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1 Introduction and summary

Divergences in quantum gravity are famously severe and suggestive that long distance

physics depends sensitively on the shortest lengths. Supersymmetry mitigates the diver-

gences so effectively that for maximal N = 8 supergravity in four asymptotically flat

dimensions it has not yet been established what divergences remain, if any [1–7]. On the

other hand, it has long been known that in curved backgrounds, highly relevant for gravity,

even the one-loop vacuum amplitude diverges [8–13]. The apparent incompatibility between

these results created controversy already in the 1980’s [14–20]. In this paper we revisit this

tension from a modern perspective informed by the AdS/CFT correspondence [21].

To exhibit the central issue in more detail it is convenient to focus on the anomalous

contribution to the trace of the energy momentum tensor

〈Tµ
µ 〉an =

1

(4π)2
(

cW 2 − aE4

)

, (1.1)

where the square of the Weyl tensor W 2 = Riem2 − 2Ric2 + 1
3R

2 and the Euler density

E4 = Riem2−4Ric2+R2 encode dependence on the background geometry.1 The coefficients

c, a depend on the matter content of the theory and they have been studied in great detail;

e.g. using perturbation theory in small curvature around flat space. Their values for fields

with simple couplings to the background have long been established and are summarized in

table 1 (later). These well known coefficients are such that, for the field content of N = 8

1We assume for simplicity a renormalization scheme where other possible terms are absent.
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supergravity, their sum does not vanish. This fact establishes a divergence that is present

already at one loop.

However, there are equally well established perturbative nonrenormalization theorems

based on the helicity supertraces over the on-shell spectrum

∑

(−)2hhn = 0 , (1.2)

for n < N = 8. These sum rules imply powerful cancellations for perturbative amplitudes

in asymptotically flat space and related supertrace formulae are influential in particle phe-

nomenology because they survive spontaneous breaking of supersymmetry. For us the

important point is that the helicity sum rules establish one-loop nonrenormalization in

N = 8 AdS4 supergravity (gauged N = 8 supergravity) [17, 18, 22]. These cancellations

even generalize to all massive levels obtained from Kaluza-Klein compactification of N = 1

supergravity in 11 dimensions.

We will argue that despite appearances there is no contradiction, but rather a topo-

logical distinction encoded in the boundary conditions. The basis for the sum rules (1.2)

is Lorentzian AdS4 which, after Euclidean continuation, gives rise to S1 × S2 bound-

ary conditions with the S1 corresponding to Euclidean time. In this geometry the

Euler characteristic

χ =
1

32π2

∫

E4 + bndy , (1.3)

vanishes. This is significant because the divergences uncovered by the curvature expansion

are proportional to χ and so they are not captured by AdS4 with S1 × S2 boundary

conditions. On the other hand, we will easily reproduce them from Euclidean AdS4 with

S3 boundary conditions since this geometry has Euler invariant χ = 1.

One might wonder if these divergences have any physical significance. We argue in the

affirmative by computing a finite and nonvanishing one-loop correction to the cosmological

constant in maximal AdS4 supergravity. In this computation it is manifest that the helicity

supertrace relations (1.2) are violated in spacetime with S3 boundary conditions. Inter-

estingly, the violation is rather mild so all power law corrections in fact cancel. Thus the

cosmological constant acquires just logarithmic running. This feature is intriguing since it

might offer a mechanism that could describe dark energy without sacrificing naturalness.

Our results are subject to an important subtlety that was noticed already in early

studies of quantum fields in curved space: quantum inequivalence [15]. In our context an

important example is the relation between a massless antisymmetric tensor and a scalar

field. In the classical theory they are equivalent by a field redefinition but their quantum

partition functions are related by a shift that is proportional to the Euler characteris-

tic (1.3) [12, 13]. The coefficient of the logarithmic divergence we study therefore depends

on the duality frame which becomes part of the data that defines the theory. We interpret

this feature as a genuine physical effect: antisymmetric tensor fields support boundary

modes that have no analogues in the corresponding scalar field theory.

In this paper we primarily interpret N = 8 AdS4 supergravity as a low energy ef-

fective field theory in its own right but ultimately the UV completion involves the full

string/M-theory. As an intermediate step we consider the theory as compactification of
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11D supergravity on AdS4 × S7. This procedure defines a preferred duality frame for the

massless fields and it happens that it is precisely the frame where all logarithmic divergences

cancel [15]. In this setting boundary modes cancel bulk divergences.

There have been many other recent studies of quantum corrections to AdS spaces

in various dimensions. A basic feature of this research is that divergences remain even

when supersymmetry is maximal and those divergences are related to effects that are

unambiguously physical in the dual theory. Some examples:

• In AdSd+1 with odd (d+1) there are bulk divergences interpreted as finite quantum

anomalies in the dual theory with even d. For example, in the case of d = 4 such

anomalies are responsible for the shift N2 → N2 − 1 that is expected and confirmed

in N = 4 SYM with SU(N) gauge groups [23, 24].

• Quantum corrections to higher spin theories in AdS provide impressive evidence for

higher spin holography [25–27].

• The Bekenstein-Hawking area law for black holes is subject to logA corrections with

coefficients determined by the low energy theory. For BPS black holes these coeffi-

cients are determined by divergences in AdS2 and AdS2 × S2 which are generically

nonvanishing (including forN = 8), and their values are confirmed by the microscopic

theory in cases where the latter has been established [28–36].

Our study of AdS4 was motivated in part by these and related developments. Computa-

tions in these contexts share the techniques we employ and offer some confidence in their

applicability.

2 One loop quantum corrections in AdS4

In this section we employ heat kernel methods to compute the one loop contributions to the

anomalous trace of the energy momentum tensor in AdS4 from fields with various spins.

We interpret the resulting divergences in the effective action as logarithmic running of the

effective cosmological constant.

2.1 Notation and review

One loop quantum corrections in Euclidean quantum gravity are determined by a Gaussian

path integral with the schematic form,

W = − ln

∫

Dφ e−φ�φ =
1

2
ln det� =

1

2

∑

i

lnλi , (2.1)

where the φ denotes the collection of linearized fields, � represents their kinetic operator,

and λi are the eigenvalues of �. We represent the effective action W in terms of the heat

kernel D(t) =
∑

i e
−tλi as

W = −
∫ ∞

ǫ2

dt

2t
D(t) , (2.2)
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where ǫ is a UV regulator with dimension of length. It is customary to express results for

heat kernels in terms of the (equal point) heat kernel density K(t) expanded at small t

K(t) =
1

VolAdS4

D(t) =
1

(4πt)2

(

1 + a2t+ a4t
2 + . . .

)

. (2.3)

Departures from the flat space limit are encoded in the two derivative correction a2 propor-

tional to the Ricci scalar and the four derivative correction a4 that is a linear combination

of Riemann squared, Ricci squared, and Ricci scalar squared.2

We divide the one loop effective action (2.2) into divergent contributions

Wdiv =
1

32π2

(

− 1

2ǫ4
− a2

1

ǫ2
+ a4 ln ǫ

2

)

VolAdS4 , (2.4)

and a remainder that is finite. From either piece we can form the trace of the energy

momentum tensor

Tµ
µ =

2√−g
gµν

δW

δgµν
. (2.5)

The logarithmic divergence of the effective action (2.4) gives an anomalous contribution

that is conventionally presented as

〈Tµ
µ 〉an =

1

(4π)2
a4 =

1

(4π)2
(

cW 2 − aE4

)

. (2.6)

In the nonconformal theories we consider there may be additional contributions to the trace

of the energy momentum tensor.

The values of c and a have been computed perturbatively by many researchers using

different methods and schemes [9, 37–39]. The values that are now standard (up to caveats

discussed later in this section) are summarized in table 1 below.

2.2 Computations in AdS4

We now revisit these computations in the context of AdS4. This geometry is conformally

flat so the Weyl tensor vanishes and therefore the central charge c plays no role. Our

focus on a is complementary to techniques that impose Einstein’s equations in vacuum and

identify just the Riemann-squared terms which have coefficient c− a.

The natural representations for fields in AdS4 are the symmetric, transverse, and

traceless (STT) tensors with spin s. The heat kernels for these fields were comprehensively

analyzed by Camporesi and Higuchi [40–42] (and recently developed further [27]) both

using explicit mode functions and also using group theory. We present their results for the

AdS4 heat kernel of a massive spin s field with conformal dimension ∆ as3

K(s,ν)(t) =
1

ℓ4A

∫ ∞

0
dλ µs(λ) e

− t

ℓ2
A

(λ2+ν2)
, (2.7)

2The volume diverges, since AdS4 is noncompact. We mostly consider local quantities in a homogeneous

space and then the regulator details are unimportant. The standard renormalized value VolAdS4
=

4π2
ℓ
4

A

3

will appear later from global considerations with explicit boundary terms.
3We simplify notation by absorbing a numerical factor in the Plancherel measure.

– 4 –



J
H
E
P
0
1
(
2
0
1
6
)
0
2
4

Field c a c− a

Real Scalar 1
120

1
360

1
180

Weyl Fermion 1
40

11
720

7
720

Vector 1
10

31
180 - 13

180

Antisymmetric Tensor 1
120 −179

360
91
180

Gravitino −411
360 −589

720 −233
720

Graviton 783
180

571
180

53
45

Table 1. Central charges c and a for minimally coupled massless fields. Each entry is a physical

field with two degrees of freedom except the scalar and the antisymmetric tensor, which have just

one degree of freedom.

where ν2 = (∆− 3
2)

2. The conformal dimension ∆ is equivalent to the mass of the field and

in the context of AdS4 it is ∆ that provides the simplest representation of this parameter.

Crucially, the Plancherel measure µs(λ) for the integration over the continuous eigenvalues

λ is different for bosons

µs(λ) = (s+
1

2
)
λ2 + (s+ 1

2)
2

4π2
λ tanh(πλ) , (2.8)

and for fermions

µs(λ) = (s+
1

2
)
λ2 + (s+ 1

2)
2

4π2
λ coth(πλ) . (2.9)

The distinction between bosons and fermions is inconsequential in the UV region where

λ → ∞ since then both tanh(πλ) → 1 and coth(πλ) → 1. It is instructive to evaluate

the heat kernel (2.7) such that this common feature is manifest. For bosons we write

tanh(πλ) = 1− 2
e2πλ+1

and then find

K
(s,ν)
boson(t) =

s+ 1
2

4π2ℓ4A
e
− tν

2

ℓ2
A

[

∫ ∞

0
e
− tλ

2

ℓ2
A

(

λ2+

(

s+
1

2

)2)

λdλ−2

∫ ∞

0
e
− tλ

2

ℓ2
A

λ2 + (s+ 1
2)

2

e2πλ + 1
λdλ

]

=
s+ 1

2

8π2ℓ4A
e
− tν

2

ℓ2
A

(

ℓ4A
t2

+
ℓ2A
t

(

s+
1

2

)2
)

− s+ 1
2

8π2ℓ4A

(

7

480
+

(s+ 1
2)

2

12

)

=
s+ 1

2

8π2ℓ4A

[

ℓ4A
t2

+
ℓ2A
t

(

(

s+
1

2

)2

− ν2

)]

+
s+ 1

2

16π2ℓ4A

[

ν4 −
(

s+
1

2

)2(

2ν2 +
1

6

)

− 7

240

]

. (2.10)

The first integral contains the UV terms that are common to bosons and fermions and is

elementary for all t. The second integral is special to bosons. It is finite for small t so we
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evaluate it at t = 0, omitting higher powers in t. It is evident from this structure that only

the first integral contributes to the terms that are divergent in the UV limit t → 0.

We next compare with the fermion heat kernel where we write coth(πλ) = 1 + 2
e2πλ−1

and find

K
(s,ν)
fermion(t) =

s+ 1
2

4π2ℓ4A
e
− tν

2

ℓ2
A

[
∫ ∞

0
e
− tλ

2

ℓ2
A

(

λ2 +

(

s+
1

2

)2)

λdλ

+ 2

∫ ∞

0
e
− tλ

2

ℓ2
A

λ2 + (s+ 1
2)

2

e2πλ − 1
λdλ

]

=
s+ 1

2

8π2ℓ4A

[

ℓ4A
t2

+
ℓ2A
t

(

(

s+
1

2

)2

− ν2

)]

+
s+ 1

2

16π2ℓ4A

[

ν4 −
(

s+
1

2

)2(

2ν2 − 1

3

)

+
1

30

]

. (2.11)

Since the first integral is the same in the boson and fermion heat kernels (2.10), (2.11)

these expressions have the same divergences in the UV limit t → 0. It is for the same

reason that they have the same dependence on conformal dimension appearing through

ν2 = (∆ − 3
2)

2. However, the two cases are of course different due to the second integral

and this is reflected in the terms that are constant and independent of ν.

We are particularly interested in massless particles since those are the ones that appear

in standard N = 8 supergravity. In AdS4 masslessness is not well characterized by the

absence of a mass term in the Lagrangian but rather by the reducibility of the field repre-

sentation. Representations at spin s generally have dimension 2s+1 but some special ones

are reducible and allow decoupling of a ghost representation that has spin sghost = s−1 and

so dimension 2sghost +1 = 2s− 1. This leaves two physical degrees of freedom for massless

particles with spin, as expected. Group theory methods show that this reduction is possible

precisely when the conformal dimension is ∆ = s+ 1 (and so ν = ∆− 3
2 = s− 1

2) and also

specify that the spin s − 1 ghosts have ∆ghost = s + 2 [43]. These results do not strictly

apply for the lowest spins s = 1
2 , 0 but we can apply them formally with the understanding

that the ghost subtraction in fact enhances a real scalar to a complex representation.4

These rules give

K
(s,massless)
boson (t) = K

(s,s+1)
boson (t)−K

(s−1,s+2)
boson (t) =

1

16π2ℓ4A

(

2ℓ4A
t2

+
8s2ℓ2A

t
− 5s4 + s2 − 2

15

)

,

(2.12)

for a massless boson with spin s, and

K
(s,massless)
fermion (t) = (−)

[

K
(s,s+1)
fermion(t)−K

(s−1,s+2)
fermion (t)

]

=
1

16π2ℓ4A

(

− 2ℓ4A
t2

− 8s2ℓ2A
t

+ 5s4 − 5

2
s2 − 13

240

)

, (2.13)

4For spin s = 1
2
the rule formally subtracts ghosts that have spin sghost = − 1

2
but that is inconsequential

since this representation has dimension 2sghost + 1 = 0. For spin s = 0 it formally subtracts a ghost with

spin sghost = −1 and dimension 2sghost + 1 = −1 which effectively adds one degree of freedom, turning one

boson into two, with conformal dimensions ∆ = 1, 2.
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Spin 16π2ℓ4AK
finite
massless a

0 − 2
15

1
180

1
2 −11

30
11
720

1 −62
15

31
180

3
2

589
30 −589

720

2 −1142
15

571
180

Table 2. The values of Kmassless computed in AdS4 and the corresponding a anomalies. All entries

including the scalar s = 0 refers to two degrees of freedom.

for a massless fermion with spin s. We inserted a sign for the fermion by hand in order to

take statistics into account.

The t = 0 poles in the massless heat kernels are the same for bosons and fermions (up

to the sign that was inserted for fermions) as we expected since that is the case for each

of the underlying massive representations. On the other hand, some of the terms that are

finite as t → 0 differ, also as expected. This feature is the origin of the apparent lack of

pattern in the heat kernel coefficients that is evident when we consider the finite parts of

Kmassless for the first few spins in table 2.

Our results for the finite parts of the heat kernel K(t) in AdS4 are identical to the

a4 coefficients introduced in (2.3) up to a factor (4π)2. It can be further recast in terms

of the a-anomaly introduced in (2.6) by noting that the Gauss-Bonnet density in AdS4
is E4 = 24/ℓ4A. We have included the a-anomaly computed this way in table 2. These

values agree perfectly with the results from the local expansion in curvature summarized

in table 1.

There is a caveat to this agreement. As we have stressed, our computation (which in

fact closely follows Camporesi and Higuchi [44]) determines the a-anomaly unambiguously

for all spin. In contrast, many researchers compute both c and a for low spin but results

for s = 3
2 , 2 (and above) are not widely quoted and there is no obvious consensus on their

values. This situation is tied with the background dependence of the linearized equations

of motion for such fields. The most secure data points are for c − a which is defined in

Ricci flat backgrounds and a which, as we have stressed, is unambiguous in maximally

symmetric spacetimes. For s = 3
2 , 2 the values of a, c given in table 1 were obtained by

combining the results for a given in table 2 with the standard values of c− a.

2.3 Extended SUSY

The t-poles in the heat kernels (2.12) and (2.13) correspond to power law divergences in

the effective action. The boson and fermion contributions to these divergenes cancel when

∑

(−)2ssn = 0 , (2.14)

– 7 –
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Spin Conformal Dimension ∆ SO(8) Multiplicity

2 3 1

3
2

5
2 8

1 2 28

1
2

3
2 56

0 1 35

0 2 35

Table 3. The conformal dimensions and multiplicities of the massless multiplet in N = 8 super-

gravity.

for n = 0, 2. The massless spectrum only comprises maximal helicity where |h| = s so this

condition is equivalent to the helicity sum rule (1.2) for n = 0, 2. This is satisfied for N ≥ 3

supergravity and we will focus on these theories.

For maximal N = 8 SUGRA the standard spectrum given in table 3 satisfies the sum

rule (2.14) even for n = 4, 6 yet the sum of the boson and fermion heat kernels do not vanish

Ktotal
N=8 = 〈Tµ

µ 〉ren =
1

16π2ℓ4A
(−60) . (2.15)

This is possible because the bosonic and fermionic heat kernels (2.12)–(2.13) are different

polynomials in the spin s.

We can represent the heat kernel result (2.15) for N = 8 supergravity as an a anomaly

for the entire multiplet,

aN=8 =
5

2
. (2.16)

Considering also the values of c from table 1 we find that the central charge c = 0 for the

full N = 8 multiplet. We collect these results in table 4.

The quantum effective action can be computed from the heat kernel (or, equivalently,

from the trace of the energy momentum tensor) by the integral (2.2). We perform the

integration with the dimensionless conformal weights ∆ kept fixed. This is justified by the

boundary perspective where the dual theory is conformal in the leading approximation and

also from the bulk point of view where all fields are in the massless representations that do

not even exist for other values of the conformal weights. Since we focus on theories with no

power law corrections the integrand is a constant and, with the measure indicated in (2.2),

the integral gives a logarithmically divergent term in the effective action.

Multiple research groups have reported that in fact the trace anomaly does vanish for

N = 8 supergravity in AdS4 [17, 18] and so there are no divergences. Those results refer to

different boundary conditions where the spectrum is discrete and the helicity sum rule (1.2)

applies for all n < N . We will return to this in more detail in the next section.

– 8 –
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c a c− a

Massless N = 8 multiplet 0 5
2 −5

2

Table 4. Central charges c and a for N = 8 supergravity.

2.4 Interpretation of quantum corrections

The anomalous contribution to the trace of the energy momentum tensor is independent

of position because spacetime is homogeneous. A classical cosmological constant in the

action similarly gives a constant contribution but the origin of the anomalous contribution

is a divergence Wdiv = 1
2D0 ln ǫ

2/ℓ20 in the effective action that manifests itself in the

renormalized action as a term that evolves logarithmically

Wren = −1

2
D0 ln

x2phys
ℓ20

. (2.17)

The renormalization scale ℓ0 enters as an IR cutoff on the integral over the heat kernel. It

is arbitrary but of order of the AdS-scale. The physical length scale xphys depends on the

process as usual and may be anywhere in the range from much smaller than the AdS scale

(for UV processes) to much larger than the AdS scale (for the IR properties).

We interpret the scale dependent quantum effective action as a contribution δΛ to the

cosmological constant determined by

Wren = −VolAdS4δΛ

8πG
. (2.18)

It is convenient to express the running in terms of the effective AdS scale ℓeff =
√

−3/Λ:

1

ℓ2eff
=

1

ℓ2A

[

1− 4πG

3ℓ2A
(K0ℓ

4
A) ln

x2phys
ℓ20

]

. (2.19)

The combination (K0ℓ
4
A) is a pure number that we have computed above for some specific

fields. The most important part of this expression is the absence of power law corrections

that would enter through the UV cutoff ǫ. This would signal dependence on unknown UV

physics. Instead we have nontrivial logarithmic quantum corrections that are computable

within the low energy theory.5

A good way to construct AdS supergravity is to gauge supergravity in flat space. This

procedure identifies the gauge coupling constant as [47, 48]

e2 =
4πG

ℓ2A
. (2.20)

This coupling constant is small e2 ≪ 1 when the AdS radius is much larger than Planck

scale as we have implicitly presumed. Resumming the (possibly large) logarithms we can

5Logarithmic running of the cosmological constant was discussed also in [45, 46].
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recast (2.19) as

e2 =
e20

1 + 1
3e

2
0(K0ℓ4A) ln

x2
phys

ℓ20

. (2.21)

Comparing with standard formulae we can write an effective β-function for these theories

β = − b

16π2
e3 . (2.22)

where

b = −1

3
(16π2K0ℓ

4
A) . (2.23)

The β-function determines the running of a dimensionless version of the cosmological con-

stant through the usual renormalization group equations. The numerical coefficient b = 8a

is b = 20 for N = 8 supergravity, b = 8(1 + nV /4) for N = 4 supergravity with nV matter

multiplets, and similarly for other examples.

Our computations are all made in bulk and there is no reference to a boundary theory.

This is a rather old fashioned point of view but it is worthwhile for interpreting the set

up as a toy model for the physical cosmological constant. For this we imagine the signs

such that the cosmological constant is positive and the running such that it becomes small

at large distances. The dimensionless coupling e2 would be tuned to take a tiny value,

of order 10−120. The absence of power law corrections would then ensure naturalness in

the sense that the logarithmic running is so mild that quantum corrections would preserve

the enormous hierarchy. This mechanism does not explain the smallness of the observed

cosmological constant but it offers a viable scenario for its technical naturalness.

3 Quantum inequivalence and boundary modes

In this section we discuss the interplay between the trace of the energy momentum tensor

and quantum inequivalence between duality frames. We interpret quantum inequivalence

as a physical effect due to boundary modes. We also show that the divergences and the

boundary modes are both related to the topology of global AdS4.

3.1 Quantum inequivalence

A massless antisymmetric tensor in four dimensions can be mapped into a massless scalar

field via the classical duality transformation

Hµνσ = 3∇[µBνσ] = ǫµνσλ∇λφ . (3.1)

These fields are therefore classically equivalent. However, one loop corrections in curved

space do not respect this equivalence. For example, the trace anomaly coefficients for these

two fields differ as displayed in table 5. This leads to the conclusion that these fields are

quantum inequivalent [15].

However, in some sense the dual fields do not differ by terribly much. They have

identical physical spectra as captured by propagating on-shell degrees of freedom: the
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c a c− a

Antisymmetric Tensor 1
120 −179

360
91
180

Real Scalar 1
120

1
360

1
180

Antisymm Tensor− φ 0 -12
1
2

Table 5. Central charges c and a for the 2-form, the real scalar, and their evanescent difference.

“evanescent” field defined by their difference has no propagating degrees of freedom. Al-

though the a-anomaly coefficients do indeed differ, the c-anomaly coefficients do not; and

the a-anomaly is the coefficient of the Euler density which is topological. Many researchers

therefore argue that these fields are equivalent, at least for all practical purposes [19, 20, 49].

Our discussion of divergences in N = 8 supergravity (and related theories) is in-

tertwined with quantum inequivalence. First of all, the divergence (2.16) is entirely an

a-anomaly, the c-anomaly of N = 8 supergravity vanishes. We nevertheless interpret this

divergence physically in terms of the logarithmic evolution of the cosmological constant.

This assigns physical significance to the a-anomaly even though it has a topological aspect.

Next, the value of the a-anomaly, and therefore its physical significance, depends on

the duality frame. Concretely, one might choose to dualize any number of antisymmetric

tensors into scalars, or vice versa, affecting the trace of the energy momentum tensor in

the process. Therefore such dualizations are not symmetries.

In quantum field theory one must always ask whether the addition of a local counter

term changes the situation. Presently the inequivalence is captured by a topological contri-

bution to the a4 coefficient of the logarithmically divergent term in the effective action (2.4).

In conformal field theories such contributions are due to nonlocal terms in the effective ac-

tion [50] and the geometric origin is the same here. The inequivalence is therefore robust

under additions of local counter terms.

3.2 AdS4 SUGRA from 11D

The default spectrum of N = 8 supergravity summarized in table 3 comprises 70 scalars

and no antisymmetric tensors. Comparing tables 4 and 5 we find that a duality frame

where exactly five scalars are represented instead as antisymmetric tensors exhibits no

trace anomaly.

It turns out that this precise number is a natural expectation when approaching su-

pergravity in AdS4 as compactification of 11D supergravity on S7. The 11D 3-form with

components aIJK is reduced into various lower forms in 4D including 3-forms and 2-forms,

aµνσ(x, y) = bµνσ(x)Y (y) , (3.2)

aµνp(x, y) = bµν(x)Y
(CE)
p (y) + b̃µν(x)Y

(E)
p (y) .
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The AdS4 coordinates are denoted by x and greek indices, while their S7 counterparts

are y coordinates and latin indices. The functions Y (y), Y
(CE)
p (y), Y

(E)
p (y) are spherical

harmonics on S7 that are respectively a scalar, a coexact 1-form, and an exact 1-form.

The 2-tensor b̃µν(x) is the coefficient of Y (E)(y) = dY (y) which is effectively a scalar

on S7 so there is one of these modes, while bµν(x) is the coefficient of Y (CE)(y) = ∗dY (y)

which is effectively a transverse vector on S7 with six modes. Thus there is a total of

1 + 6 = 7 2-tensors in the effective 4D theory as one would also expect from toroidal

compactification of 11D supergravity to 4D. Classically these seven antisymmetric tensors

can be dualized to seven scalars but in view of quantum inequivalence this must be done

with care.

The 3-form tensor bµνσ(x) is the coefficient of the ordinary spherical harmonic so

there is just one of these fields in four dimensions. A massless 3-form has no propagating

degrees of freedom in four dimensions since the classical equations of motion force it to

be constant. At the quantum level gauge fixing of the 3-form gives two 2-form ghosts

with fermi statistics, three 1-form ghosts with bose statistics, and four scalar ghosts with

fermion statistics. This counting gives 4 − 2 · 6 + 3 · 4 − 4 · 1 = 0 net components and so

no propagating degrees of freedom, as expected. However, as we repeatedly stress, 2-forms

must be handled with care at the quantum level and that applies also to the two ghosts

that accompany the 3-form tensor. At the quantum level one 3-form tensor contributes

with (−2) 2-forms that cannot be naively dualized to scalars.

In summary, the duality frame that arises naturally through the AdS4 compactification

of 11D supergravity on S7 gives a net of five antisymmetric 2-tensors:

1 + 6− 2 = 5 . (3.3)

In this duality frame the trace of the energy momentum tensor vanishes and there are no

divergences [15].

This result does not invalidate our claim that there are divergences in N = 8 super-

gravity. On the contrary, it implicitly confirms the notion that different duality frames are

quantum inequivalent since otherwise the distinction between 2-forms and scalars would be

meaningless and there would be no utility in counting 2-forms arising from Kaluza-Klein

reduction of 11D supergravity. From the low energy effective field theory point of view it

is legitimate to consider AdS4 supergravity with any number of 2-forms, including none at

all, although it must be understood that such theories might not arise in string theory [51]

and they could be vulnerable to some subtle quantum inconsistency.

In this paper we focus on massless fields in 4D but the computations can be generalized

to the full KK tower of massive fields. All these contributions are again proportional to

the Gauss-Bonnet invariant and, level by level, they are nonvanishing. One may sum over

all KK towers and recast the remaining divergences in 11D where they become power law

divergences. They generally appear at the four derivative order but in the duality frame

favored by 11D supergravity they only appear at six derivative order. However, eleven is

odd and in odd dimensions all these divergences are nonuniversal and scheme dependent

so it is not clear that they are physical. The divergence that is definitely physical is

again a logarithm which is due to zero-modes of the two form gauge symmetry. These
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zero modes were understood from the 11D perspective [52] and the resulting logarithmic

correction agrees with the one expected from the solution of the dual ABJM theory via

localization [53–55]. We hope to report on these elaborations elsewhere.

3.3 Boundary modes in AdS4

The evanescent part of the 2-form — the quantum contribution of an antisymmetric tensor

that is above and beyond that of its dual scalar field — is naturally interpreted as a

boundary mode, at least in the context of AdS4. A boundary mode is formally a pure

gauge field configuration but it is physical because the putative gauge parameter is non

normalizable and so the field configuration cannot be gauged away by any element of the

symmetry group. This mechanism is unimportant in classical field theory but it matters

in the quantum theory, as expected for a feature related to quantum inequivalence.

The boundary modes reside in the kernel of the classical duality transformation (3.1)

between an antisymmetric tensor and a scalar. Their 3-form field strength vanishes identi-

cally in bulk, since they are formally pure gauge, and so they are not assigned a scalar dual

H(bndy mode)
µνσ = 0 = ǫµνσλ∇λφ , (3.4)

since a constant scalar φ is not normalizable in noncompact spacetimes. This is the source

of quantum inequivalence from our point of view.

A priori any field with gauge symmetry might possess one or more boundary modes.

For example, in global AdS2 all fields with a gauge symmetry have them [30, 36, 41]. On

the other hand, in AdSd+1 with higher d it was found by explicit construction in global

AdSd+1 that boundary modes exist only for d+1
2 -forms [52, 56]. In AdS4 those are precisely

the 2-forms that we are interested in.

To make the discussion explicit we write the background AdS4 metric

ds24 = ℓ2A
(

dρ2 + sinh2 ρdΩ2
3

)

. (3.5)

We take the AdS4 radius ℓA = 1 in the remainder of this section to avoid cluttered formulae.

The normalized boundary modes in this background are

Bρi =

√

k + 1

2

1

sinh ρ
tanhk+1(ρ/2)Θ

(k,σ)
i (Ω3) , (3.6)

Bij =

√

1

2(k + 1)
tanhk+1(ρ/2)[∇̃iΘ

(k,σ)
j (Ω3)− ∇̃jΘ

(k,σ)
i (Ω3)] .

for k = 1, 2, . . .. The covariant derivative ∇̃ refers to components along S3 and latin indices

represent these angular components. The 1-form field Θ
(k,σ)
i (Ω3) is a vector spherical

harmonic with eigenvalue of the Hodge de Rham operator = (k + 1)2. The quantum

numbers k, σ are analogous to the numbers lm used for scalar harmonics on S2 but for

vector harmonics k = 0 is excluded.
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The antisymmetric 2-form with components (3.6) can be represented as pure gauge

B = dA where the 1-form potential A has components

Aρ = 0 , (3.7)

Ai =
1

√

2(k + 1)
tanhk+1(ρ/2)Θ

(k,σ)
i (Ω) .

This 1-form does not have finite norm
∫ √

g|A|2dV =

∫

sinh3 ρ(A∗
ρAρg

ρρ +A∗
jAlg

jl)dρdΩ

∝
∫ ∞

0
sinh ρ tanh2k+2(ρ/2)dρ = ∞ . (3.8)

The inverse metric gjl contributes with a factor of sinh−2(ρ) that dampens the radial

integral at large ρ, but insufficiently to render it finite. However, the tensor B = dA is

normalizable for all k = 1, 2, . . ..

∫ √
g|B|2dV =

∫

sinh3 ρ(2B∗
ρiBρjg

ρρgij +B∗
ijBlkg

ikgjl)dρdΩ

∝
∫ ∞

0
sinh−1(ρ) tanh2k+2(ρ/2)dρ < ∞ . (3.9)

The index structure here gives enough factors of the inverse metric gjl, contributing each

with sinh−2(ρ), such that their product with the field components is sufficient to overcome

the volume factor. The normalization in (3.6) was chosen so that the integral (3.9) is

unity. The 2-tensor has support in bulk but we interpret it as a boundary mode because

it is locally pure gauge.

Once we have identified a 1-form A that gives rise to a 2-form boundary mode B = dA

we should note that gauge equivalent 1-forms A′ = A+ dΛ give rise to the same boundary

mode. The boundary modes thus belong to the two-form cohomology. In order to not

overcount them we must impose a gauge condition, taken in (3.7) as Aρ = 0.

In summary: while the 2-form modes (3.6) are formally pure gauge they are physical

because the would-be gauge function is non normalizable. Therefore, they contribute to

the quantum path integral. Moreover, we have argued that unlike all other modes of the

massless 2-form field, the boundary modes are not captured by the scalar dual. We focus

on the massless case for clarity but the quantum inequivalence between a massive 2-form

and its (classically) dual massive vector is similarly due to boundary modes for the 2-form.

3.4 Counting boundary modes

We can find the contribution of the boundary modes to the heat kernel and related quan-

tities by explicitly counting modes, following [52, 56]. The wave function of each mode is

normalized to unity so the total number of modes is

nbndy modes =
∑

all modes

∫

d4x
√
g|B|2 . (3.10)
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The sum in equation (3.10) is over the family of modes presented in (3.6) that is

parametrized by the quantum numbers k, σ.

∫

d4x
√
g
∑

|B|2 =
∫

d4x
√
g
∑

(2B∗
ρiBρjg

ρρgij +B∗
ijBlkg

ikgjl) , (3.11)

=

∫

d4x
√
g
∑

k,σ

2
k + 1

2

tanh2k+2(ρ/2)

sinh4 ρ
|Θ(k,σ)

i (Ω)|2 ,

+

∫

d4x
√
g
∑

k,σ

1

2(k+1)

tanh2k+2(ρ/2)

sinh4 ρ
|∇̃iΘ

(k,σ)
j (Ω3)−∇̃jΘ

(k,σ)
i (Ω3)|2 .

We can simplify this sum using integration by parts on the angular dependence of the

second term,

∫

|∇̃iΘ
(k,σ)
j − ∇̃jΘ

(k,σ)
i |2dΩ3 = −2

∫

Θj(k,σ)∗∇̃i(∇̃iΘ
(k,σ)
j − ∇̃jΘ

(k,σ)
i )dΩ3 (3.12)

= 2(k + 1)2
∫

Θj(k,σ)∗Θ
(k,σ)
j dΩ3 .

In the last step we identified the operator acting on Θ
(k,σ)
j as minus the Hodge deRham

operator acting on vectors. We insert this result into (3.11), combining both contributions

into one. One could evaluate the sum over modes at any point but, given that AdS4 is

homogeneous, it is sufficient to consider the origin ρ = 0 where only the k = 1 spherical

harmonic contributes,

∑

all modes

|B|2 = lim
ρ→0

∑

k=1

∑

σ

2(k + 1)|Θ(k,σ)
i (Ω)|2 tanh

2k+2(ρ/2)

sinh4 ρ
, (3.13)

=
1

4

∑

σ

|Θ(1,σ)
i (Ω)|2 .

The sum over |Θ(k,σ)
i (Ω)|2 for fixed k is proportional to the degeneracy of the S3 vector

spherical harmonics,

∑

σ

Θ(k,σ)∗i(Ω)Θ
(k,σ)
i (Ω)

∣

∣

∣

∣

k=1

=
6

VolS3

=
3

π2
, (3.14)

since there are 2k(k + 2) = 6 vector spherical harmonics on S3 with k = 1. Collecting

formulae, the number of boundary modes (3.10) becomes

nbndy modes =
∑

all modes

∫

d4x
√
g|B|2 = 3

4π2

∫

d4x
√
g = 1 . (3.15)

We used the standard regulated volume VolAdS4 = 4π2

3 since then the result looks nice

and intuitive. However, in the current context of a noncompact and maximally symmetric

space we should really focus on the density of modes. Indeed, the boundary modes have

vanishing eigenvalue of the kinetic operator so they formally contribute by the “number”
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D
(bndy)
0 = nbndy modes to the constant part D0 of the heat kernel D(t) and this corresponds

to the heat kernel density

K
(bndy)
0 =

D
(bndy)
0

VolAdS4

=
3

4π2
, (3.16)

independently of the value assigned to VolAdS4 . Comparing with the definition of a4 in (2.3)

and the introduction of the c, a anomaly coefficients in (2.6) we find

a(bndy) = −1

2
. (3.17)

since the Euler density E4 = 24 in AdS4 with unit radius ℓA = 1.

The value (3.17) of the boundary anomaly agrees precisely with the a anomaly of

the evanescent difference between a massless antisymmetric tensor and a scalar reported

in table 5. This quantitative agreement shows that the quantum inequivalence between

an antisymmetric tensor and a dual scalar field is due to boundary modes. This in turn

establishes a physical distinction between the inequivalent fields.

3.5 The Gauss-Bonnet theorem in AdS4

We have emphasized the divergences that remain in AdS4 even for maximal SUSY and their

interrelation with quantum inequivalence, because these aspects are the most interesting

to us and they have not been developed in recent literature. Another approach to one-

loop effects that is closer aligned with conventional wisdom invokes reflecting boundary

conditions on all modes [17, 18, 57, 58]. This leads to a discrete sum over modes, the helicity

sum rule (1.2) applies in full, and there are no divergences at one loop (and well beyond).

The relation between these apparently incompatible results involves global aspects of AdS4,

as captured by the Euler invariant. It is therefore instructive to evaluate the Euler invariant

in detail.

The curvature tensor in a maximally symmetric spacetime is constant so the Gauss-

Bonnet integral over the Euler density is proportional to the volume
∫

E4 =

∫

Tr R∧∗ R = 24

∫

e0̂e1̂e2̂e3̂ = 24VolAdS4 . (3.18)

For global AdS4 with metric (3.5) we regulate the volume by a surface at some constant

value radial ρ0 and find

VolAdS4 = 2π2

∫ ρ0

0
dρ sinh3 ρ = 2π2

(

1

3
cosh ρ0(sinh

2 ρ0 − 2) +
2

3

)

. (3.19)

Recall that we take ℓA = 1 at this point of the paper. The boundary term added when

considering the Gauss-Bonnet theorem with a boundary is [37]

− 2

∫

ǫabcdθ
a
bRc

d +
4

3

∫

ǫabcdθ
a
bθ

c
eθ

e
d = −24 · 1

3
cosh ρ0(sinh

2 ρ0 − 2)2π2 , (3.20)

where the second fundamental form θab is essentially the connection 1-form and has non-

vanishing components

θρ̂̂i = ωρ̂̂i = −cosh ρ

sinh ρ
eî . (3.21)
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The sum of the bulk and boundary terms then gives

χ =
1

32π2
· 24 · 2

3
· 2π2 = 1 , (3.22)

after including the correct overall numerical factor already quoted in (1.3). The cancellation

of the terms that diverge at large ρ0 is guaranteed by topological invariance and the role

of the boundary terms is to make this happen. The finite term that remains is essentially

the regularized volume of AdS4, except for the constant factor E4 = 24.

In the context of AdS/CFT it is possible to add counter terms that are local on the

boundary. However, such terms depend on the infra-red cut-off through the functional form

sinh ρ0 taken to an odd power; they are therefore not able to change the finite value χ = 1.

The important point is that AdS4 with S1 × S2 boundary works out qualitatively

differently. The metric is thermal AdS4

ds24 = cosh2 ρdτ2 + dρ2 + sinh2 ρdΩ2
2 . (3.23)

Taking the circumference of S1 to be β, the bulk term (3.18) with a regulator in the new

radial coordinate ρ gives

24VolAdS4 = 24

∫ ρ0

0
cosh ρ sinh2 ρdρ · β · 4π = 32πβ sinh3 ρ0 , (3.24)

and the boundary term is

− 4

∫

θρ̂̂iRĵk̂
ǫρ̂̂iĵk̂ +

4

3

∫

ǫabcdθ
a
bθ

c
eθ

e
d = −8 sinh3 ρ0 · 4πβ . (3.25)

The sum vanishes,

χ = 0 . (3.26)

The difference in topology is significant because the divergence and the corresponding

physical logarithm depends on topology. We primarily study global AdS4 with S3 boundary

conditions because for χ = 1 there is a divergence. In thermal AdS4 the boundary is S1×S2

and the S1 guarantees a discrete spectrum. This gives technical simplifications but it also

excludes the divergence altogether since then χ = 0.

Quantum inequivalence between antisymmetric tensors and scalar fields also depends

on the Euler number χ so similar comments apply. In AdS4 with S3 boundary conditions

there is quantum inequivalence which we interpret as due to boundary modes. In AdS4
with S1 × S2 boundary there is quantum equivalence and no boundary modes. Thus it

appears that there is a precise sense in which the number of boundary modes is nbndy = χ

despite the subtleties due to noncompactness of AdS4.
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