − (s− 1)∂(i2S̄i3···is) = 0 (3.9)

and

∂i1ν
i1i2···is−2 +

s− 3

3
∂(i2 ν̄i3···is−2) = 0 (3.10)

The easiest way to prove these important relations is to observe that they follow uniquely

from the requirement of invariance under (3.4), in much the same way as the Bianchi

identity ∂i1G
i1i2···is = 0 and the condition ∂i1µ

i1i2···is−2 = 0 are the unique identity and

condition compatible with the transformation (3.1) within the class

∂i1G
i1i2···is + a∂(i2Ḡi3···is) + bδ(i2i3∂i4 ¯̄Gi5···is) + · · · = 0,

∂i1ν
i1i2···is−2 + k∂(i2 ν̄i3···is−2) + `δ(i2i3∂i4 ¯̄νi5···is−2) + · · · = 0

(invariance under (3.1) forces a = b = · · · = k = ` = · · · = 0).

– 9 –
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3.2 Cotton tensor

In its original formulation, the Cotton tensor C is defined as ds−1
(s) S. It is a tensor of mixed

symmetry type

C <>

s boxes︷ ︸︸ ︷
︸ ︷︷ ︸

s− 1 boxes

which is invariant under spin-s Weyl transformations as it follows from ds+1
(s) = 0,

δC = ds−1
(s) δS = −ds+1

(s) ν = 0. (3.11)

It contains 2s − 1 derivatives of the spin-s-field hi1···is . As a consequence of the Bianchi

identity, it can be verified to be traceless on the last index of the first row with any

other index (i.e., one gets zero when the last index of the first row is contracted with any

other index).

In the dual representation on the first s − 1 indices of C which we shall adopt, the

Cotton tensor Bi1···is is explicitly given by

Bi1i2···is = εi1j1k1εi2j2k2 · · · εis−1js−1ks−1

∂j1∂j2 · · · ∂js−1S
is

k1k2···ks−1
(3.12)

This tensor is manifestly symmetric in its first s−1 indices. Symmetry in is−1, is is a direct

consequence of the Bianchi identity (3.9) (this is equivalent to the tracelessness property

of C just mentioned). Hence, the tensor Bi1···is is fully symmetric i.e., is of symmetry type

B <>

s boxes︷ ︸︸ ︷
Furthermore, it is easily proved to be conserved on the first index (i.e., its divergence on

the first index is zero). It is also traceless on the last two indices because of the Young

symmetries of C. Since B is fully symmetric, one thus gets

δikimB
i1i2···is = 0, ∂ipB

i1i2···is = 0, (3.13)

with 1 ≤ k < m ≤ s and 1 ≤ p ≤ s.
We stress that, as we have shown, the Cotton tensor B is completely symmetric as a

consequence of the Bianchi identity. Hence, it is not necessary to enforce symmetrization in

its definition since it is automatic. Enforcing complete symmetrization, as done in [18–20],

is of course permissible, but is not needed.

3.3 Spin-2

The above construction reproduces the familiar spin-2 formulas. One finds for the

Schouten tensor,

Sij = Gij − 1

2
δijḠ, Gij = Sij − δijS̄
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and δSij = −∂i∂jλ, ∂iS
ij − ∂jS̄ = 0. The Cotton tensor Cijk is Cijk = ∂iSjk − ∂jSik and

is a Weyl-invariant tensor of type , which is traceless on (j, k) (or (i, k)) because of the

Bianchi identity, C̄i = 0. It involves three derivatives of hij . In the dual representation,

the Cotton tensor Bij is

Bij = εimn∂
mSnj

and is easily checked to be indeed symmetric, traceless and divergenceless.

3.4 Spin-3

We now move to the spin 3 case,

h <> ,

where the above derivation reproduces the results of [17]. We derive below the form the

general formulas take for s = 3.

The Schouten tensor for a spin-3 field reads explicitly

Si1i2i3 = Gi1i2i3 − 3

4
δ(i1i2Ḡi3) (3.14)

Its trace is equal to S̄i = −1
4Ḡ

i so that the inverse formula to (3.14) is Gi1i2i3 = Si1i2i3 −
3δ(i1i2S̄i3). The Schouten tensor transforms as

δSi1i2i3 = −3∂(i1∂i2µi3) (3.15)

under Weyl transformations, where µi is given by

µi = εijk∂jλk (3.16)

and fulfills ∂kµ
k = 0.

The Bianchi identity implies ∂iS̄
i = 0 and can equivalently be written in terms of

Si1i2i3 as

∂i1S
i1i2i3 − ∂i2S̄i3 − ∂i3S̄i2 = 0 (3.17)

According to the above general definition, the Cotton tensor C = d2
(3)S is explicitly

given by

Ci1j1|i2j2|i3 = ∂i1∂i2Sj1j2i3 − ∂j1∂i2Si1j2i3 − ∂i1∂j2Sj1i2i3 + ∂j1∂j2Si1i2i3

and has Young symmetry type

C <>

In the dual representation, the Cotton tensor Bk1k2k3 reads

Bk1k2k3 = εk1i1j1εk2i2j2∂i1∂i2S
k3

j1j2
(3.18)

and, using the Bianchi identity (3.17) and its consequence ∂jS̄
j = 0, is easily seen to be

equal to

Bk1k2k3 = 3∂(i1∂i2S̄i3) −4Si1i2i3 (3.19)

an expression that is manifestly symmetric. Transverseness and tracelessness follow again

from the Bianchi identity (3.17).
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3.5 Spin-4

We now write the formulas in the spin-4 case. The Schouten tensor is

Si1i2i3i4 = Gi1i2i3i4 − δ(i1i2Ḡi3i4) +
1

8
δ(i1i2δi3i4) ¯̄G (3.20)

and transforms as

δSi1i2i3i4 = −6∂(i1∂i2νi3i4) (3.21)

under Weyl transformations, with νij = µij − 1
6δijµ̄.

In terms of the Schouten tensor, the Bianchi identity reads

∂i1S
i1i2i3i4 − ∂i2S̄i3i4 − ∂i3S̄i2i4 − ∂i4S̄i2i3 = 0 (3.22)

and one has ∂iν
ij + 1

3∂
j ν̄ = 0.

The spin-4 Weyl invariant Cotton tensor is d3
(4)S. Writing the explicit formulas directly

in the dual representation, one finds

Bk1k2k3k4 = εk1i1j1εk2i2j2εk3i3j3∂i1∂i2∂i3S
k4

j1j2j3
. (3.23)

Again, the symmetry in (k1, k2, k3) is manifest, while the symmetry in the last index k4

with any other index is a consequence of the Bianchi identity (3.22). The Cotton tensor is

transverse and traceless,

∂iB
ijkl = 0, B̄ij = 0. (3.24)

4 Higher spin “Conformal flatness”

The Cotton tensor is quite important because it completely captures higher spin Weyl

invariance. By this, we mean that any function of the higher spin field and its derivatives

that is invariant under higher spin diffeomorphisms and Weyl transformations is necessarily

a function of the Cotton tensor and its derivatives,

δξ,λf([h]) = 0 ⇒ f = f([B]) (4.1)

Equivalently, a necessary and sufficient condition for a spin-s field to be pure gauge (equal

to zero up to spin-s diffeomorphisms and Weyl transformations) is that its Cotton ten-

sor vanishes.

The first version of this property is demonstrated in appendix B. We show here how

to prove the second version.2 We are grateful to him for this information..

Assume, then, that the Cotton tensor B (or equivalently, C) is equal to zero. Using

the cohomological theorems of [36], one gets

C = ds−1
(s) S = 0⇒ S = −d2

(s)ν (4.2)

2We were kindly informed by Xavier Bekaert that the property “Cotton tensor = 0 ⇔ spin-s field is

diffeomorphism and Weyl pure gauge” can also be viewed as a consequence as the cohomological theorems

of [9] on the representations of the conformal group, see [41, 42].
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for some ν. The Bianchi identity implies that one can choose ν in such a way that the

corresponding tensor µ fulfills ∂µ1µ
i3···is = 0 and so, can be written as in (3.2) for some

completely symmetric λk3···ks . This implies in turn that R[h − λ ? δ] = 0, or equivalently

ds(s)(h−λ? δ) = 0. Here, λ? δ stands for the Weyl transformation term δ(i1i2λi3···is). Using

again the cohomological theorems of [36], one finally obtains

h = d(s)ξ + λ ? δ, (4.3)

i.e., h is pure gauge. Conversely, if h is pure gauge, the Cotton tensor vanishes. We can

thus conclude that a necessary and sufficient condition for the spin-s field to be pure gauge

is that its Cotton tensor vanishes.

We illustrate explicitly the derivations in the spin-3 and spin-4 cases.

4.1 Spin 3

Consider a spin-3 field hi1i2i3 with vanishing Cotton tensor. According to the theorems

of [36], the Schouten tensor reads

Si1i2i3 = −∂(i1∂i2µi3) (4.4)

for some µi. We want to prove that µi can be chosen so that ∂iµ
i = 0. From the Bianchi

identity, one gets

∂i∂j(∂kµ
k) = 0

It follows that ∂kµ
k is at most linear in the coordinates,

∂kµ
k = a+ bkx

k

Define µ̃k = 1
3ax

k + 1
2c
k
ijx

ixj where ckij = ckji, c(kij) = 0 and ckkj = bj . [Such a

ckij exists. It has the Young symmetry in the dual conventions where symmetry is

manifest while antisymmetry is not. The trace of such a tensor is unconstrained and so

can be taken to be equal to bj .] By construction, ∂kµ̃
k = ∂kµ

k and ∂(i1∂i2 µ̃i3) = 0, so

that Si1i2i3 = −∂(i1∂i2(µi3) − µ̃i3)), implying that we can assume that µk in (4.4) fulfills

∂kµ
k = 0, which will be done from now on. We then have µk = εkij∂iλj for some λj ,

and so the Einstein tensor of hijk is equal to the Einstein tensor of 3δ(ijλk), implying

hijk = 3∂(iξjk) + 3δ(ijλk) for some ξi, as announced in the general discussion above.

4.2 Spin 4

We now illustrate the produre for the spin-4 field. The vanishing of the Cotton tensor

implies again [36],

Si1i2i3i4 = −∂(i1∂i2νi3i4) (4.5)

for some νi3i4 . The Bianchi identity yields then

∂(i∂jNk) = 0, Nk ≡ ∂mνkm +
1

3
∂kν̄. (4.6)

This does not imply that Nk = 0 since, as for spin-3, there are non trivial solutions of

the equation ∂(i∂jNk) = 0. These solutions have been analyzed in section 6 of [37]. The
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space of solutions is finite-dimensional; one easily gets from the equation that the third

derivatives of Nk vanish, so that Nk is at most quadratic in the xi’s,

Nk = ak + bk|mx
m + ck|mnx

mxn,

for some constants ak, bk|m and ck|mn = ck|nm which have the respective symmetry ,

⊗ , and ⊗ . Now, let

ν̃km = ρ(akxm + amxk) + σkm|rsx
rxs + θkm|rspx

rxsxp

where the constants ρ, σkm|rs (with symmetry ⊗ ) and θkm|rsp (with symmetry

⊗ ) are chosen such that (i) σ(km|ij) = 0, θ(km|ij)p = 0 so that ∂(i∂j ν̃km) = 0;

and (ii) Ñk = Nk. This is always possible since this second condition restricts only the

traces, which are left free by the first condition. Then, by substracting ν̃km from νkm,

one sees that one can assume Nk = 0. This implies that the corresponding µkm can

be assumed to fulfill ∂mµ
km = 0 and thus is equal to µkm = εkrsεmpq∂r∂pλsq for some

λsq = λqs. Therefore, the Einstein tensor of hijkm is equal to the Einstein tensor of

δ(ijλkm), implying that

hijkm = 4∂(iξjkm) + 6δ(ijλkm),

which is the result that we wanted to prove.

5 A crucial property

We have proven so far the analogs of properties 1-5 for the higher spin Cotton tensors. We

turn now to property 6.

5.1 The problem

We have recalled that if a completely symmetric tensor Gi1···is fulfills the equation

∂i1G
i1i2···is = 0, (5.1)

then there exists hi1···is such that G = G[h].

We want to address the question: let Bi1i2···is be a completely symmetric tensor that

is both transverse

∂i1B
i1i2···is = 0, (5.2)

and traceless,

δi1i2B
i1i2i3···is = 0, (5.3)

Does there exist a totally symmetric tensor Zi1···is such that Bi1i2···is is the Cotton tensor

of Zi1···is?

We prove here that the answer is affirmative, starting with the spin-2 case.
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5.2 Spin 2

The Cotton tensor Bij is dual to Cijk = −Cjik on the first index. The tracelessness

condition on Bij implies that Cijk has Young symmetry type , while the symmetry in

(i, j) of Bij implies that Cijk is traceless. The divergenceless condition on Bij implies then,

by Poincaré lemma (k being a “spectator” index) that

Cijk = ∂iSjk − ∂jSik (5.4)

where Sik is not a priori symmetric. However, the ambiguity in Sik is Sik → Sik + ∂iTk,

and using this ambiguity, the condition C[ijk] = 0 and Poincaré lemma, one easily sees that

Sik can be assumed to be symmetric. Then, the tracelessness condition implies the Bianchi

identity ∂iS
ij − ∂jS̄ = 0 for Sij (or ∂iG

ij = 0 for Gij), from which follows the existence of

Zij such that S = S[Z] and thus B = B[Z]. This establishes the result.

5.3 Higher spin

The same steps work for higher spins. For instance, for spin 3, the reasoning proceeds as

follows:

• Define Ci1j1|i2j2|k from Bijk by dualizing on the first two indices, with k “spectator”,

Ci1j1|i2j2|k = εi1i2iεj1j2jδkmB
ijm (5.5)

• Because Bijm is completely symmetric and traceless, Ci1i2|j1j2|k has Young symmetry

type and is traceless on k and any other of its indices.

• The transverse condition on Bijk is equivalent to d(2)C = 0 where d(2) is acting on C

as if it was a collection of tensors of type parametrized by k. The Poincaré lemma

implies then the existence of a tensor Rijk such that

Ci1j1|i2j2|k = ∂[i1∂[j1Ri2]j2]k (5.6)

where the antisymmetrizations are on the pairs of indices (i1, i2) and (j1, j2). At this

stage, the tensor R has a component S that is completely symmetric S <> ,

Si2j2k =
1

3
(Ri2j2k +Rj2ki2 +Rki2j2) (5.7)

= S(i2j2k) (5.8)

and a component T that has Young symmetry type ,

Tijk = T̃kji − T̃kij (5.9)

3T̃kji = Tijk + Tikj (5.10)

with

T̃i2j2k = 2Ri2j2k −Rkj2i2 −Rki2j2 (5.11)
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Explicitly,

Ri2j2k = Si2j2k +
1

3
T̃i2j2k. (5.12)

The change from T to T̃ corresponds to the change of conventions in which either

antisymmetry or symmetry is manifest. We shall call T the “Curtright tensor”.

• The tensor Ri2j2k is not completely determined by Ci1j1|i2j2|k since one may add to it

Ri2j2k → Ri2j2k + ∂i2µj2k + ∂j2µi2k (5.13)

without violating (5.6). This is the only ambiguity.

• Furthermore, the condition Ci1j1|[i2j2|k] = 0 is easily verified to imply that the field

strength of the Curtright tensor is equal to zero, so that T is pure gauge and can

be set equal to zero by a gauge transformation of the type (5.13). Therefore, one

can assume

Ci1j1|i2j2|k = ∂[i1∂[j1Si2]j2]k (5.14)

with S completely symmetric.

• The residual gauge symmetry after T has been set equal to zero is given by

Sijk → Sijk + ∂(i∂jµk) (5.15)

(which is still present because the gauge symmetries of the Curtright tensor are

reducible).

• Finally, the tracelessness condition of C on k and any other index yields

∂[i1Ui2]j = 0 (5.16)

where

Uij = ∂kSijk − ∂iS̄j − ∂jS̄i (5.17)

is such that Uij = 0 is the Bianchi identity for the Schouten tensor (see (3.17)).

Now, (5.16) implies

Uij = ∂i∂jρ (5.18)

for some ρ ( cohomology of d(2) for d(2) with d3
(2) = 0). On the other hand, Uij

transforms as

Uij → Uij − 3∂i∂j(∂kµ
k) (5.19)

under (5.15). This enables one to chose S to obey the Bianchi identity of the Schouten

tensor (take µk such that 3∂kµ
k = ρ), implying the existence of Zijk such that

S = S[Z] and hence B = B[Z]. [Note that δU = 0 when ∂kµ
k = 0, as it should.]

This ends the demonstration of the property that we wanted to prove.
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6 Prepotentials and solution of the constraints of the Hamiltonian for-

mulation

The dynamics of bosonic higher spin gauge fields in four spacetime dimensions is given

by the Fronsdal action [43] expressed in terms of a completely symmetric spacetime field

hµ1···µs which is subject to the double trace condition. The gauge symmetries read

δhµ1···µs = s∂(µ1εµ2···µs) (6.1)

where the gauge parameter εµ2···µs is subject to the single trace condition.

Because of the single trace condition, the gauge parameters are not independent. One

can take εi1···is−1 and ε0i1···is−2 as independent gauge parameters, since two subscripts 0 in

the gauge parameters can be replaced by spatial indices through the trace condition.

Similarly, one can express through the double trace conditions all components of

the spin-s field with 4 or more subscripts 0 in terms of hi1···is , h0i2···is−1 , h00i3···is−2 and

h000i1···is−3 .

In the transition to the Hamiltonian formalism worked out in [44] (see also [45]

for a discussion that includes the analysis of the surface terms), the variables h0i2···is−1

and h00i3···is−2 play the role of Lagrange multipliers for the constraints associated with

the independent gauge parameters εi1···is−1 and ε0i1···is−2 , while hi1···is and αi1···is−3 ≡
h000i1···is−3 − 3hkk0i1···is−3

, together with their conjugate momenta πi1···is and Πi1···is−3 are

the (constrained) phase space variables. The constraints are of second order in the vari-

ables and of first order in their momenta and split into two groups, the “Hamiltonian

constraints” Hi1···is−2 ≈ 0 associated with the gauge parameters ε0i1···is−2 and the “mo-

mentum constraints” Hi1···is−1 ≈ 0 associated with the gauge parameters εi1···is−1 . The

Hamiltonian is quadratic in the conjugate momenta and in the derivatives of the fields.

The explicit expressions for the spin-3 case, with phase space variables hijk, α, πijk,

Π, are respectively

H =

ˆ
d3x

{
1

2
ΠijkΠ

ijk − 3

8
Π̄kΠ

k +
3

8
Π̄k∂kα+

17

32
∂kα∂

kα+ Π2 +
1

2
∂khlmn∂

khlmn

−3

2
∂khlmn∂

lhkmn + 3∂lhklm∂
kh̄m − 3

2
∂kh̄l∂

kh̄l − 3

4
∂kh̄l∂

lh̄k
}

(6.2)

(Hamiltonian),

Hi = ∂iΠ−4h̄i + ∂j∂khijk −
1

2
∂i∂

j h̄j ≈ 0 (6.3)

(Hamiltonian constraint) and

Hij = 2∂kπijk + δij4α ≈ 0 (6.4)

(momentum constraint).

The Hamiltonian constraint generates the gauge transformations

δχπ
ijk = −∂(i∂jχk) + δ(ij

(
4χk) +

1

2
∂k)∂mχ

m

)
(6.5)

δχα = −∂mχm (6.6)
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(δχhijk = 0, δχΠ = 0) which are the “temporal spin-3 diffeomorphisms” with gauge param-

eters χi ∼ ε0i, while the momentum constraint generates spatial spin-3 diffeomorphisms

with gauge parameters εij ,

δεhijk = 3∂(iεjk), (6.7)

δεΠ =
3

2
4ε̄ (6.8)

(δεπ
ijk = 0, δεα = 0). The use of the terminology “Hamiltonian constraint” and “momen-

tum constraint” is motivated by the spin-2 case.

6.1 Momentum constraint

We first solve the momentum constraint. Using the χ-gauge transformations, one can set

α = 0. In that gauge, the constraint reduces to ∂iπ
ijk = 0, which implies πijk = Gijk[P ] for

some prepotential Pijk, which is at this stage determined up to a spin-3 diffeomorphism.

In a general gauge, one has therefore

πijk = Gijk[P ]− ∂(i∂jΞk) + δ(ij

(
4Ξk) +

1

2
∂k)∂mΞm

)
(6.9)

α = −∂mΞm (6.10)

where Ξk is a second prepotential that describes the gauge freedom of πijk and α.

Now, the vector Ξk can be decomposed into a transverse and a longitudinal piece,

Ξk = εkij∂iλj + ∂kθ.

The λk-terms in (6.9) are easily checked to be of the form Gijk[ϕ], where ϕijk = δ(ijλk)

has just the form of a spin-3 Weyl transformation. This shows that the prepotential Pijk is

determined up to a spin-3 Weyl transformation — in addition to the spin-3 diffeomorphism

invariance pointed out above. Therefore, the gauge freedom of the prepotential is

δPijk = 3∂(iξjk) + 3δ(ijλk), (6.11)

i.e., the gauge symmetries of a conformal spin-3 field.

The fact that the spin-3 diffeomorphisms of the prepotential Pijk have no action on

the canonical variables, while its conformal transformations generate (some of) the gauge

transformations associated with the Hamiltonian constraint, parallels the situation found in

the case of spin 2 [25, 29, 30]. There, however, the Weyl transformations of the prepotential

accounted for all the gauge symmetries generated by the Hamiltonian constraint.

6.2 Hamiltonian constraint

We now turn to solving the Hamiltonian constraint. Its curl εijk∂jHk does not involve Π

and turns out to be equal to Ḡi, so that the Hamiltonian constraint implies

Ḡi[h] = 0. (6.12)
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In fact, one may rewrite the Hamiltonian constraint as

∂iΠ−Ψi = 0 (6.13)

in terms of the Ψ introduced in subsection 2.2, such that ∗Ḡ = dΨ. One has explicitly

Ψi = 4h̄i − ∂j∂khijk +
1

2
∂i∂

j h̄j (6.14)

Therefore, the equations Ḡi = 0⇔ dΨ = 0 and dΠ + Ψ = 0 are two equivalent versions of

the Hamiltonian constraint.

The form Ḡi = 0 is more amenable to solution because it falls precisely under the

analysis of section 5. According to what we have proved there, it implies the existence of

a (second) prepotential Φijk such that the Einstein tensor of h is the Cotton tensor of that

prepotential,

Gijk[h] = Bijk[Φ] (6.15)

A particular solution of (6.15) is given by

hijk = −4Φijk +
3

4
δ(ij4Φ̄k) −

3

4
δ(ij∂

r∂sΦk)rs +
3

10
δ(ij∂k)∂

rΦ̄r. (6.16)

The last term in (6.16) is not necessary but included so that δhijk = 0 under Weyl trans-

formation of Φ.

Now, what are the ambiguities? It is clear that the spin-3 field hijk is determined

by (6.15) up to a spin-3 diffeomorphism, so that the general solution of (6.15) is given

by (6.16) plus ∂(iujk) where ujk may be thought of as another prepotential that drops

out because of gauge invariance. Conversely, the prepotential Φijk itself is determined

by (6.15), i.e., by its Cotton tensor, up to a diffeomorphism and a Weyl rescaling,

Φijk → Φijk + 3∂(iξ
′
jk) + 3δ(ijλ

′
k) (6.17)

with independent gauge parameters ξ′ij and λ′j . Thus, we see that the resolution of the

Hamiltonian constraints also introduces a prepotential possessing the gauge symmetries of

a conformal spin-3 field. Note that we have adjusted the ambiguity in the dependence of

hijk on Φijk in such a way that the conformal spin-3 transformations of the prepotential

leave hijk invariant, while the spin-3 diffeomorphisms of the prepotential induce particular

spin-3 diffeomorphisms of hijk, as is the case for spin 2 [25, 29, 30].

Once hijk is determined, one may work one’s way up to the constraint and solve for Π

in terms of the prepotential. One finds

Π = −1

8
∂i∂j∂kΦijk +

3

40
4∂iΦ̄i (6.18)

The use of conformal techniques to solve the Hamiltonian constraint is somewhat

reminiscent of the approach to the initial value problem for full general relativity developed

in [46–48].
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7 Manifest duality invariance

If one rewrites the action in terms of the prepotentials (Zaijk) ≡ (Pijk,Φijk) (a = 1, 2), one

finds the remarkable simple expression

S =

ˆ
dx0

[ˆ
d3x

1

2
εabB

a ijkŻbijk −H
]

(7.1)

where the Hamitonian H reads

H =

ˆ
d3xδab

(
1

2
Ga ijkGbijk −

3

8
Ḡa iḠbi

)
(7.2)

Here, εab and δab are respectively the Levi-Civita tensor and the Euclidean metric in the

internal plane of the two prepotentials, while Gaijk ≡ Gijk[Z
a] and Ba

ijk ≡ Bijk[Z
a]. In

terms of the prepotentials, the action possesses exactly the same structure as the action

for spin 2 [29].

The kinetic term in the action is manifestly invariant under the gauge symmetries of the

prepotentials. The Hamiltonian is manifestly invariant under the spin-3 diffeomorphisms,

since it involves the Einstein tensors of the prepotentials. It is also invariant under spin-3

Weyl transformations up to a surface term, as it can easily be verified.

The action is furthermore manifestly invariant under SO(2) electric-magnetic duality

rotations in the internal plane of the prepotentials,

Φ′a = cos θΦa − sin θP a, (7.3)

P ′a = cos θP a + sin θΦa (7.4)

since it involves only the SO(2) invariant tensors εab and δab. As recalled in the introduction,

exhibiting duality symmetry in the case of spin 2 was in fact the main motivation of [25]

for solving the constraints and introducing the prepotentials.

The gauge symmetries combined with duality invariance constrain the form of the ac-

tion in a very powerful way. Indeed, the most general invariant quadratic kinetic term

involving 6 derivatives of the prepotentials, among which one is a time derivative, is a mul-

tiple of the above kinetic term. Similarly, the most general invariant quadratic Hamiltonian

involving 6 spatial derivatives of the prepotentials is a mutiple of the above Hamiltonian.

By rescaling appropriately the time if necessary, one can therefore bring the action to the

above form, which is consequently the most general gauge and duality invariant quadratic

action with the required number of derivatives.

In terms of the prepotentials, the equations of motion read

Ḃa
ijk = εabεilm∂

lG m
b jk (7.5)

and equate the time derivative of the Cotton tensor of one prepotential to the “curl” of

the Cotton tensor of the other (defined as the right-hand side of (7.5)).
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8 Comments and conclusions

Perhaps the most intriguing feature of our analysis is the emergence of spin-3 Weyl gauge

invariance. Starting from the ordinary spin-3 Fronsdal Lagrangian, which exhibits no sign

of higher spin conformal gauge symmetry, the resolution of the constraints of the Hamilto-

nian formalism brings in prepotentials that enjoy somewhat unexpectedly this symmetry.

This feature was already found in the spin-2, spin 3/2 and spin-5/2 contexts [25, 30–32]

and will be confirmed in even higher spin models, both bosonic [34] and fermionic [49] —

papers in which we shall also discuss the twisted self-duality formulation of higher spins

in terms of electric and magnetic fields. This is what justifies the construction of the ap-

propriate conformal calculus (Cotton tensor) in the present context. A similar emergence

of local higher spin conformal symmetry arises in higher dimensions, and the prepotentials

appear to be systematically of a Young symmetry type such that the corresponding Weyl

tensor identically vanishes so that one must go to the analog of the Cotton tensor [30, 34].

The ultimate reason for the emergence of local higher spin Weyl symmetry remains to

be understood. This seems to us to be particularly important in view of the power of this

symmetry which determines, together with higher spin diffeomorphisms and SO(2) duality

invariance, the form of the action. In that respect, it should be noted that although not

manifestly so, the action compatible with all the listed symmetries is automatically also

Lorentz invariant since it is equivalent to the Fronsdal action. This is in line with [33] (see

also [50] in this context).

The simplicity of the action (7.1) should be contrasted with its expression in terms of

the original variables. In particular, the Hamiltonian expressed in terms of the prepotentials

is much more transparent than its original expression (6.2). A similar simplicity also holds

for spins > 3, where the action is found to have the same universal form, with a kinetic

term involving the time derivative of the Cotton tensor, and a Hamiltonian quadratic

in the Riemann tensor and its multiple traces, with coefficients that ensure higher spin

conformal symmetry.

Finally, one can trade off the prepotential Pijk for a second spin-3 field related to it as

hijk is related to Φijk. This yields a two-spin-3-potential (non local) action analogous to

the bimetric formulation of [51].
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A Conventions

We denote symmetrizations and antisymmetrizations respectively with parentheses and

brackets. These operations are of weight one (projectors), e.g., A((ij)) = A(ij).
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When dealing with tensor fields of mixed Young symmetries, we follow the convention

that antisymmetries are manifest. So, to project on a given Young symmetry type, one

first symmetrizes within the rows and then antisymmetrizes within the columns.

The Levi-Civita εab tensor in the internal plane of the prepotentials is such that ε12 =

1 = −ε21.

B Complete set of gauge invariant functions

B.1 Generalities

Let ϕA be some fields invariant under some gauge symmetries,

δξϕ
A = kAα ξ

α + kAiα ∂iξ
α + kAijα ∂i∂jξ

α (B.1)

where for definiteness, we have assumed that the gauge parameters and their derivatives

up to second order appear in the gauge transformations. The discussion would proceed in

the same way if there were higher derivatives present in (B.1). We also assume that the

coefficients kAα , kAiα and kAijα do not involve the fields, so that the gauge transformations

are of zeroth order in the fields (and of course linear in the gauge parameters).

We consider local functions, i.e., functions f(ϕA, ∂iϕ
A, · · · , ∂i1∂i2 · · · ∂ikϕA) of the fields

and their derivatives up to some finite but unspecified order. That unspecified order can

depend on f . We denote such local funtions as f([ϕA)]). Among the local functions, the

gauge invariant ones are particularly important. In our linear theories, non trivial (i.e.,

not identically constant) local functions that are gauge invariant exist. For instance, the

components of the (linearized) Riemann tensor are local gauge invariant functions under

the (linearized) diffeomorphisms. [Gauge symmetries that involve the fields might not allow

for non trivial local gauge invariant functions. This occurs for example in the case of full

diffeomorphism invariance where even the scalar curvature (say) transforms under change

of coordinates, δξR = ξi∂iR (transport term).]

The local functions are functions on the “jet spaces” Jk, which can be viewed, in

the free theories investigated here, as the vector spaces with coordinates given by the field

components ϕA and their successive derivatives up to order k. The gauge orbits obtained by

integrating the gauge transformations are m-dimensional planes in those vector spaces Jk,

where m is the number of independent gauge parameter components and their derivatives

(effectively) appearing in the gauge transformations of the fields and their derivatives up

to order k.

For instance, for a free spin 3-field in 3 dimensions, J0 has dimension 10 because there

are 10 independent undifferentiated field components hijk. The gauge orbits have also di-

mension 10 since there are 18 independent derivatives ∂kξij of the gauge parameters but

only 10 of them, the symmetrized ones ∂(kξij) effectively appear in the gauge transforma-

tions. Accordingly, J0 is a single gauge orbit. Similarly, J1 has dimension 10 + 30 = 40,

the new coordinates being the 30 derivatives ∂mhijk of the fields. There are 36 independent

second derivatives of the gauge parameters but only 30 of them effectively act in the gauge

transformations of the ∂mhijk. The jet space J1 reduces again to a single gauge orbit. This
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is also true for J2. It is only in the jet spaces Jk with k ≥ 3 that the gauge orbits have

a dimension strictly smaller than the dimension of the corresponding jet spaces. For J3,

which has dimension 10 (number of undifferentiated field components hijk) +30 (number

of ∂mhijk) +60 (number of ∂m∂nhijk) +100 (number of ∂m∂n∂qhijk) = 200, the gauge

orbits have dimension 10 (number of effective ∂kξij) +30 (number of effective ∂k∂mξij)

+60 (number of ∂k∂m∂qξij , which are all effective) +90 (number of ∂k∂m∂q∂rξij , which are

all effective) = 190. Accordingly, the quotient space of J3 by the 190-dimensional planes

generated by the gauge transformations has dimension 10, which is — as it should — the

number of independent components of the Riemann tensor, which has Young symmetry

.

Without loss of generality, we can assume that the gauge invariant functions vanish

when the fields ϕA and their derivatives vanish (just substract from f the gauge invariant

constant f(0, 0, · · · , 0)).

A set of gauge invariant functions {f∆} is said to form a complete set if any gauge

invariant function f can be expressed as a function of the f∆, δξf = 0 ⇒ f = f(f∆).

There might be relations among the f∆’s (redundancy) but this will not be of concern to

us. In the linear theories considered here, we can construct complete sets of gauge invariant

functions that are linear in the fields and their derivatives.

Consider a definite jet space Jk, with k fixed but arbitrary. Let {f∆} be a complete set

of gauge invariant functions. The functions f
(k)
∆ in this complete set that involve derivatives

of the fields up to order k are defined in Jk. They provide a coordinate system of the linear

quotient space of Jk by the gauge orbits Ok (in case of redundancy, one must take a subset

of independent f
(k)
∆ ). If this were not the case, one could find a gauge invariant function

in Jk not expressible in terms of the functions in the complete set. The trivial orbit of the

pure gauge field configurations is the orbit of 0, on which the gauge invariant functions

have been adjusted to vanish. It follows from these observations that a set {f∆} of gauge

invariant functions is a complete set if and only if the condition f∆ = 0 implies that the

fields are pure gauge.

B.2 Spin-s Weyl invariance

We now turn to the proof that a complete set of invariants for higher spin conformal fields

in three dimensions is given by the Cotton tensor and its successive derivatives. As we just

shown, this is equivalent to the statement that the vanishing of the Cotton tensor implies

that the spin-s field is pure gauge.

To determine a complete set of invariants, we reformulate the problem as a problem of

cohomogy in the successive jet spaces augmented by new fermionic variables, “the ghosts”,

and decompose the successive derivatives in irreducible representations of GL(3). This

approach is standard and has been developed successively in the case of spin-s diffeormor-

phism invariance for spin 1 [52–60], spin 2 [61] and spin s [40].

Weyl invariance for spin-2 was treated in [62]. By the same techniques as those de-

veloped in that reference, one first takes care of spin-s diffeomorphism invariance and
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concludes that diffeomorphism invariance forces the local functions to be functions of the

Riemann tensor and its derivatives, or, what is the same in D = 3, of the Schouten tensor

and its derivatives, f = f([S]). Spin-s Weyl invariance becomes then the condition δνf = 0

for δνSi1···is = −∂(i1i2νi3···is) (for convenience, we absorb the factor s(s−1)
2 in a redefinition

of ν). Furthermore, neither the Schouten tensor nor the gauge parameter ν are independent

since their divergences are constrained by (3.9) and (3.10).

To investigate the problem of Weyl invariance, we shall first consider the problem

δνf = 0 for δνSi1···is = −∂(i1i2νi3···is) for unconstrained S and ν. We shall then analyse the

implications of the constraints (3.9) and (3.10) on the divergences.

We thus consider the problem of computing the cohomology at “ghost number” zero

of the differential γ defined by

γSi1···is = ∂(i1i2Ci3···is), γCi1···is−2 = 0 (B.2)

We introduce a derivative degree that gives weight zero to the ghosts and weight two to

the Schouten tensor.

At derivative degree 0, we have only the ghosts in the cohomology, but these are at

ghost number one, so there is no cohomology at ghost number zero. At derivative degree

1, there is again no cohomology at ghost number zero for a similar reason. The ghost-

number-zero variables (Schouten tensor) appear only in derivative degree 2 and higher.

At derivative degree 2, the second derivatives of the ghosts transform in the

representation

s− 2 boxes︷ ︸︸ ︷
⊗ =

s boxes︷ ︸︸ ︷
⊕

s− 1 boxes︷ ︸︸ ︷

⊕

s− 2 boxes︷ ︸︸ ︷

while the undifferentiated Schouten tensor components transform in the representation

s boxes︷ ︸︸ ︷
.

It follows that the undifferentiated Schouten tensor components form contractible pairs

with the derivatives of the ghosts transforming in the same representation and disappear

from the cohomology. There is no cohomology at ghost number zero. The same story

proceeds in the same way, with the derivatives of the Schouten tensor being all “eaten”

through contractible pairs with the corresponding derivatives of the ghosts and no coho-

mology at ghost number zero, with non trivial generators at ghost number one left over,
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up to derivative degree s. There one finds for the ghosts:

s− 2 boxes︷ ︸︸ ︷
⊗

s boxes︷ ︸︸ ︷
=

2s− 2 boxes︷ ︸︸ ︷
⊕

2s− 3 boxes︷ ︸︸ ︷
⊕ · · ·

⊕

s+ 1 boxes︷ ︸︸ ︷

⊕

s boxes︷ ︸︸ ︷
(B.3)

and exactly the same decomposition for the representation in which the derivatives of order

s− 2 of the Schouten tensor transform,

s boxes︷ ︸︸ ︷
⊗

s− 2 boxes︷ ︸︸ ︷
.

There is exact matching and the generators of derivatives order s form contractible pairs

and do not contribute to the cohomology.

At higher derivative order, it is now some of the derivatives of the Schouten tensor

that are unmatched, namely those which contain the Cotton tensor

s boxes︷ ︸︸ ︷
︸ ︷︷ ︸

s− 1 boxes

since these representations (and only those) cannot arise in the decomposition of the deriva-

tives of the ghosts of order t > s

s− 2 boxes︷ ︸︸ ︷
⊗

t > s boxes︷ ︸︸ ︷
(the lower line can have at most length s− 2 as shown by (B.3)).

Accordingly, we can conclude that the γ-cohomology of the differential defined by (B.2),

with unconstrained variables, is given at ghost number zero by the functions f([C]) of the

Cotton tensor and its derivatives.

We did not take into account so far the constraints (3.9) and (3.10) that the Schouten

tensor should obey the Bianchi identity and that the divergence of the ghost is also deter-

mined by its trace. One must verify that the derivatives of the Schouten tensor that were
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trivial in the γ-cohomology because they had an independent ghost partner equal to their

γ-variation, either vanish on account of the constraints or, if they do not vanish, that their

ghost partner in the trivial pair also remains different from zero so that both elements in

the trivial pair continue being trivial.

It is easy to convince oneself that this is the case. The derivatives of the Schouten

tensor that remain non-zero after the Bianchi identity has been taken into account may

be assumed not to involve a contraction of one derivative index ∂i with an index of the

Schouten tensor, since such terms can be eliminated using the Bianchi identity. In fact,

once we have eliminated such contractions, the remaining derivatives are unconstrained. A

similar situation holds on the ghost side. If the γ-variation of a derivative of the Schouten

tensor without such contractions involves the ghosts and so is not γ-closed before the

constraints are taken into account, it will remain so after the constraints are taken into

account because its γ-variation necessarily produce independent derivatives of the ghosts

without such contractions (in addition to possible terms with such contractions coming

from possible traces).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] L.P. Eisenhart, Riemannian geometry, Princeton University Press, Princeton U.S.A. (1925).

[2] S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys.

140 (1982) 372 [Erratum ibid. 185 (1988) 406] [Annals Phys. 281 (2000) 409] [INSPIRE].

[3] E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233

[INSPIRE].

[4] C.N. Pope and P.K. Townsend, Conformal higher spin in (2 + 1)-dimensions, Phys. Lett. B

225 (1989) 245 [INSPIRE].

[5] E.S. Fradkin and V. Ya. Linetsky, Cubic interaction in conformal theory of integer higher

spin fields in four-dimensional space-time, Phys. Lett. B 231 (1989) 97 [INSPIRE].

[6] E.S. Fradkin and V.Ya. Linetsky, A superconformal theory of massless higher spin fields in

D = (2 + 1), Mod. Phys. Lett. A 4 (1989) 731 [INSPIRE].

[7] M.A. Vasiliev, Conformal higher spin symmetries of 4D massless supermultiplets and

OSp(L, 2M) invariant equations in generalized (super)space, Phys. Rev. D 66 (2002) 066006

[hep-th/0106149] [INSPIRE].

[8] A.Y. Segal, Conformal higher spin theory, Nucl. Phys. B 664 (2003) 59 [hep-th/0207212]

[INSPIRE].

[9] O.V. Shaynkman, I. Yu. Tipunin and M.A. Vasiliev, Unfolded form of conformal equations in

M dimensions and o(M + 2) modules, Rev. Math. Phys. 18 (2006) 823 [hep-th/0401086]

[INSPIRE].

[10] M.A. Vasiliev, On conformal, SL(4,R) and Sp(8, R) symmetries of 4D massless fields, Nucl.

Phys. B 793 (2008) 469 [arXiv:0707.1085] [INSPIRE].

– 26 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1006/aphy.2000.6013
http://dx.doi.org/10.1006/aphy.2000.6013
http://inspirehep.net/search?p=find+J+"AnnalsPhys.,140,372"
http://dx.doi.org/10.1016/0370-1573(85)90138-3
http://inspirehep.net/search?p=find+J+"Phys.Rept.,119,233"
http://dx.doi.org/10.1016/0370-2693(89)90813-7
http://dx.doi.org/10.1016/0370-2693(89)90813-7
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B225,245"
http://dx.doi.org/10.1016/0370-2693(89)90120-2
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B231,97"
http://dx.doi.org/10.1016/0003-4916(90)90253-K
http://inspirehep.net/search?p=find+J+"Ann.Phys.,198,293"
http://dx.doi.org/10.1103/PhysRevD.66.066006
http://arxiv.org/abs/hep-th/0106149
http://inspirehep.net/search?p=find+EPRINT+hep-th/0106149
http://dx.doi.org/10.1016/S0550-3213(03)00368-7
http://arxiv.org/abs/hep-th/0207212
http://inspirehep.net/search?p=find+EPRINT+hep-th/0207212
http://dx.doi.org/10.1142/S0129055X06002814
http://arxiv.org/abs/hep-th/0401086
http://inspirehep.net/search?p=find+EPRINT+hep-th/0401086
http://dx.doi.org/10.1016/j.nuclphysb.2007.10.017
http://dx.doi.org/10.1016/j.nuclphysb.2007.10.017
http://arxiv.org/abs/0707.1085
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.1085


J
H
E
P
0
1
(
2
0
1
6
)
0
7
3

[11] R.R. Metsaev, Ordinary-derivative formulation of conformal totally symmetric arbitrary spin

bosonic fields, JHEP 06 (2012) 062 [arXiv:0709.4392] [INSPIRE].

[12] R. Marnelius, Lagrangian conformal higher spin theory, arXiv:0805.4686 [INSPIRE].

[13] R.R. Metsaev, Gauge invariant two-point vertices of shadow fields, AdS/CFT and conformal

fields, Phys. Rev. D 81 (2010) 106002 [arXiv:0907.4678] [INSPIRE].

[14] M.A. Vasiliev, Bosonic conformal higher-spin fields of any symmetry, Nucl. Phys. B 829

(2010) 176 [arXiv:0909.5226] [INSPIRE].

[15] I. Florakis, D. Sorokin and M. Tsulaia, Higher spins in hyperspace, JHEP 07 (2014) 105

[arXiv:1401.1645] [INSPIRE].

[16] T. Nutma and M. Taronna, On conformal higher spin wave operators, JHEP 06 (2014) 066

[arXiv:1404.7452] [INSPIRE].

[17] T. Damour and S. Deser, ‘Geometry’ of spin 3 gauge theories, Annales Poincaré Phys.
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