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1 Introduction

Black hole thermodynamics has been a fascinating topic of study since black holes were

identified as thermodynamic objects with both temperature and entropy [1, 2]. Thermo-

dynamic properties of black holes have been studied during all these years. During this

period, it became well known that the black hole spacetime can possess phase structures

along with the standard thermodynamic variables like temperature, entropy etc. Hence it

causes to believe in the existence of a complete analogy between black hole system and

non-gravitational thermodynamic systems. Various black hole thermodynamic variables

and their properties have been extensively studied. In 1983, Hawking and Page [3] discov-

ered the phase transition phenomena in the Schwarzschild AdS background. This became

a turning point in the study of black hole phase transition. After this, many studies have

been done in this regard [62–87].

Recently geometric method has been identified as a convenient tool to study the ther-

modynamics and the corresponding phase transition structures of black holes. Various

investigations are also done by incorporating this idea from information geometry to the

study of black hole thermodynamics [4–8]. Riemannian geometry to the equilibrium space

was first introduced by Weinhold and Ruppeiner. In 1976 Weinhold [9–13] proposed a met-

ric, as the Hessian of the internal energy, given as gWij = ∂i∂jU (S,N r). Later in 1979, Rup-

peiner [14] introduced another metric as the Hessian of entropy, as gRij = −∂i∂jS (M,N r).

This Ruppeiner metric is conformally equivalent to Weinhold’s metric and the geometry

that can be obtained from these two methods are related through the relation where [15, 16],

ds2
R = 1

T ds
2
W . Since these matrices depend on the choice of thermodynamic potentials, they

are not Legendre invariant. The results obtained with the above two metrics are found

to be consistent with the systems like ideal classical gas, multicomponent ideal gas, ideal

quantum gas, one-dimensional Ising model, van der Waals model etc, [17–27]. But these

two metrics fail in explaining the thermodynamic properties and they lead to many puz-

zling situations. By incorporating the idea of Legendre invariance, Quevedo et al. [48–50]
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proposed a new geometric formalism, known as the Geometrothermodynamics. The met-

ric structure related with geometrothermodynamics can give well explanations for different

behaviors of black hole thermodynamic variables. This method seizes the exact phase

structure of black hole systems.

On the other hand, classical thermodynamics can be applied to black hole systems

directly to study the phase structure. In classical thermodynamics first order phase tran-

sitions satisfy Clausius-Clapeyron equation, while second order phase transitions satisfy

Ehrenfest equations. Recently Banerjee et al. [53–58] developed a new scheme to study

the phase transition in black holes based on Ehrenfest equations by considering the anal-

ogy between thermodynamic variables and black hole parameters. This Ehrenfest scheme

provides a unique way to classify the nature of phase transitions in black hole systems. If

two Ehrenfest relations are satisfied by a black hole system, then the corresponding phase

transition can be identified as second order in nature. Even if it is not second order, we

can find the deviation from second order by defining Ehrenfest’s relation as quantified by

defining a parameter called the Prigogine-Defay(PD) ratio [59–61]. Interestingly many

calculations show that there are black hole systems whose phase transitions lie within the

bound conforming to a glassy phase transition.

Hořava-Lifshitz theory is an anisotropic and a non-relativistic renormalizable theory

of gravity at a Lifshitz point, which can be treated as a good candidate for the study

of quantum field theory of gravity, and it retrieves the Einstein’s gravity in the IR limit.

Recently its black hole solution and thermodynamics have been intensively investigated [28,

33–36, 38–47]. By introducing a dynamical parameter Λ in asymptotically AdS4 space-

time, a spherically symmetric black hole solution was first given by Lu et al. [28]. In this

paper, motivated by all the above mentioned features, we extract the whole thermodynamic

quantities of this black hole, called Lu Mei Pope (LMP) black hole in arbitrary space time.

Also we study the phase structure of this solution using geometric methods as well as using

the Ehrenfest scheme.

The paper is organized as follows. In section 2, we discuss the thermodynamics of

LMP black hole in HL gravity and we calculate the equation of state of the black hole

system. Using the idea of geometrothermodynamics, the thermodynamics and the peculiar

behaviors of thermodynamic variables are studied in section 3. In section 4, using the

Ehrenfest scheme, the nature of phase transition is discussed. Finally the conclusions are

quoted in section 5.

2 Review of thermodynamics of LMP black hole

Hořava used the ADM formalism, where the four-dimensional metric of general relativity

is parameterised as [29],

ds2
4 = −N2dt2 + gij(dx

i −N idt)(dxj −N jdt), (2.1)
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where N , N i and gij are the lapse, shift and 3-metric respectively. The ADM decomposi-

tion (2.1) of the Einstein-Hilbert action is given by,

SEH =
1

16πG

∫
d4x
√
gN(KijK

ij −K2 +R− 2Λ), (2.2)

where G is Newton’s constant, R is the curvature scalar and Kij is defined by,

Kij =
1

2N
(ġij −∇iNj −∇jNi). (2.3)

The action of the theory proposed by Hořava [30] can be written as,

SHL =

∫
dtd3x

√
gN [

{
2

κ2
(KijK

ij − λK2) +
κ2µ2(ΛWR− 3Λ2

W )

8(1− 3λ)

}
+

{
κ2µ2(1− 4λ)

32(1− 3λ)
R2 − κ2

2w4

(
Cij −

µw2

2
Rij

)(
Cij − µw2

2
Rij

)}
], (2.4)

where λ , κ , µ , w and ΛW are constant parameters, and Cij is the Cotton tensor, defined by,

Cij = εik`∇k

(
Rj

` −
1

4
Rδj`

)
. (2.5)

Comparing the first term in (2.4) with that of general relativity in the ADM formalism, we

can write the speed of light, Newton’s constant and the cosmological constant respectively

as,

c =
κ2µ

4

√
ΛW

1− 3λ
, G =

κ2

32πc
and Λ =

3

2
ΛW . (2.6)

Now we will look for a static and spherically symmetric solution with the metric,

ds2 = f(r)dt2 − dr2

f(r)
+ r2dΩ2. (2.7)

In the present study we are interested in the solution with the choice λ = 1. This will lead

to the LMP black hole solution [28], given by,

f(r) = k − ΛW r
2 −A

√
r

−ΛW
, (2.8)

where A is an integration constant and is related to the black hole mass as A = aM. It is

interesting to note that this solution (2.8) is asymptotically AdS4. From the first law of

black hole mechanics [31], when a black hole undergoes a change from a stationary state

to another, then the change in mass of the black hole is given by,

dM =
κ

8π
dA+ Ω dJ + Φ dQ. (2.9)

Comparing this with the first law of thermodynamics,

dM = T dS + Ω dJ + Φ dQ, (2.10)

– 3 –
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Figure 1. Plots of f(r) vs r for k = 0 (solid line), k = 1 (dotted line) and k = −1 (dashed line)

with ΛW = −1, a = 1, M = 1.

Figure 2. 3D Plots of Mass vs rh.

one can easily establish the analogy between black hole mechanics and the first law of

thermodynamics . We know that Hořava-Lifshitz theory does not possess the full diffeo-

morphism invariance of general relativity but only a subset in the form of local Galilean

invariance. This subset is manifest in the Arnowitt, Deser and Misner (ADM) slicing. Here

we have considered the ADM decomposition of the four dimensional metric. Then for a

non-rotating uncharged black hole, the entropy can be written as [36, 37],

S =

∫
dM

T
=

∫
1

TH

∂H

∂rh
drh, (2.11)

where H denotes the enthalpy and rh denotes the horizon radius. And the Hawking

temperature can be determined from,

TH =
κ

2π
=

1

4π
f ′(r)

∣∣∣∣
r=rh

, (2.12)
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Figure 3. 3D Plots of temperature.

and,

TH =

(
∂H

∂S

)
P

, (2.13)

where P is the pressure and it is related to the Hawking temperature and entropy as,

P =
1

2
THS. (2.14)

Hence the volume of the black hole is given by,

V =

(
∂H

∂P

)
S

. (2.15)

The heat capacity at constant pressure and at constant volume can be obtained respec-

tively as,

CP = T

(
∂S

∂T

)
P

, (2.16)

and,

CV = CP + V
∂P

∂T
. (2.17)

Using these relations we can calculate the thermodynamic quantities of the LMP black

holes in arbitrary space curvature. In the cases of spherical(k = 1) and flat spaces (k = 0),

detailed studies are done in [32]. And it is noted that, in both cases the black hole doesn’t

show any kind of phase transition behaviors. In this paper we are interested in the LMP

black hole solution in Hyperbolic space (k = −1). In this case, (2.8) can be reduced to,

f(r) = −1− ΛW r
2 −A

√
r

−ΛW
. (2.18)

The event horizon can be obtained from f(rh) = 0, and from that one can easily arrive at

the black hole mass-event horizon radius relation as,

M =
1

a

√
−ΛW

rh

(
−1− ΛW r

2
h

)
. (2.19)
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In figure 2 we draw the 3D plot of variation of black hole mass with respect to black

hole horizon radius for varying cosmological constant term(ΛW ). From this figure it can

be easily seen that the black hole mass increases with increase in the magnitude of the

cosmological constant. It is interesting to note from this figure that the black hole vanishes

for lower values of S. Considering the numerical values, say a = 1 and ΛW = −1 the black

hole vanishes at rh = 1, but when ΛW = −2 the black hole vanishes at another value of

horizon radius, rh = 0.5, and so on.

Black hole entropy can be obtained from (2.11) as,

S =
8π
√
−ΛW

a
. (2.20)

From (2.12) we can derive the Hawking temperature as,

TH =

(
1− 3ΛW r

2
h

)
8πrh

, (2.21)

3D plot of Hawking temperature with respect to black hole horizon radius for varying

cosmological constant term is depicted in figure 3. Here also the temperature increases

with the magnitude of the cosmological constant. From (2.14), black hole pressure can be

found as

P =
21rh

(
1− 3ΛW r

2
h

)
64

. (2.22)

From the above expression, it is obvious that for any negative value of the cosmological

constant term ΛW , the pressure is found to be positive. Using (2.15), black hole volume is

given by,

V =
32
√
−ΛW

21ar
3
2
h

(
1− 3ΛW r

2
h

)(
1− 9ΛW r2

h

) . (2.23)

Using (2.16) and (2.17), the heat capacity at constant pressure and at constant volume are

respectively determined as,

CP =
4π
√
−ΛW rh
a

(
3ΛW r

2
h − 1

)(
3ΛW r2

h + 1
) , (2.24)

and,

CV =
8π
√
−ΛW rh
a

(
3ΛW r

2
h − 1

)(
3ΛW r2

h + 1
) . (2.25)

In figure 4 we draw the 3D variations of heat capacity with respect to horizon radius and

for varying cosmological constant term. From this figure, it is evident that the black hole

has both positive and negative values in certain parametric regions. It is also clear from

the figure that, heat capacity has a divergent point. According to Davies [88], second order

phase transitions takes place at those points where the heat capacity diverges. So LMP

black hole undergoes a phase transition in this case. By investigating the free energy of

the black hole we can get a clear picture of the phase transition. Free energy of the black

hole is given by,

F = M − TS. (2.26)
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Figure 4. 3D Plots of heat capacity.
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Figure 5. Parametric plot of free energy and temperature for ΛW = −1, a = 1.

Using (2.19), (2.20) and (2.21) free energy of LMP black hole is obtained as,

F =
1

a

√
−ΛW

rh

(
2(1 + ΛW r

2
h)(1− 9ΛW r

2
h) + (3ΛW r

2
h − 1)2

2(9ΛW r2
h − 1)

)
. (2.27)

Now one can plot the parametric variation of free energy and temperature using (2.27)

and (2.21). From figure 5, it is evident that there is a cusp like double point. This

indicates a second order phase transition. For one of the branches the free energy decreases

and reaches the temperature which corresponds to the minimum free energy. There after,

free energy increases with a different slope.

An equation of state in general, is a thermodynamic equation describing the state

of matter under a given set of physical conditions. It is a constitutive equation which

provides a mathematical relationship between two or more state functions associated with

the matter, such as its temperature, pressure, volume, or internal energy and black hole

equation of state can be written from (2.22), (2.23) and (2.21) as,

PV
4
3 =

4πT

3

√
32

63

−ΛW

a2
. (2.28)
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Figure 6. Isotherm P − V diagram.

Here, P is the the pressure, V is the thermodynamic volume and T is the black hole

temperature. Now, we plot the isotherm P − V diagram in figure 6. From (2.28) and

the corresponding figure (figure 6) we can conclude that the behaviour is “ideal gas like”.

Hence no critical point can be found and there would be no P − V criticality.

3 Geometrothermodynamics

In order to introduce the idea of differential geometry to thermodynamics, according to [48–

50], we have to define a (2n + 1) dimensional thermodynamic phase space T . It can be

coordinated by the set ZA = {Φ, Ea, Ia}, where Φ represents the thermodynamic potential

and Ea and Ia represent extensive and intensive thermodynamic variables respectively.

The phase space is provided with the Gibbs 1-form Θ = dΦ − δabI
adEb, satisfying the

condition, Θ∧ (dΘ)n 6= 0. Consider a Riemannian metric G on T , which must be invariant

with respect to Legendre transformations. Then the Riemannian contact manifold can

be defined as the set (T ,Θ, G), and the equilibrium manifold can be written as a sub

manifold of T , i.e., E ⊂ T . This sub manifold satisfies the condition ϕ∗(Θ) = 0 (where

ϕ : E → T ), known as the pull back condition [61]. Then the non-degenerate metric G and

the thermodynamic metric g can be written as,

G = (dΦ− δabIadEb)2 + (δabE
aIb)(ηcddE

cdId), (3.1)

and,

gQ = ϕ∗(G) =

(
Ec ∂Φ

∂Ec

)(
ηabδ

bc ∂2Φ

∂Ec∂Ed
dEadEd

)
, (3.2)

with ηab=diag(-1,1,1,. . . ,1) and this metric is Legendre invariant because of the invariance

of the Gibbs 1-form.

Now we will introduce this idea of Geometrothermodynamics in to the LMP black hole

system to study whether the black hole exhibits a phase transition or not. For this, we will

consider a 5-dimensional thermodynamic phase space T constituted by extensive variables

– 8 –
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Figure 7. Variation of scalar curvature with horizon radius for ΛW = −1, a = 1.

S and a and the corresponding intensive variables T and A. Thus the fundamental 1-form

defined on T can be written as,

dΘ = dM − T dS − a dA . (3.3)

Now the Quevedo metric [48] is given by,

g = (SMS + aMa)

[
−MSS 0

0 Maa

]
.

Then the Legendre invariant scalar curvature corresponding to the above metric is given by,

R =
48a2r3

(
35r6Λ3

W − 5r4Λ2
W + 9r2ΛW + 9

)
(r2ΛW + 3) 2 (3r2ΛW + 1) 2 (5r2ΛW − 3) 3

. (3.4)

We have plotted the variation of scalar curvature with horizon radius in figure 7. From

this figure as well as from the above equation, it can be confirmed that this scalar curvature

diverges at the same point where the heat capacity diverges. Hence the Geometrothermo-

dynamics exactly reproduces the phase transition structure of the LMP black hole.

4 Analytical check of classical Ehrenfest equations

Infinite discontinuity in the heat capacity of the black hole does not always indicate a second

order phase transition, but it suggests the possibility of a higher order phase transition.

In classical thermodynamics, one can confirm the first order phase transition by utiliz-

ing Clausius-Clapeyron equations. Similarly a second order transition can be confirmed

by checking whether it satisfies Ehrenfest equations or not. The original expressions of

Ehrenfest equations in classical thermodynamics are given by,(
∂P

∂T

)
S

=
CP2 − CP1

V T (α2 − α1)
=

∆CP

V T∆α
, (4.1)(

∂P

∂T

)
V

=
α2 − α1

κT2 − κT1

=
∆α

∆κ
, (4.2)
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where α = 1
V

(
∂V
∂T

)
P

is the volume expansion coefficient and κT = − 1
V

(
∂V
∂P

)
T

is the isother-

mal compressibility coefficient. Considering the analogy between the thermodynamic vari-

ables and black hole parameters, where pressure (P ) is replaced by the negative of the

electrostatic potential difference (−Φ), and volume (V ) is replaced by charge of the black

hole (Q). Thus for black hole thermodynamics, the two Ehrenfest equations (4.1) and (4.2)

become,

−
(
∂Φ

∂T

)
S

=
1

QT

CΦ2 − CΦ1

(α2 − α1)
=

∆CΦ

QT∆α
, (4.3)

−
(
∂Φ

∂T

)
Q

=
α2 − α1

κT2 − κT1

=
∆α

∆κ
, (4.4)

where α = 1
Q

(
∂Q
∂T

)
Φ

is the volume expansion coefficient and κT = − 1
Q

(
∂Q
∂Φ

)
T

is the

isothermal compressibility coefficient of the black hole system. Here, in the above sets of

equations, the subscripts 1 and 2 denote two distinct phases of the system.

In this paper, rather than considering the black hole analogy of Ehrenfest equation, we

will introduce the classical Ehrenfest equation directly in to the black hole system under

consideration. Using (2.20), (2.21), (2.22) and (2.23), we can arrive at the expressions of

specific heat at constant pressure, volume expansion coefficient and isothermal compress-

ibility coefficient respectively as,

CP =
4π
√
−ΛW rh
a

(
3ΛW r

2
h − 1

)(
3ΛW r2

h + 1
) , (4.5)

α =
6πrh

1− 3r2
hΛW

, (4.6)

and,

κ =
16

7rh

1

1− 3r2
hΛW

. (4.7)

From these relations, it is interesting to note that both volume expansion coefficient and

isothermal compressibility coefficient have same factor in the denominator, which implies

that both these parameters diverge at the same point. We have plotted the variation of

these coefficients with respect to the horizon radius (rh) in figures 8 and 9 respectively.

Now we will investigate the nature of phase transition at the critical point of LMP

black hole by doing the analytic check of classical Ehrenfest equations (4.1) and (4.2). The

values of temperature, pressure and volume at the critical point are respectively given by,

Tc =

√
3
√

ΛW

4π
, (4.8)

Pc =
7
√

3

32
√

ΛW
, (4.9)

and,

Vc =
16(−ΛW )5/4

7 4
√

3a
. (4.10)

– 10 –
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Figure 8. Variation of volume expansion coefficient with horizon radius for ΛW = −1, a = 1.
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Figure 9. Variation of isothermal compressibility with horizon radius for ΛW = −1, a = 1.

Now let’s check the validity of Ehrenfest equations at the critical point. From the definition

of volume expansion coefficient α, given by (4.6), we obtain,

V α =

(
∂V

∂T

)
P

=

(
∂V

∂S

)
P

(
∂S

∂T

)
P

=

(
∂V

∂S

)
P

(
CP

T

)
, (4.11)

then, the r.h.s. of first classical Ehrenfest equation (4.1) becomes,

∆CP

TV∆α
=

[(
∂S

∂V

)
P

]
rcri

, (4.12)

where rcri denotes the critical point. Applying the above equation to LMP black hole

system, we obtain,
∆CP

TV∆α
=

21π

24

1

−ΛW
. (4.13)

Now the l.h.s. of first classical Ehrenfest equation (4.1) becomes,[
−
(
∂P

∂T

)
S

]
rcri

=
21π

24

1

−ΛW
. (4.14)
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From (4.14) and (4.13), we can arrive at the conclusion that both l.h.s. and r.h.s. of first

Ehrenfest equation are in good agreement at the critical point rcri. From (4.6) and (4.7),

using the thermodynamic identity,(
∂V

∂P

)
T

(
∂P

∂T

)
V

(
∂T

∂V

)
P

= −1, (4.15)

we can obtain,

V κT = −
(
∂V

∂P

)
T

=

(
∂T

∂P

)
V

(
∂V

∂T

)
P

=

(
∂T

∂P

)
V

V α. (4.16)

Now the r.h.s. of (4.2) can be obtained as,

∆α

∆κT
=

[(
∂P

∂T

)
V

]
rcri

=
21π

24

1

(−ΛW )
4
3

. (4.17)

Also the l.h.s. of (4.2) can be obtained as,[(
∂P

∂T

)
V

]
rcri

=
21π

24

1

(−ΛW )
4
3

. (4.18)

From (4.18) and (4.17), we can conclude that second Ehrenfest equation is satisfied at the

critical points. Hence both the Ehrenfest equations are in good agreement at the critical

point. Using (4.13) and (4.17), the Prigogine-Defay (PD) can be obtained as

Π =
∆CP∆κT
TV (∆α)2

= 1. (4.19)

This confirms that the phase transition of LMP black hole in Hořava-Lifshitz gravity is

second order in nature.

5 Conclusion

The complete thermodynamics and phase transition picture of LMP black holes in Hořava-

Lifshitz gravity have been investigated using both thermodynamic geometry and Ehren-

fest’s scheme. We have systematically analyzed the thermodynamics and phase transition.

From this thermodynamic study, absence of any discontinuity in entropy-temperature re-

lationship eliminates the presence of any first order transition. Then the heat capacity is

found to be diverging, thereby indicating the presence of a phase transition. But the order

of phase transition was not revealed. To further clarify the existence of phase transition,

geometrothermodynamics is applied, in which the critical point where the heat capacity

diverges coincides with the diverging point of Legendre invariant geometrothermodynamic

scalar curvature. Hence GTD metric exactly reproduces the phase transition structure of

LMP black hole and their corresponding thermodynamic interactions. Here we can con-

clude that the curvature scalar behaves in a similar way as that of the black hole system.

Then we have conducted a detailed analytic check of classical Ehrenfest equations on LMP

black hole system. From this we have found that the LMP black hole satisfies the Ehrenfest

– 12 –
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equations, and hence the phase transition is second order in nature. The PD ratio found

in these calculations further witnesses the second order phase transition, and confirms that

there is no deviation from this order. Hence it will be possible to answer whether one

can have a quantum field theory at a finite temperature by studying the thermodynamic

stability of the black hole, as evident from the specific heat. However, the black hole con-

figuration must be favourable over pure thermal radiation in anti-de Sitter space, that is,

have dominant negative free energy. The present black hole solution satisfies these con-

ditions. Hence from this study one can look forward for the implication on the dual field

theory which exists on the boundary of the anti-de Sitter space.
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