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ABSTRACT: We study systematically the conformal geometry of higher spin bosonic gauge
fields in three spacetime dimensions. We recall the definition of the Cotton tensor for
higher spins and establish a number of its properties that turn out to be key in solving in
terms of prepotentials the constraint equations of the Hamiltonian (3 + 1) formulation of
four-dimensional higher spin gauge fields. The prepotentials are shown to exhibit higher
spin conformal symmetry. Just as for spins 1 and 2, they provide a remarkably simple,
manifestly duality invariant formulation of the theory. While the higher spin conformal
geometry is developed for arbitrary bosonic spin, we explicitly perform the Hamiltonian
analysis and derive the solution of the constraints only in the illustrative case of spin 3. In
a separate publication, the Hamiltonian analysis in terms of prepotentials is extended to
all bosonic higher spins using the conformal tools of this paper, and the same emergence
of higher spin conformal symmetry is confirmed.
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1 Introduction

Three dimensional space is well known to be peculiar from the point of view of conformal

geometry (see e.g. [1]). Indeed, while the Weyl tensor controls the conformal geometry in

dimensions D > 4, this tensor turns out to identically vanish in D = 3. What plays the

role

of the Weyl tensor is then the Cotton tensor, which depends on the metric and its

derivatives up to third order and which, in the appropriate dual representation, has the

following properties:

1.

AR

The

It is a rank-two symmetric tensor;

It is traceless;

It is divergence-free:

It is invariant under Weyl rescalings;

It controls conformal invariance, in the sense that a necessary and sufficient condition
for a metric to be conformally flat is that its Cotton tensor vanishes.

Cotton tensor appears in three-dimensional topologically massive gravity [2].

In the case of linearized gravity around a flat background with g;; = d;; + hsj, these

properties for the Cotton tensor

read

We

| 1 . ) ) 1 . ) )
BY[h] = Ze"’m (aﬂanaShsm — A@nhjm) + Zejm” (alanaShsm — A@nhzm) (1.1)
. Symmetry:
BY = BJt, (1.2)
. Tracelessness:
B, =0, (1.3)
Transverseness:
;B9 =0, (1.4)
Gauge invariance:
§B7 =0 for Shij = 20,;&;) + Ayj, (1.5)
Conformal flatness:
BY [h] =0 < hij = 28(2-5]-) + )\51‘3‘ (1.6)

for some ; and .

have assumed Euclidean signature, but similar formulas with 0;; replaced by the

Minkowskian metric of course hold in the case of Minkowskian signature.

Furthermore, one can show that:

6. Any tensor B¥ that fulfills (1.2), (1.3) and (1.4) can be written as in (1.1), i.e., is

the Cotton tensor of some h;;.



This property turns out to be crucial when analyzing the constraints of the spin-2 theory
in four dimensions as we shall recall below.

Conformal higher spin gauge fields have received a sustained interest over the years [3—
16]. The gauge symmetries of a conformal bosonic higher spin gauge field of spin s read,
in the free limit,

s(s—1
ity = 06y + 2 Db Nn (L.7)

The gauge transformations parametrized by &;,...;, reduce to the Maxwell gauge transfor-
mations 0; when s = 1 and to linearized diffeomorphisms when s = 2. They will be called
here “spin-s diffeomorphisms” (or “higher spin diffeomorphisms” when we do not need to
specify the explicit value of s > 2). The gauge transformations parametrized by Ai,...;,
are absent for s = 1 and reduce to linearized Weyl rescalings 6;,;,A when s = 2. They
will be called here “spin-s Weyl transformations” (or “higher spin Weyl transformations”,
or “higher spin conformal transformations”). Similarly, a fermionic conformal higher spin
field of spin s + % is described by a tensor spinor ¥;,..;, with gauge symmetries

0% iy = Sa(iyufigmis) + S5V (iy Mig-is) - (1.8)
Both sets of gauge transformations are reducible since dh;,...;; = 0 for

(8_1)(8_2)5

izt =

(inigVigois)s  Nigwis = —(8 = 2)0(i3Vigowiy)

while 63;,...;, = 0 for piy..i; = ¥(i,Cizeiy) a0 Digiy = =03, Gjy...i,)- One could use this re-
dundancy to impose trace conditions on the gauge parameters but this will not be done here.

We shall from now on focus on the bosonic (integer spin) case. Building the higher spin
conformal geometry amounts to constructing a complete set of invariants under (1.7) out
of the fields and their derivatives. It turns out that the case of spacetime dimension D > 4
is again rather direct and uneventful, because a straightforward generalization of the Weyl
tensor provides the solution. In dimension D = 3, however, the Weyl tensors for higher
spins vanish identically, just as for spin-2. One must introduce the Cotton tensor [4, 17].
The properties of the Cotton tensor were thoroughly explored in the profound work [17]
for spin s = 3. In particular, the analog of the properties 1-5 for s = 3 were explicitly
demonstrated. The purpose of this paper is to extend the analysis of [17] to higher spins,
building on the previous study [4]. We also prove the generalization of property 6 for
all spins.

One motivation for undertaking the present study is that the Cotton tensor plays a
central role in some recent higher spin gauge models in three dimensions [18-22]. Another
motivation comes from SO(2) electric-magnetic duality invariance, as we now discuss.

It has been recognized some time ago that the free Maxwell action in four spacetime
dimensions is invariant under SO(2) rotations in the two-dimensional internal plane of the
electric and magnetic fieds,

E" — cosa&’ —sinaB

B —s sina & + cosa B’



It was indeed shown in the pioneering work [23] that, contrary to common belief, this
symmetry is not just an on-shell symmetry leaving the equations of motion invariant, but is
a genuine off-shell symmetry of the action SMaxwell [A,] once appropriately extended to the
vector potential A,,, which is the dynamical variable in the action principle. In the original,
single vector potential formulation, the duality transformations of the vector potential are
non-local in space, but locality can be achieved by going to the Hamiltonian formalism and
solving Gauss’ constraint through the introduction of a second vector potential [23]. In the
formulation with two potentials, SO(2) electric-magnetic duality invariance of the action is
manifest and amounts to rotations in the internal plane of the two vector potentials [23, 24].
These two vector potentials A? (a = 1,2) are both gauge invariant under (1.7).

The analysis can be extended to spin 2. Electric-magnetic SO(2)-rotations in the in-
ternal plane spanned by the linearized Riemann tensor and its dual are symmetries of the
free spin-2 theory, not only of the equations of motion, but also of the action itself [25](see
also [26-28] for a different approach and the extension to the cosmological case, respec-
tively). The action can be written in a manifestly duality invariant form by solving the
constraints [25], as for spin 1. This step requires the introduction of one potential for
the spatial metric through the resolution of the so-called Hamiltonian constraint and one
potential for its conjugate momentum through the resolution of the so-called momentum
constraint. Since the metric and its momentum are themselves already potentials for the
gauge invariant (linearized) Riemann tensor, one talks of “prepotentials”. The two pre-
potentials Z7; are rank-2 symmetric tensors and SO(2) duality transformations are simply
rotations in the internal plane of the prepotentials.

1 1 : 2
ZZ] — COS (¥ Z’L] — SN« Z'U

ZZ-QJ- — SinozZilj +cosozZi2j

An intriguing feature of the prepotentials is that they are both invariant under the gauge
symmetries (1.7) of conformal spin 2,

0Zi5 = 20amj) + 0ijp” (1.9)

The emergence of (linearized) diffeomorphisms and Weyl rescalings is somewhat unex-
pected but turns out to be crucial in the investigation of the theory and the understanding
of its structure [29]. This intriguing feature arises also for gravity in higher dimensions [30]
where the prepotentials are now tensors with different Young tableau symmetries, and for
the fermionic spin 1/2 and spin 3/2 massless fields in four dimensions, where the resolu-
tion of the constraints introduce also prepotentials with the symmetries (1.8) of conformal
fermionic gauge fields [31, 32].

These results have led in [32] to the conjecture that not only for spins 1, 3/2, 2 and
5/2 does the resolution of the constraints of the Hamiltonian formulation lead to prepo-
tentials with the gauge symmetries of conformal gauge fields with respective spins 1, 3/2,
2 and 5/2, but that the same somewhat puzzling property holds for all higher spins. We
establish this conjecture here in the spin-3 case, which exhibits already the new features
characteristic of higher spins. We consider four dimensions, where the dynamical fields are



three-dimensional tensors and the prepotentials completely symmetric tensors (described
by single-row Young tableaux). We find then that the validity of the conjecture is in fact a
direct consequence of our analysis of higher spin conformal geometry. We also show that the
prepotential formulation is automatically manifestly duality invariant for all spins. While
manifestly duality invariant, it is not, however, manifestly Lorentz-invariant (although it is
of course Lorentz-invariant). As argued in [33], this lack of manifest spacetime covariance
of the manifestly duality-invariant formulations might be the signal that the duality sym-
metries are more fundamental than the spacetime symmetries, which would be emergent
symmetries, in line with the idea that spacetime itself is an emergent concept. Using the
geometric tools developed in this paper, we show in a separate publication [34] that the
Hamiltonian formulation of spins > 3 exhibit the same features.

Our work is organized as follows. In section 2, the definition of the analog of the
Riemann tensor, which contains s derivatives of the spin-s field [35], is recalled and its
main properties are reviewed. The Weyl tensor, defined as the tracefree part of the Rie-
mann tensor, contains therefore also s derivatives of the spin-s field and is recalled to
control the conformal geometry in spacetime dimensions D > 4. It identically vanishes in
dimensions D = 3 for which new tools are needed and to which we then exclusively turn
(sections 3, 4, 5). Equipped with the appropriate mathematical apparatus developed for
general bosonic spins, we then discuss the Hamiltonian formalism for a spin-3 gauge field
and show how the higher spin conformal techniques enable one to solve the constraints
in terms of prepotentials that enjoy remarkable symmetries (section 6). In section 7, we
rewrite the action in terms of the prepotentials and establish manifest SO(2) electric-
magnetic duality invariance. Section 8 is devoted to concluding comments. Finally, two
appendices give our conventions and provide further cohomological insight into the higher
spin Weyl symmetry.

2 Riemann tensor

2.1 Definition and Bianchi identity

We first recall how to construct invariants under the spin-s diffeomorphisms
6hi1--~is = Sa(ilfi2...is) (21)

(without trace constraints on the gauge parameters). This question was investigated in [35],
where it is shown that the relevant Riemann tensor involved s derivatives of the spin-s field.
Explicitly, the Riemann tensor is defined by

Rixjuiaga-isis [P = 2°0031101ga) -~ Ot hia] i) i) (2:2)
where the antisymmetrizations are to be carried on each pair of indices (ix,jx) (k =
1,---,s), so that the Riemann tensor has the Young symmetry

s boxes




The Riemann tensor is invariant under spin-s diffeomorphisms and fulfills the Bianchi
identity
Oty Rirjrizgo-wings = 0- (2.4)
It will be sometimes useful to adopt an index-free notation, in order to emphasize the
concepts. To that end, we shall use the nilpotent differential operators dy) of order s + 1
introduced in [36, 37],

it =0, (2.5)

acting on “well-filled” mixed symmetry tensors with s columns (some of which can be
empty) (see also [38, 39] for a general discussion of cohomological techniques adapted to
tensor fields with arbitrary Young symmetry). In these notations, the gauge transforma-
tions (2.1) read 0h = d(4)§ and the definition of the Riemann tensor is simply R = d‘(ss)h.
The spin-s diffeomorphism invariance of the Riemann tensor and the Bianchi identity both
follow from (2.5).

Furthermore, the cohomological results of [36, 37] imply: (i) that any tensor of Young
symmetry type (2.3) that fulfills d(,) R = 0 can be written as R = d‘(ss)h for some completely
symmetric field h;,..;,; and (ii) a necessary and sufficient condition for hj,..,, to be pure
gauge, h = d4&, is that its Riemann tensor vanishes.

One can prove, in fact, the equivalent result that any function of the spin-s field and
its derivatives that is invariant under spin-s diffeomorphisms is a function of the curvature
components and their derivatives only. A direct proof is given in the lucid work [40]. The
equivalence of the two statements is given in appendix B. Hence, the curvature tensor
completely captures spin-s gauge invariance.

The Riemann tensor is not invariant under the spin-s Weyl transformations. Rather,
under these transformations, it transforms as

$S(s—1)
ORi, jringa-isjs = 2 — 1 (014 Oiria Nigoiv)) » (2.6)

where the projection operator II carries the antisymmetrizations within each pair of indices
(k, jx ). The variation of the Riemann tensor is clearly pure trace since all its terms contain
a dmpn-factor with a pair of indices in (i1, j1, 42, j2, - - ,4s,Js). Therefore, the Weyl tensor,
which is the trace-free part of the Riemann tensor, is Weyl invariant. As the Riemann
tensor, it contains s derivatives of the spin-s field. In dimension D > 4, the Weyl tensor
vanishes if and only if the spin-s field is pure gauge taking into account all the gauge
symmetries of conformal spin s, i.e. Riyig..iy = (3, &iyniy) T 0(iyin Nig-riy)- Lhis is well known
for s = 2 and was established in [17] for s = 3. The demonstration proceeds along the
same lines for s > 3.

Less direct is the case of dimension D = 3 because the Weyl tensor vanishes identically.!

!The vanishing of the Weyl tensor in three dimensions is a well-known fact. It is a direct consequence
of the identities valid in three dimensions

1 k
o T iminy kamang
Riyjyingoisis = 4611]1161E €igjoka € Rinynimang-—mens
1 k
— 1miny _kamang
= Zei1j1k16i2j2k26 € Rinynymang - mansg
1 ki1k ki1k
— e . . 1r2 — e . 1R2
o 262171k1612j2k25 R[2]m3"3“'ms"s 6l1]1’€1612J2’€2}?‘[1] m3ang---Msng



To control the conformal geometry, one needs in this case the Cotton tensor, which contains
2s — 1 derivatives of the spin-s field [4, 17].

2.2 Einstein tensor

Before moving to the Cotton tensor, we introduce the Einstein tensor, which can be defined
in three dimensions as

1\° o
— . . L RJ1272 s8]
le"'ks - (2 €kyi1j1€kaioge """ Z’:ksZstR e (2'7)

It is completely symmetric and equivalent to the Riemann tensor, since the defining rela-
tion (2.7) can be inverted to give

P . . L (Ykikok
Ry jringa-isjs = EkyirjiEhaings " '5ksszsG ° (2.8)

The Einstein tensor is the dual of the Riemann tensor on all pairs of indices.
The Einstein tensor fulfills the “contracted Bianchi identity”

O, GF1ks = (2.9)
This is also true for its successive traces

~Ni1ts_o — vilis—2 ¢ ) i1 1lg—20s—11
Giisr = @ Gy, G st

(1]

Nipodg—gq — Y1ls—4 ¢ ) iy ls—4Ts—3%s—2
Gt = Gl = 5y, G e iesina,

—~

2.10)
2.11)

—~

etc (n=20,--- [g], with G|g) = G), which obey

iy om s
&, Gy =0, n:&~-b]. (2.12)
The operation of taking one trace is denoted by one bar, but multiple traces are also
indicated with the subscript [n] rather than multiple bars, where n is the number of traces
being taken. The maximum number of traces that can be taken is equal to the integer part
5] of 5.

Just as the “contracted Bianchi identity” (2.9) is equivalent to dsyR=0ord "G =0,
where * denotes here the dual on all indices, the successive identities (2.12) can be written
as d(s_g) *G=0, d(s—4) *G = 0, etc, where *G|y) are the duals of the successive traces G,
which are tensors of Young symmetry type

(s—2n) boxes

e —
*G[n] <> ,

showing that the Riemann tensor is entirely expressible in terms of its trace Riiji,kslksjs- ksjs
89192 Ry jikojo-keje and thus that its traceless part is zero. Here, Ri2jmsns---myn, 18 the double trace

k1k2
g R[l]k1k2|m3n3'”msns'



etc. These identities can also be directly verified from the expression of the Einstein tensor
in terms of the derivatives of the fields,

Gk1"'k5 _ €k1i1j15k2’i2j2 . Eksisjs
0i, 0y + -+ O3 hjy iy (2.13)

which implies by contraction that *G = df;f2)\P, G = d‘zs_il)E, etc, for some completely

symmetric tensors ¥ with s — 2 indices,

(s—2) boxes
v<> [ [T [T ]4
= with s — 4 indices,
(s—4) boxes
E<>L LT

etc, which respectively depend on 2, 4, etc derivatives of the spin-s field. It follows in partic-
ular from these considerations that the equation G = 0 is equivalent to ¥ = d(s—2)Il, with

(s—3) boxes

D> [ [[[ L]}

Since the Einstein tensor is equivalent to the Riemann tensor, it fully captures in the
same manner the spin s gauge invariance: any local function of the A’s that is invariant
under the spin-s gauge transformations can be expressed as a function of G and its succes-
sive derivatives. Furthermore a necessary and sufficient condition for h to be pure spin-s
gauge is that its Einstein tensor vanishes.

3 Schouten and Cotton tensors

3.1 Schouten tensor
Under a spin-s Weyl transformation, the Einstein tensor transforms as

S(S -1 (_a(ilahﬂmmis) + 5(i1i2AIui3~'is)> (3.1)

i1ls
0G = 5

Where
13+ 1g i373k3 isjsks

The tensor p® fulfills 8, u® " = 0 and conversely, any tensor that fulfills that equation
can be written as in (3.2) with Ag,...r, completely symmetric. This follows again from the
cohomological theorems of [36, 37] applied now to the differential operator d(,_s) defined

in the space of tensors with s — 2 columns, which fulfills d‘(q;_lm = 0.
The Schouten tensor S¥ % is then defined through
(3]
Sil"~is — Gil"-is + Z ané(iﬂé L. 6i2n71i2nG7[:Z7]‘L+l"'iS) (33)
n=1



where the terms added to G to define S involve the successive higher traces of
G% and are recursively adjusted in such a way that the Schouten tensor fulfills the
crucial property of transforming as

s(s—1)

551'17;2.‘.1'5 = — 5

8(1'187;2 Vi3"'is) (34)

under spin-s Weyl transformations, where v is related to p as follows

1301
igeis e - ot tiomey | G2n 43 is)
Piats — ,UZB is 4 Zl bn5(1314 ... §lant1t2 +21UJ[Z] +3 (35)
n=

One finds that the coefficients a,, are explicitly given by

(=)™ s (s—n—1)!

N = = , >1 3.6
“ 4 n! (s —2n)! (n=1) (36)
and that the coefficients b,, are then
-2 —2n—1
by =, ST ==Y (3.7)

s(s—1) ’ -

In index-free notations, the transformation of the Schouten tensor reads
88 = —diyv. (3.8)

The recursive procedure amounts to successively eliminating the terms Ay #s-2,
At %4 involving the Laplacian by adding symmetrized products of §%’s with multi-
ple traces of the Einstein tensors, with suitable coefficients that are determined uniquely.

In terms of the variables S%%2"%s and %1% %-2 the Bianchi identity and the condition
Oy, pi1¥2 =2 = () read respectively

By, Stz (5 —1)9l2 Gl i) = 3.9
) (s =1)

and
s—3

3

The easiest way to prove these important relations is to observe that they follow uniquely

Alizpis~is—2) — () (3.10)

1192 s —
8@,11/12 52+

from the requirement of invariance under (3.4), in much the same way as the Bianchi
identity 0;, G2 = 0 and the condition 8;,p"*?2"%~2 = ( are the unique identity and
condition compatible with the transformation (3.1) within the class

8¢1Gili2mis 4 aa(lzélsls) 4 b(')‘(izi:saiz;éis'“is) L= 07
ailyiliQ'“is—Q + kol2pisis—2) 4 pslizis giagis-is—2) L ... —
(invariance under (3.1) forcesa =b=---=k=0=---=0).



3.2 Cotton tensor

In its original formulation, the Cotton tensor C' is defined as d?slS . It is a tensor of mixed

symmetry type

s boxes

C <> ‘

s — 1 boxes
s+1
o =0

s—1 s+1
5C:d@582—@$y:0 (3.11)

which is invariant under spin-s Weyl transformations as it follows from d

It contains 2s — 1 derivatives of the spin-s-field h;,..;,. As a consequence of the Bianchi
identity, it can be verified to be traceless on the last index of the first row with any
other index (i.e., one gets zero when the last index of the first row is contracted with any
other index).

In the dual representation on the first s — 1 indices of C' which we shall adopt, the
Cotton tensor B’ is explicitly given by

Bitieis — €i1j1k1€i2jzk2 . Eis—ljs—lks—l

8j13j2 e -8]'3_15161]?2“_%_17’5 (3.12)
This tensor is manifestly symmetric in its first s —1 indices. Symmetry in is_1, i5 is a direct

consequence of the Bianchi identity (3.9) (this is equivalent to the tracelessness property
of C' just mentioned). Hence, the tensor B is fully symmetric i.e., is of symmetry type

s boxes

B<>[ [ [T [[TT1]

Furthermore, it is easily proved to be conserved on the first index (i.e., its divergence on
the first index is zero). It is also traceless on the last two indices because of the Young
symmetries of C'. Since B is fully symmetric, one thus gets

S B2 =0, 8, B1 =0, (3.13)

withl <k<m<sand1l<p<s.

We stress that, as we have shown, the Cotton tensor B is completely symmetric as a
consequence of the Bianchi identity. Hence, it is not necessary to enforce symmetrization in
its definition since it is automatic. Enforcing complete symmetrization, as done in [18-20],
is of course permissible, but is not needed.

3.3 Spin-2

The above construction reproduces the familiar spin-2 formulas. One finds for the
Schouten tensor,

W:W-?@,@:W-Wﬁ

~10 -



and 0.5;; = —0;0; A, 0;S% — 378 = 0. The Cotton tensor Cijk is Cijp = 0;Sjx — 0; S and
is a Weyl-invariant tensor of type -, which is traceless on (j,k) (or (i,k)) because of the
Bianchi identity, C; = 0. It involves three derivatives of hij. In the dual representation,
the Cotton tensor BY is

Bij — 6imnam‘smj

and is easily checked to be indeed symmetric, traceless and divergenceless.
3.4 Spin-3

We now move to the spin 3 case,
h<>[] ]}

where the above derivation reproduces the results of [17]. We derive below the form the
general formulas take for s = 3.
The Schouten tensor for a spin-3 field reads explicitly

Gitizis _ (yivizis _ zé(iligéig) (3.14)
Its trace is equal to S* = —%Gi so that the inverse formula to (3.14) is G125 = Ghizis
3601172 §%3)  The Schouten tensor transforms as
0Siyigis = —30(i, Oiy i) (3.15)
under Weyl transformations, where p; is given by
pt = RN (3.16)

and fulfills O pu* = 0.
The Bianchi identity implies 0;S? = 0 and can equivalently be written in terms of
Si1i2i3 ag
0, S12ts — 9288 — g G2 = () (3.17)
According to the above general definition, the Cotton tensor C' = d%:,))S is explicitly
given by
Civjrlisgalis = 051052 Sjijnis — 0103 Sijais — 01053 Sjrigis + 0510y Siginis

and has Young symmetry type

C <> |

In the dual representation, the Cotton tensor B*1%23 reads

BFikeks _ ki 212]281'181'253‘1]‘2 3 (3.18)

and, using the Bianchi identity (3.17) and its consequence ;57 = 0, is easily seen to be

equal to
Bk‘1k2k3 — 38(118125’53) — ASiliQi3 (319)

an expression that is manifestly symmetric. Transverseness and tracelessness follow again
from the Bianchi identity (3.17).

- 11 -



3.5 Spin-4

We now write the formulas in the spin-4 case. The Schouten tensor is

Si1i2i3i4 — Gi1i2i3i4 _ 5(1'12'2@1'32’4) + 15(211251324)6« (320)
8
and transforms as
0Siyigizia = =60, OiyVigiy) (3.21)
under Weyl transformations, with v;; = p;; — %(52-]- [
In terms of the Schouten tensor, the Bianchi identity reads
81'1 Si1i2i3i4 o 8i251’i3i4 o 8i3§i2i4 o ai4gi2i3 =0 (322)

and one has 0;% + %8@7 =0.
The spin-4 Weyl invariant Cotton tensor is d?4)S . Writing the explicit formulas directly
in the dual representation, one finds
E1koksk kviig Jkoizje kaizj k
B 1R2/R3F/R4 € llljlg 2Z2]2€ 313]38i18i28i35j1j2j34 . (323)
Again, the symmetry in (ki, k2, k3) is manifest, while the symmetry in the last index ky
with any other index is a consequence of the Bianchi identity (3.22). The Cotton tensor is

transverse and traceless,
9B =0, BY =0. (3.24)

4 Higher spin “Conformal flatness”

The Cotton tensor is quite important because it completely captures higher spin Weyl
invariance. By this, we mean that any function of the higher spin field and its derivatives
that is invariant under higher spin diffeomorphisms and Weyl transformations is necessarily
a function of the Cotton tensor and its derivatives,

deaf([P]) =0 = f = f([B]) (4.1)

Equivalently, a necessary and sufficient condition for a spin-s field to be pure gauge (equal
to zero up to spin-s diffeomorphisms and Weyl transformations) is that its Cotton ten-
sor vanishes.

The first version of this property is demonstrated in appendix B. We show here how
to prove the second version.? We are grateful to him for this information..

Assume, then, that the Cotton tensor B (or equivalently, C') is equal to zero. Using
the cohomological theorems of [36], one gets

_ gs—1¢ _ _ 2

2We were kindly informed by Xavier Bekaert that the property “Cotton tensor = 0 < spin-s field is
diffeomorphism and Weyl pure gauge” can also be viewed as a consequence as the cohomological theorems
of [9] on the representations of the conformal group, see [41, 42].

- 12 —



for some v. The Bianchi identity implies that one can choose v in such a way that the
corresponding tensor y fulfills 9, 4% = 0 and so, can be written as in (3.2) for some
completely symmetric Ag,...x,. This implies in turn that R[h — A+ §] = 0, or equivalently
dfs)(h —Axd) = 0. Here, Ax 4§ stands for the Weyl transformation term d;,;,Ai,...i,)- Using
again the cohomological theorems of [36], one finally obtains

h = dg€ + A%, (4.3)

i.e., h is pure gauge. Conversely, if h is pure gauge, the Cotton tensor vanishes. We can
thus conclude that a necessary and sufficient condition for the spin-s field to be pure gauge
is that its Cotton tensor vanishes.

We illustrate explicitly the derivations in the spin-3 and spin-4 cases.

4.1 Spin 3

Consider a spin-3 field h;,;,:; with vanishing Cotton tensor. According to the theorems
of [36], the Schouten tensor reads

Sivigis = —0(i, Oz Jig) (4.4)

for some p;. We want to prove that y; can be chosen so that d;u’ = 0. From the Bianchi

identity, one gets
9,0 (Opp®) = 0

It follows that O u* is at most linear in the coordinates,

Ot = a + by

Define jif = %amk + %ckij:ci:cj where "
ckij exists. It has the Young symmetry (-~ in the dual conventions where symmetry is

manifest while antisymmetry is not. The trace of such a tensor is unconstrained and so

ko= ckjl-, Crijy = 0 and ckkj = b;. [Such a

can be taken to be equal to b;.] By construction, Opfif = Opp* and 93, 0iy fliz) = 0, so
that Sijiyis = —03i,0iy (1i3) — fliy)), implying that we can assume that pF in (4.4) fulfills
OpptF = 0, which will be done from now on. We then have p*f = £ 0;\; for some Aj,
and so the Einstein tensor of h;j; is equal to the Einstein tensor of 34(;; Ay, implying
hijk = 30 k) + 30(;jAk) for some &;, as announced in the general discussion above.

4.2 Spin 4

We now illustrate the produre for the spin-4 field. The vanishing of the Cotton tensor
implies again [36],
Sivigigia = —0(i1 0isVigiy) (4.5)

for some v;,;,. The Bianchi identity yields then
1
8(1-8ij) =0, Np=0"v, + gakﬁ. (4.6)

This does not imply that Ny = 0 since, as for spin-3, there are non trivial solutions of
the equation 9(;0; N,y = 0. These solutions have been analyzed in section 6 of [37]. The
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space of solutions is finite-dimensional; one easily gets from the equation that the third
derivatives of N, vanish, so that N is at most quadratic in the z%’s,

Ni =ar + bk|m$m + Ck\mnxmxnv

for some constants ak, by, and Cjpmn = Cpjnm Which have the respective symmetry D ,

D@D , and D@Dj . Now, let
Ukm = p(akxm + am$k) + Ukm|rsxrx8 + Hk’m\rspxrxs$p

where the constants p, oy, s (With symmetry [ | [®@[ | ]) and Oy, (With symmetry
| [ J®[ [ | ])are chosen such that (i) o(kmijy = 0, O(kmlij)p = 0 so that 9(;0;7k,) = 0;

and (ii) Ny = Ng. This is always possible since this second condition restricts only the
traces, which are left free by the first condition. Then, by substracting g, from vg,,,
one sees that one can assume N, = 0. This implies that the corresponding ;*™ can
be assumed to fulfill 9,,u*™ = 0 and thus is equal to p*™ = skTsampanﬁp)\sq for some
As¢ = Ags- Therefore, the Einstein tensor of hjjr,, is equal to the Einstein tensor of
(i Akm), iImplying that

Rijkem = 40(i&jkm) + 60 (i Akm) s

which is the result that we wanted to prove.

5 A crucial property

We have proven so far the analogs of properties 1-5 for the higher spin Cotton tensors. We
turn now to property 6.

5.1 The problem

We have recalled that if a completely symmetric tensor G % fulfills the equation
9y, G2t = (), (5.1)

then there exists hj,..;, such that G = GJh|.
We want to address the question: let B%s be a completely symmetric tensor that
is both transverse

95, B2t = 0, (5.2)

and traceless,
62’11’232'”'27;3.“1'8 =0, (53)

Does there exist a totally symmetric tensor Z;,..;, such that B is the Cotton tensor
of le’bs?

We prove here that the answer is affirmative, starting with the spin-2 case.
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5.2 Spin 2

The Cotton tensor BY is dual to Cij = —Cji on the first index. The tracelessness
condition on B¥ implies that Cijr has Young symmetry type H-, while the symmetry in
(i,4) of BY implies that Cijk is traceless. The divergenceless condition on B implies then,
by Poincaré lemma (k being a “spectator” index) that

Cijk = 0iSjx — 0jSik (5.4)

where S;; is not a priori symmetric. However, the ambiguity in S;; is S;p — S + 0; 1%,
and using this ambiguity, the condition Cj;;;) = 0 and Poincaré lemma, one easily sees that
Sik can be assumed to be symmetric. Then, the tracelessness condition implies the Bianchi
identity 9;S% — 7S = 0 for S¥ (or 9;G¥Y = 0 for G¥), from which follows the existence of
Zi; such that S = S[Z] and thus B = B[Z]. This establishes the result.

5.3 Higher spin

The same steps work for higher spins. For instance, for spin 3, the reasoning proceeds as

follows:

e Define C;, . 1. | from B% ualizing on the first two indices, wi spectator”,
Define C;, j,jiyjo |k from B¥* by dualizing on the first ¢ d th k “spectator’

o im
Ciyjrlizjolk = €irini€j1jajOkmB (5.5)

e Because BY™ is completely symmetric and traceless, C; & has Young symmetry

1iz2|j172]

type [ and is traceless on k and any other of its indices.

e The transverse condition on B%* is equivalent to d(9)C = 0 where d(9) is acting on C'
as if it was a collection of tensors of type FH parametrized by k. The Poincaré lemma
implies then the existence of a tensor R;j; such that

Cijilingalk = a[ila[leiz]jz]k (5.6)

where the antisymmetrizations are on the pairs of indices (i1,42) and (j1,j2). At this
stage, the tensor R has a component S that is completely symmetric S <>[ [ [ |,

1
Si2j2k — g(Rinzk + Rjgkiz + Rk‘izjg) (5.7)

and a component T that has Young symmetry type [,

Tijr = Tkji - Tkij (5.9)
3150 = Tiji + Tk (5.10)

with
Ti2j2k = 2Ri2j2k - Rkj2i2 - Rki2j2 (5‘11)
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Explicitly,
1~
Rigjok = Siajok + 3Tinjok- (5.12)

The change from T to T corresponds to the change of conventions in which either
antisymmetry or symmetry is manifest. We shall call T' the “Curtright tensor”.

The tensor R, is not completely determined by Cj, j |i,j.(x Since one may add to it
Riyjok = Riyjor + 8i2/~‘j2k + 8j2,ui2k (5.13)
without violating (5.6). This is the only ambiguity.

Furthermore, the condition C; = ( is easily verified to imply that the field

11|[i2j2 K]
strength of the Curtright tensor is equal to zero, so that T is pure gauge and can

be set equal to zero by a gauge transformation of the type (5.13). Therefore, one
can assume

Cirjilizgalk = Oix Oy Sialjolk (5.14)

with S completely symmetric.
The residual gauge symmetry after T" has been set equal to zero is given by
Sz'jk: — Sijk + 6(26];%) (5.15)

(which is still present because the gauge symmetries of the Curtright tensor are
reducible).

Finally, the tracelessness condition of C on k and any other index yields

where
Uij = 8k5ijk — 81‘5']' — 8j‘§i (5.17)

is such that U;; = 0 is the Bianchi identity for the Schouten tensor (see (3.17)).
Now, (5.16) implies
Usj = 00 (5.18)

for some p ( cohomology of dy) for d(oy with d‘é) = 0). On the other hand, Uj;
transforms as

Uij — Uij — 38i8j(8kuk) (5.19)

under (5.15). This enables one to chose S to obey the Bianchi identity of the Schouten

tensor (take u¥ such that 30 u* = p), implying the existence of Zijk such that
S = S[Z] and hence B = B[Z]. [Note that U = 0 when Jyu* = 0, as it should.]
This ends the demonstration of the property that we wanted to prove.
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6 Prepotentials and solution of the constraints of the Hamiltonian for-
mulation

The dynamics of bosonic higher spin gauge fields in four spacetime dimensions is given
by the Fronsdal action [43] expressed in terms of a completely symmetric spacetime field
Py ... which is subject to the double trace condition. The gauge symmetries read

Oy oy = Sa(mem'"#s) (6.1)

where the gauge parameter ¢,,..,, is subject to the single trace condition.

Because of the single trace condition, the gauge parameters are not independent. One
can take €;,..;, , and €gp;,...;, , as independent gauge parameters, since two subscripts 0 in
the gauge parameters can be replaced by spatial indices through the trace condition.

Similarly, one can express through the double trace conditions all components of
the spin-s field with 4 or more subscripts 0 in terms of h;,...i;, Roig-i, 15 P00is--i, o and
ho00iy -+is -

In the transition to the Hamiltonian formalism worked out in [44] (see also [45]
for a discussion that includes the analysis of the surface terms), the variables hg;,...;._,
and hoois...i,_, play the role of Lagrange multipliers for the constraints associated with
the independent gauge parameters €;,..;, , and €g;...i; 5, While h;,..;, and ;.. 5 =
hoooiy-is_5 — 3hkk0i1~-is_3v together with their conjugate momenta 71" *% and II?1"%-3 are
the (constrained) phase space variables. The constraints are of second order in the vari-
ables and of first order in their momenta and split into two groups, the “Hamiltonian
constraints” H;,..;, , ~ 0 associated with the gauge parameters €gp;;..;, , and the “mo-
mentum constraints” H;,..;, , ~ 0 associated with the gauge parameters €;,..;, ;. The
Hamiltonian is quadratic in the conjugate momenta and in the derivatives of the fields.

The explicit expressions for the spin-3 case, with phase space variables h;j, o, niik,
II, are respectively

1 3. 3- 17 1
H = /d333 {QHiij”k — ngHk + gﬂkﬁka + 3—28ka8’“a + g + iakhlmna’“hlm"

3 _ 3. - o, 3 -
—Qakhlmna’hkm" + 30 iy OF ™ — 5a,chla’fhl - 4akhlalh’f}

(6.2)
(Hamiltonian),
H; = Ol — Ahy + 0%y — %aiajﬁj ~0 (6.3)
(Hamiltonian constraint) and
Hij = 20 10 + 8ij D~ 0 (6.4)
(momentum constraint).
The Hamiltonian constraint generates the gauge transformations
Sk = —lgiyk) 4 50 <Axk) + ;a’f)amxm) (6.5)
Oy = —OmX™ (6.6)
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(0yhijr = 0, 0,11 = 0) which are the “temporal spin-3 diffeomorphisms” with gauge param-
eters y; ~ €p;, while the momentum constraint generates spatial spin-3 diffeomorphisms
with gauge parameters ¢;;,

dehije = 30(i€k), (6.7)
5,11 = gAz (6.8)

(6.77k =0, §.a = 0). The use of the terminology “Hamiltonian constraint” and “momen-
tum constraint” is motivated by the spin-2 case.

6.1 Momentum constraint

We first solve the momentum constraint. Using the y-gauge transformations, one can set
o = 0. In that gauge, the constraint reduces to 9;7*/* = 0, which implies 797* = G*[P] for
some prepotential P;;, which is at this stage determined up to a spin-3 diffeomorphism.

In a general gauge, one has therefore

w9k = GUF[P] - 9UHIER) 4 51 <A5k> + ;a’ﬂamam) (6.9)
a = —Op=m (6.10)

where Zj, is a second prepotential that describes the gauge freedom of 7%% and o.

Now, the vector ZF can be decomposed into a transverse and a longitudinal piece,

Ek = ekij@-)\j + 8k0

The A\*-terms in (6.9) are easily checked to be of the form G¥¥[y], where p;j, = (i \k)
has just the form of a spin-3 Weyl transformation. This shows that the prepotential P;;j, is
determined up to a spin-3 Weyl transformation — in addition to the spin-3 diffeomorphism
invariance pointed out above. Therefore, the gauge freedom of the prepotential is

0Pk = 3a(i§jk;) + 3(5(ij)\k)7 (6.11)

i.e., the gauge symmetries of a conformal spin-3 field.

The fact that the spin-3 diffeomorphisms of the prepotential Pj;, have no action on
the canonical variables, while its conformal transformations generate (some of) the gauge
transformations associated with the Hamiltonian constraint, parallels the situation found in
the case of spin 2 [25, 29, 30]. There, however, the Weyl transformations of the prepotential
accounted for all the gauge symmetries generated by the Hamiltonian constraint.

6.2 Hamiltonian constraint

We now turn to solving the Hamiltonian constraint. Its curl €% k@ﬂ-[k does not involve II
and turns out to be equal to G?, so that the Hamiltonian constraint implies

G'[n) = 0. (6.12)

~ 18 —



In fact, one may rewrite the Hamiltonian constraint as
Gl —v,; =0 (6.13)
in terms of the ¥ introduced in subsection 2.2, such that *G = dV¥. One has explicitly
_ . 1 .
U, = Ah; — 678khijk + Eaﬁjhj (6.14)

Therefore, the equations G* = 0 < d¥ = 0 and dII + ¥ = 0 are two equivalent versions of
the Hamiltonian constraint.

The form G = 0 is more amenable to solution because it falls precisely under the
analysis of section 5. According to what we have proved there, it implies the existence of
a (second) prepotential ®;; such that the Einstein tensor of & is the Cotton tensor of that
prepotential,

Gk [h] = B[ @) (6.15)
A particular solution of (6.15) is given by

hijr = _A(I)ijk + %(5(UA§)]€) — %5(”8’”83@@” + %5(1]8k)8ri>r (6.16)
The last term in (6.16) is not necessary but included so that dh;j;, = 0 under Weyl trans-
formation of ®.

Now, what are the ambiguities? It is clear that the spin-3 field h;; is determined
by (6.15) up to a spin-3 diffeomorphism, so that the general solution of (6.15) is given
by (6.16) plus O(;uj;i) where ujr may be thought of as another prepotential that drops
out because of gauge invariance. Conversely, the prepotential ®;;; itself is determined
by (6.15), i.e., by its Cotton tensor, up to a diffecomorphism and a Weyl rescaling,

Dyt — Piji + 30:Ejn) + 30\ (6.17)

with independent gauge parameters fgj and )\;. Thus, we see that the resolution of the
Hamiltonian constraints also introduces a prepotential possessing the gauge symmetries of
a conformal spin-3 field. Note that we have adjusted the ambiguity in the dependence of
hiji on @5, in such a way that the conformal spin-3 transformations of the prepotential
leave h;j;, invariant, while the spin-3 diffeomorphisms of the prepotential induce particular
spin-3 diffeomorphisms of h;j;i, as is the case for spin 2 [25, 29, 30].

Once h;ji, is determined, one may work one’s way up to the constraint and solve for II
in terms of the prepotential. One finds

1 . . 3 o
M= —gazaﬂa%ijk + g 20" (6.18)
The use of conformal techniques to solve the Hamiltonian constraint is somewhat

reminiscent of the approach to the initial value problem for full general relativity developed
in [46-48].
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7 Manifest duality invariance

If one rewrites the action in terms of the prepotentials (Zf;) = (Pijk, ®ijx) (a = 1,2), one
finds the remarkable simple expression

1 o
S = /dzo [/ >z 5eabB@“"?ijk - H} (7.1)
where the Hamitonian H reads

H= / A3y, (;Gaij’“ng — :G“G?) (7.2)
Here, €4, and d,p are respectively the Levi-Civita tensor and the Euclidean metric in the
internal plane of the two prepotentials, while G{,; = G;;%[2°] and Bf; = B;j,[Z°]. In
terms of the prepotentials, the action possesses exactly the same structure as the action
for spin 2 [29].

The kinetic term in the action is manifestly invariant under the gauge symmetries of the
prepotentials. The Hamiltonian is manifestly invariant under the spin-3 diffeomorphisms,
since it involves the Einstein tensors of the prepotentials. It is also invariant under spin-3
Weyl transformations up to a surface term, as it can easily be verified.

The action is furthermore manifestly invariant under SO(2) electric-magnetic duality
rotations in the internal plane of the prepotentials,

' = cos HP* — sin P, (7.3)
P’ = cos§P* + sin P

since it involves only the SO(2) invariant tensors £,5, and d,p. As recalled in the introduction,
exhibiting duality symmetry in the case of spin 2 was in fact the main motivation of [25]
for solving the constraints and introducing the prepotentials.

The gauge symmetries combined with duality invariance constrain the form of the ac-
tion in a very powerful way. Indeed, the most general invariant quadratic kinetic term
involving 6 derivatives of the prepotentials, among which one is a time derivative, is a mul-
tiple of the above kinetic term. Similarly, the most general invariant quadratic Hamiltonian
involving 6 spatial derivatives of the prepotentials is a mutiple of the above Hamiltonian.
By rescaling appropriately the time if necessary, one can therefore bring the action to the
above form, which is consequently the most general gauge and duality invariant quadratic
action with the required number of derivatives.

In terms of the prepotentials, the equations of motion read
B?jk = Eabﬁilmalejl’,:n (75)

and equate the time derivative of the Cotton tensor of one prepotential to the “curl” of
the Cotton tensor of the other (defined as the right-hand side of (7.5)).
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8 Comments and conclusions

Perhaps the most intriguing feature of our analysis is the emergence of spin-3 Weyl gauge
invariance. Starting from the ordinary spin-3 Fronsdal Lagrangian, which exhibits no sign
of higher spin conformal gauge symmetry, the resolution of the constraints of the Hamilto-
nian formalism brings in prepotentials that enjoy somewhat unexpectedly this symmetry.
This feature was already found in the spin-2, spin 3/2 and spin-5/2 contexts [25, 30-32]
and will be confirmed in even higher spin models, both bosonic [34] and fermionic [49] —
papers in which we shall also discuss the twisted self-duality formulation of higher spins
in terms of electric and magnetic fields. This is what justifies the construction of the ap-
propriate conformal calculus (Cotton tensor) in the present context. A similar emergence
of local higher spin conformal symmetry arises in higher dimensions, and the prepotentials
appear to be systematically of a Young symmetry type such that the corresponding Weyl
tensor identically vanishes so that one must go to the analog of the Cotton tensor [30, 34].

The ultimate reason for the emergence of local higher spin Weyl symmetry remains to
be understood. This seems to us to be particularly important in view of the power of this
symmetry which determines, together with higher spin diffeomorphisms and SO(2) duality
invariance, the form of the action. In that respect, it should be noted that although not
manifestly so, the action compatible with all the listed symmetries is automatically also
Lorentz invariant since it is equivalent to the Fronsdal action. This is in line with [33] (see
also [50] in this context).

The simplicity of the action (7.1) should be contrasted with its expression in terms of
the original variables. In particular, the Hamiltonian expressed in terms of the prepotentials
is much more transparent than its original expression (6.2). A similar simplicity also holds
for spins > 3, where the action is found to have the same universal form, with a kinetic
term involving the time derivative of the Cotton tensor, and a Hamiltonian quadratic
in the Riemann tensor and its multiple traces, with coefficients that ensure higher spin
conformal symmetry.

Finally, one can trade off the prepotential P;j; for a second spin-3 field related to it as
hiji is related to ®;j;. This yields a two-spin-3-potential (non local) action analogous to
the bimetric formulation of [51].
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A Conventions

We denote symmetrizations and antisymmetrizations respectively with parentheses and
brackets. These operations are of weight one (projectors), e.g., A((;)) = Aij)-
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When dealing with tensor fields of mixed Young symmetries, we follow the convention
that antisymmetries are manifest. So, to project on a given Young symmetry type, one
first symmetrizes within the rows and then antisymmetrizes within the columns.

The Levi-Civita €4, tensor in the internal plane of the prepotentials is such that €19 =
1= —E&921.

B Complete set of gauge invariant functions

B.1 Generalities

Let ¢ be some fields invariant under some gauge symmetries,
O™ = ke + k' 0i6™ + k¥ 00,6 (B.1)

where for definiteness, we have assumed that the gauge parameters and their derivatives
up to second order appear in the gauge transformations. The discussion would proceed in
the same way if there were higher derivatives present in (B.1). We also assume that the
coefficients k2, k2% and k& do not involve the fields, so that the gauge transformations
are of zeroth order in the fields (and of course linear in the gauge parameters).

We consider local functions, i.e., functions f(p?, 8;04, - ,0:,0;, - - - 0;, ©*) of the fields
and their derivatives up to some finite but unspecified order. That unspecified order can
depend on f. We denote such local funtions as f([¢*)]). Among the local functions, the
gauge invariant ones are particularly important. In our linear theories, non trivial (i.e.,
not identically constant) local functions that are gauge invariant exist. For instance, the
components of the (linearized) Riemann tensor are local gauge invariant functions under
the (linearized) diffeomorphisms. [Gauge symmetries that involve the fields might not allow
for non trivial local gauge invariant functions. This occurs for example in the case of full
diffeomorphism invariance where even the scalar curvature (say) transforms under change
of coordinates, ¢ R = {'0; R (transport term).]

The local functions are functions on the “jet spaces” J*, which can be viewed, in
the free theories investigated here, as the vector spaces with coordinates given by the field
components ¢ and their successive derivatives up to order k. The gauge orbits obtained by
integrating the gauge transformations are m-dimensional planes in those vector spaces J*,
where m is the number of independent gauge parameter components and their derivatives
(effectively) appearing in the gauge transformations of the fields and their derivatives up
to order k.

For instance, for a free spin 3-field in 3 dimensions, J? has dimension 10 because there
are 10 independent undifferentiated field components h;;,. The gauge orbits have also di-
mension 10 since there are 18 independent derivatives 0i&;; of the gauge parameters but
only 10 of them, the symmetrized ones 9,;;) effectively appear in the gauge transforma-
tions. Accordingly, JY is a single gauge orbit. Similarly, J' has dimension 10 4 30 = 40,
the new coordinates being the 30 derivatives 0y, h;;i of the fields. There are 36 independent
second derivatives of the gauge parameters but only 30 of them effectively act in the gauge
transformations of the 9,,h;;i. The jet space J ! reduces again to a single gauge orbit. This
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is also true for J2. It is only in the jet spaces J* with k& > 3 that the gauge orbits have
a dimension strictly smaller than the dimension of the corresponding jet spaces. For J3,
which has dimension 10 (number of undifferentiated field components h;j;,) +30 (number
of Omhiji) +60 (number of 9,,0,hijk) +100 (number of 0,,0,0,hiji) = 200, the gauge
orbits have dimension 10 (number of effective 0i&;;) +30 (number of effective 0;0,&;5)
+60 (number of 00,045, which are all effective) +90 (number of 0;,0,,040,&;;, which are
all effective) = 190. Accordingly, the quotient space of J? by the 190-dimensional planes
generated by the gauge transformations has dimension 10, which is — as it should — the
number of independent components of the Riemann tensor, which has Young symmetry

Without loss of generality, we can assume that the gauge invariant functions vanish
when the fields ¢ and their derivatives vanish (just substract from f the gauge invariant
constant f(0,0,---,0)).

A set of gauge invariant functions {fa} is said to form a complete set if any gauge
invariant function f can be expressed as a function of the fa, é¢f = 0 = f = f(fa).
There might be relations among the fa’s (redundancy) but this will not be of concern to
us. In the linear theories considered here, we can construct complete sets of gauge invariant
functions that are linear in the fields and their derivatives.

Consider a definite jet space J*, with k fixed but arbitrary. Let {fa} be a complete set
of gauge invariant functions. The functions f(Ak) in this complete set that involve derivatives
of the fields up to order k are defined in J*. They provide a coordinate system of the linear
quotient space of J*¥ by the gauge orbits Oy (in case of redundancy, one must take a subset
of independent fy)). If this were not the case, one could find a gauge invariant function
in J* not expressible in terms of the functions in the complete set. The trivial orbit of the
pure gauge field configurations is the orbit of 0, on which the gauge invariant functions
have been adjusted to vanish. It follows from these observations that a set {fa} of gauge
invariant functions is a complete set if and only if the condition fan = 0 implies that the
fields are pure gauge.

B.2 Spin-s Weyl invariance

We now turn to the proof that a complete set of invariants for higher spin conformal fields
in three dimensions is given by the Cotton tensor and its successive derivatives. As we just
shown, this is equivalent to the statement that the vanishing of the Cotton tensor implies
that the spin-s field is pure gauge.

To determine a complete set of invariants, we reformulate the problem as a problem of
cohomogy in the successive jet spaces augmented by new fermionic variables, “the ghosts”,
and decompose the successive derivatives in irreducible representations of GL(3). This
approach is standard and has been developed successively in the case of spin-s diffeormor-
phism invariance for spin 1 [52-60], spin 2 [61] and spin s [40].

Weyl invariance for spin-2 was treated in [62]. By the same techniques as those de-
veloped in that reference, one first takes care of spin-s diffeomorphism invariance and
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concludes that diffeomorphism invariance forces the local functions to be functions of the
Riemann tensor and its derivatives, or, what is the same in D = 3, of the Schouten tensor
and its derivatives, f = f([S]). Spin-s Weyl invariance becomes then the condition §, f =0
for 0,84,...i, = —0(i,i,Viy-i,) (for convenience, we absorb the factor @ in a redefinition
of ). Furthermore, neither the Schouten tensor nor the gauge parameter v are independent
since their divergences are constrained by (3.9) and (3.10).

To investigate the problem of Weyl invariance, we shall first consider the problem
(S,,f =0 for 51/Si1---is == —a(im
implications of the constraints (3.9) and (3.10) on the divergences.

Vig..ijg

y for unconstrained S and v. We shall then analyse the
We thus consider the problem of computing the cohomology at “ghost number” zero

of the differential « defined by

C; YCiyvig_y =0 (B.2)

VSiy-is = a(1‘12'2 315))
We introduce a derivative degree that gives weight zero to the ghosts and weight two to
the Schouten tensor.

At derivative degree 0, we have only the ghosts in the cohomology, but these are at
ghost number one, so there is no cohomology at ghost number zero. At derivative degree
1, there is again no cohomology at ghost number zero for a similar reason. The ghost-
number-zero variables (Schouten tensor) appear only in derivative degree 2 and higher.

At derivative degree 2, the second derivatives of the ghosts transform in the

representation
s — 2 boxes s bl(zxes
LI e =Ll []]
sflj)oxes
o LT TTTTT]]
s — 2 boxes
o L1111

while the undifferentiated Schouten tensor components transform in the representation

s boxes
7\

It follows that the undifferentiated Schouten tensor components form contractible pairs
with the derivatives of the ghosts transforming in the same representation and disappear
from the cohomology. There is no cohomology at ghost number zero. The same story
proceeds in the same way, with the derivatives of the Schouten tensor being all “eaten”
through contractible pairs with the corresponding derivatives of the ghosts and no coho-
mology at ghost number zero, with non trivial generators at ghost number one left over,
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up to derivative degree s. There one finds for the ghosts:

s — 2 boxes s boxes
-

LIt Jel LTIl ]]

2s — 2 boxes

A\

2s — 3 boxes

o TTTTTTITITIITIIT]
.
s + 1 boxes
. 11
s boxes
® [ | (B.3)

and exactly the same decomposition for the representation in which the derivatives of order
s — 2 of the Schouten tensor transform,

s boxes s — 2 boxes

(LTI el [Tl

There is exact matching and the generators of derivatives order s form contractible pairs

and do not contribute to the cohomology.
At higher derivative order, it is now some of the derivatives of the Schouten tensor
that are unmatched, namely those which contain the Cotton tensor

s boxes

s — 1 boxes

since these representations (and only those) cannot arise in the decomposition of the deriva-
tives of the ghosts of order t > s

s — 2 boxes t > s boxes

(LTl LTI ll]]

(the lower line can have at most length s — 2 as shown by (B.3)).

Accordingly, we can conclude that the y-cohomology of the differential defined by (B.2),
with unconstrained variables, is given at ghost number zero by the functions f([C]) of the
Cotton tensor and its derivatives.

We did not take into account so far the constraints (3.9) and (3.10) that the Schouten
tensor should obey the Bianchi identity and that the divergence of the ghost is also deter-
mined by its trace. One must verify that the derivatives of the Schouten tensor that were
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trivial in the y-cohomology because they had an independent ghost partner equal to their
~-variation, either vanish on account of the constraints or, if they do not vanish, that their
ghost partner in the trivial pair also remains different from zero so that both elements in
the trivial pair continue being trivial.

It is easy to convince oneself that this is the case. The derivatives of the Schouten
tensor that remain non-zero after the Bianchi identity has been taken into account may
be assumed not to involve a contraction of one derivative index 0; with an index of the
Schouten tensor, since such terms can be eliminated using the Bianchi identity. In fact,
once we have eliminated such contractions, the remaining derivatives are unconstrained. A
similar situation holds on the ghost side. If the y-variation of a derivative of the Schouten
tensor without such contractions involves the ghosts and so is not 7-closed before the
constraints are taken into account, it will remain so after the constraints are taken into
account because its y-variation necessarily produce independent derivatives of the ghosts
without such contractions (in addition to possible terms with such contractions coming
from possible traces).

Open Access. This article is distributed under the terms of the Creative Commons
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