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1 Introduction

The spin-orbit force is a crucial ingredient in many parts of nuclear physics [1]. In the

elementary shell model, nuclei are described as a collection of nucleons which do not directly

interact. They only interact indirectly through an effective potential which gives rise to

a one-particle Hamiltonian and consequently an energy spectrum. By the Pauli exclusion

principle, levels of this energy spectrum are filled as the baryon number B is increased.

For special values of B, the spectrum hits a gap and the corresponding nucleus is tightly

bound and very stable. These special values are called magic numbers and give rise to

magic nuclei. The shell model works well near these. To obtain the correct magic numbers

one must include a spin-orbit term in the single particle Hamiltonian [2, 3]. This couples

the spin of a nucleon to its orbital angular momentum l. The inclusion of this term breaks

the degeneracy between states with the same value of |l|. States with spin and orbital

angular momentum aligned are energetically favoured.

For a nucleus with a few more nucleons than a magic number we can interpret its

structure physically: a core made from a magic nucleus is surrounded by the other nucleons

orbiting it. If we have one orbiting nucleon, its spin and orbital angular momentum are

aligned in all but two cases, Antimony-133 and Bismuth-209. As more nucleons are added,

other factors such as pairing make the interpretation more complicated. The spin-orbit

force is strongest near the surface of the core and its physical meaning is lost within the core.

Analogy with atomic physics points to an electromagnetic origin of the spin-orbit

coupling but this turns out to have the wrong magnitude. The correct magnitude can

be obtained by considering relativistic effects. They lead to a field theory where nucleons

interact via mesons. The system can be solved approximately by neglecting quantum

fluctuations of certain terms [4]. While this technique is successful, it ignores the structure

of nucleons and requires one to fit several parameters. Ideally these parameters would

come from experiment but as the theory is phenomenological, effective masses and coupling

constants must be used [5].
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Figure 1. The B = 1 Skyrmion solution.

The spin-orbit force is also present in nucleon-nucleon interactions. It couples the or-

bital angular momentum to the sum of the spins of the nucleons, and can also be thought

of as coming from meson interactions. The asymptotic form of the force has been success-

fully reproduced in the Skyrme model using a product ansatz which is valid only at large

separations [6].

In this paper we develop an idea in [7] which provides an explanation for the spin-orbit

force at shorter separations, inspired by the Skyrme model. We introduce the Skyrme

model in section 2, describing the important features which shape the spin-orbit interac-

tion. We then set up a precise, simplified model of Skyrmion-Skyrmion interactions and

solve it in section 3, first for the simpler case of nucleon-nucleon interactions and then

for the case of a nucleon interacting with a larger nucleus, which describes certain shell

model configurations.

2 The Skyrme model

The Skyrme model is a nonlinear field theory of pions which admits soliton solutions called

Skyrmions [8]. These are identified as nuclei with the topological charge B of a Skyrmion

equal to the baryon number of the system.

A solution is generally represented by a surface of constant baryon density which is

coloured to express the direction of the pion field as it varies over the surface; we use the

same colouring scheme as in [9]. The spherically symmetric B = 1 solution, known as the

hedgehog, is displayed in figure 1. When two B = 1 Skyrmions are widely separated we can

approximate their interaction using an asymptotic expansion. One finds that among all

configurations there is a special submanifold of maximal attraction between the Skyrmions

called the attractive channel [10]. This is easiest to interpret pictorially: in the attractive

channel the separated Skyrmions have matching colours at the point of closest contact.

Conversely, if the closest colours are opposite the Skyrmions repel.

Configurations tend to line up in the attractive channel in order to minimise potential

energy. This concept remains useful for larger Skyrmions. As an example, consider the

configuration in figure 2. Here, a B = 1 Skyrmion is orbiting a B = 6 Skyrmion. The

system is shown in the attractive channel with red on both Skyrmions at their contact point.

To stay in the attractive channel as it orbits, the B = 1 Skyrmion must take a special orbital
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Figure 2. A B = 1 Skyrmion close to a B = 6 Skyrmion. The colours of closest contact are both

red (unseen on the B = 1 solution from this viewpoint) so the configuration is in the attractive

channel.

path. Specifically, it rolls around the equator of the larger solution completing three full

rotations on its axis before returning to the initial position. The key observation is that the

B = 1 Skyrmions’ orbital angular momentum is aligned with its spin. This is exactly what

is required for the spin-orbit force in nuclei with B one more than a magic number, except

in the cases of Antimony-133 and Bismuth-209. It is the classical pion field structure of

Skyrmions that provides the microscopic origin for the coupling. Many other Skyrmion

pairs have paths like this which encourage spin-orbit coupling. The effect becomes stronger

when the Skyrmions are closer together but loses meaning if they were to merge fully. This

is consistent with the fact that the traditional spin-orbit force is strongest near the surface

of the core nucleus. We will now try to work out the consequences of this classical spin-

orbit coupling when the system is quantised. The usual procedure for quantising one

Skyrmion is to use a rigid body approach to the classical minimal energy configuration,

promoting its collective coordinates to quantum operators. Quantising the interaction

between separated Skyrmions is more difficult and little progress has been possible using

the full set of collective coordinates [11]. Thus, we will only consider a toy model in

two dimensions where we treat the Skyrmions as rigid discs. We will begin by carefully

considering the simplest system possible: the interaction of two B = 1 Skyrmions.

3 Discs interacting through a contact potential

3.1 Two discs of equal size

Our model is based on taking 2D slices of 3D Skyrmion configurations, taking our inspira-

tion from B = 1 Skyrmion interactions. Figure 3a shows separated B = 1 solutions in the

attractive channel. We can take a 2D slice of this parallel to the y-z plane and parallel to

the x-y plane to give us the systems in figures 3b and 3c. We now treat these 2D objects

as rigid discs, at fixed separation, interacting through a potential which depends only on

their colouring.

To remain in the attractive channel the discs in figures 3b and 3c must, respectively, roll

and slide around each other. For now, we will consider the rolling configuration. Labelling

the discs as 1 and 2 we introduce the angular coordinates as in figure 4. The angles α1 and
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Figure 3. (a) Two B = 1 Skyrmions in the attractive channel. (b) The rolling configuration. (c)

The sliding configuration.

Figure 4. The angles α1, α2 and β.

α2 represent the orientation of the discs with respect to their own axes. These are measured

anti-clockwise and are zero when white points up, as in figure 3b. The coordinate β labels

the orbital orientation of the discs while r is the (fixed) distance between the disc centres.

Each of the coordinates has range 2π but β → β + π also returns the system to the

attractive channel. As such, the potential must be periodic under full rotations of either

disc and under half an orbital rotation. It should also only depend on the colouring: the

simplest choice is a cosine potential, although more complicated potentials with the same

periodicity could be considered. Thus, a classical Lagrangian which describes the system is

L =
1

2
I1α̇

2
1 +

1

2
I2α̇

2
2 +

1

2
µr2β̇2 + k cos (2β − α1 − α2) (3.1)

where I1, I2 are the disc moments of inertia, µ is the reduced mass of the system and k > 0

is the strength of the potential. The argument of the potential measures the difference in

colour at the closest points. The discs are identical so I1 = I2 = I and we may write µr2 in

terms of I by introducing a dimensionless separation parameter d and setting µr2 = 4d2I.
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This simplifies the Lagrangian to

L =
1

2
I
(
α̇2
1 + α̇2

2 + 4d2β̇2
)

+ k cos (2β − α1 − α2) . (3.2)

Classically, the lowest energy solution satisfies 2β − α1 − α2 = 0. This forces the

discs into the attractive channel as if they were cogwheels; the first cog rolls around the

second, fixed cog. If they stay in the attractive channel for all time, we can differentiate

this condition to obtain a relation between velocities: 2β̇ − α̇1 − α̇2 = 0. Introducing the

classical conjugate momenta to the coordinates

s1 = Iα̇1 , s2 = Iα̇2 and l = 4d2Iβ̇ , (3.3)

we can rewrite the above velocity relation as

l − 2d2(s1 + s2) = 0 . (3.4)

Later we will see that this combination of spins and angular momentum has an important

role to play in the quantum picture too.

The Lagrangian (3.2) has two linearly independent continuous symmetries. The first

corresponds to all angles increasing by the same amount. This leads to conservation of

total angular momentum

J = I
(
α̇1 + α̇2 + 4d2β̇

)
= s1 + s2 + l . (3.5)

The other conserved quantity is generated by one disc spinning at the same speed as the

other but in the opposite direction. Since this quantity can be interpreted purely in terms

of the colour fields moving, we label it as the total isospin in analogy with the full Skyrme

model. It has the form

I = I (α̇1 − α̇2) = s1 − s2 . (3.6)

We can take advantage of these symmetries by changing coordinates and reducing the

problem’s degrees of freedom from three to one. Before doing this, we should consider the

discrete symmetries of the system which occur since the configuration space is a 3-torus.

First let us solve the problem for k = 0 where the Hamiltonian becomes that of a free

particle on a 3-torus. After canonical quantisation, the Hamiltonian has the form

Ĥ = − 1

2I

(
∂2

∂α2
1

+
∂2

∂α2
2

+
1

4d2
∂2

∂β2

)
(3.7)

where we have set ~ = 1. The wavefunction has the form

ψfree (α1, α2, β) = ei(s1α1+s2α2+lβ) (3.8)

with corresponding energy

Efree =
1

2I

(
s21 + s22 +

1

4d2
l2
)
. (3.9)
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The quantities s1, s2 and l are the quantum numbers corresponding to the spins and

orbital angular momentum of the free discs. As we are modelling Skyrmions, the discs are

treated as fermions. Thus, the wavefunction picks up a minus sign under full disc rotations:

α1 → α1 + 2π and α2 → α2 + 2π. This means s1 and s2 are both half-integers. The system

is also invariant under β → β+2π and as such l must be an integer. While these quantities

do not remain good quantum numbers when the potential is turned on, they do remain

important due to Bloch’s theorem. This says that there exists a basis of energy eigenstates

of the form

ψ (α1, α2, β) = ei(s1α1+s2α2+lβ)u (α1, α2, β) , (3.10)

where u is periodic on the 3-torus, and has the same periodicity as the potential. This

theorem is generally used in an infinite lattice but we are on a torus. As such s1, s2 and l

have discrete allowed values instead of continuous ones. They are also usually defined up

to a vector in the reciprocal lattice, a discrete lattice in 3D. However we fix their value by

insisting that

u (α1, α2, β) |k=0 ≡ 1 . (3.11)

There is one state per cell in the reciprocal lattice. Thus we can understand s1, s2 and l

as labelling a particular lattice cell. We will see later that energy states from different cells

do not cross when the potential is turned on and as such these labels are good for tracking

the energy states as k increases.

To make progress we must now change coordinates to take advantage of the continuous

symmetries from earlier. We introduce new coordinates (γ, ξ, η). Two of these should give

rise to the conjugate momenta corresponding to J and I. That is

−i ∂
∂ξ

= −i
(

∂

∂α1
+

∂

∂α2
+

∂

∂β

)
(3.12)

−i ∂
∂η

= −i
(

∂

∂α1
− ∂

∂α2

)
. (3.13)

Note that these operators commute with the potential in (3.2). We may define γ to be the

coordinate in the potential. If we also insist on a diagonal quadratic kinetic term in the

Hamiltonian we arrive at a unique coordinate transformationγξ
η

 =

 −1 −1 2
1

2+4d2
1

2+4d2
4d2

2+4d2
1
2 −1

2 0


α1

α2

β

 . (3.14)

This transforms the Hamiltonian to

Ĥ = − 1

2I

(
1 + 2d2

d2
∂2

∂γ2
+

1

2 + 4d2
∂2

∂ξ2
+

1

2

∂2

∂η2

)
− k cos γ . (3.15)

Since the ξ and η contributions are purely kinetic, the wavefunction has the form

ψ(γ, η, ξ) = eiJ ξeiIηχ(γ) . (3.16)
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Moreover, after applying the coordinate transformation, comparison with (3.8) and (3.10)

tells us that

J = s1 + s2 + l , (3.17)

I = s1 − s2 (3.18)

as in the classical equations (3.5) and (3.6), and that

χ(γ) = eiqγγ ũ(γ) , (3.19)

where

qγ =
1

2 + 4d2
(
l − 2d2(s1 + s2)

)
(3.20)

and ũ(γ) has period 2π. Once again, we fix qγ so that ũ|k=0 ≡ 1. From earlier, we find

that I and J can take any integer values. The free system now has the wavefunction

ψfree(γ, η, ξ) = eiJ ξeiIηeiqγγ (3.21)

with corresponding energy

Efree =
1 + 2d2

2d2I
q2γ +

1

(4 + 8d2)I
J 2 +

1

4I
I2 . (3.22)

For fixed J and I, the allowed values of qγ are separated by integers, though the frac-

tional part of qγ depends on d and J . Combining everything, the problem reduces to the

Schrödinger equation

−1 + 2d2

2d2I

d2

dγ2
(
eiqγγ ũ

)
− k cos γ eiqγγ ũ =

(
E − J 2

(4 + 8d2)I
− I

2

4I

)
eiqγγ ũ (3.23)

≡ Eγeiqγγ ũ . (3.24)

This is the Mathieu equation, which has been extensively studied [12]. We will now

consider it with our physical picture in mind. The energy has separated into two parts

— one depends on J and I and has no k dependence. The other only depends on the γ

sector. The potential does not mix states with different I and J . Thus, we can fix these

values and focus on calculating Eγ .

We can understand the system when k is small by using perturbation theory. Note

that the dimensionless small quantity is really kI. The energy, to second order in kI is

Eγ,pert =
1 + 2d2

2d2I
q2γ + (kI)2

d2

(1 + 2d2)I

1

4q2γ − 1
. (3.25)

The most important thing to note is that for fixed J and I, since the allowed values of qγ
are separated by integers, there is a unique state which satisfies 4q2γ − 1 < 0. Thus there is

one state whose energy decreases after perturbation, with |qγ | ≤ 1
2 . We call states which

satisfy this condition energetically favourable. At |qγ | = 1
2 equation (3.25) breaks down

and degenerate perturbation theory must be used. It tells us that the energy spectrum

– 7 –
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Figure 5. How the energy spectrum changes after perturbation. Efree is the spectrum for k = 0;

Epert is the spectrum for small kI. The dots represent an example of an allowed value of qγ . In this

case we take (I,J ) = (0, 1) and d = 1 which gives qγ ≡ 1
3 (mod 1). Note that there is one allowed

state per separated band.

develops a gap at each of these points leaving a separated energy band for |qγ | < 1
2 which

does not touch the rest of the spectrum.

The other degenerate points (|qγ | = 1, 32 , 2. . . ) lead to singularities in the perturbative

energy spectrum at higher orders. Degenerate perturbation theory tells us, once again,

that a gap occurs at each of these points. Thus after perturbation we are left with an

energy spectrum divided into non-touching bands as seen in figure 5. Degenerate points

are identified and as such each band is an integer long. For example, one of the bands

is qγ ∈ [−1,−1
2 ] ∪ [12 , 1]. Since the allowed values of qγ are separated by an integer there

is exactly one state per band. This explains why qγ is a good label: due to the gaps

in the spectrum we can follow a free state as k increases without having to worry about

crossing except at degenerate points. Even there, the uncertainty is only between two

states and most degeneracies only occur for special values of d. As such, we won’t consider

them carefully.

For large k we may use a tight binding (tb) limit. This approximation relies on

the wavefunction being concentrated within each unit cell in γ with negligible overlap.

Then the total wavefunction can be written as a sum of isolated wavefunctions which solve

Schrödinger’s equation within the unit cell. These isolated wavefunctions must be the same

at each site due to the periodicity of ũ. Bloch’s theorem allows for the total wavefunction

to pick up a phase between cells meaning the solution of (3.23) is of the form

eiqγγ ũtb(γ) =
∑
m∈Z

φ(γ − 2πm)e2πiLm (3.26)

where φ is the isolated wavefunction and L is some constant. The periodicity of ũ fixes L

to be qγ . Thus our total, tight binding wavefunction is

ψtb(γ, ξ, η) = eiJ ξeiIη
∑
m∈Z

φ(γ − 2πm)e2πimqγ . (3.27)

We are left to find φ. Since k is large, we assume that the wavefunction is concentrated

near the minimum of the potential. We can expand the potential near this point, which

– 8 –
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gives

− k cos γ ≈ −k
(

1− γ2

2
+
γ4

4!

)
(3.28)

and reduces the Schrödinger equation (3.23) to

− 1 + 2d2

2d2I

d2φ

dγ2
− k

(
1− γ2

2
+
γ4

24

)
φ = Eγφ , (3.29)

where kI is large. If we temporarily ignore the γ4 term in the potential then this truncated

Schrödinger equation is just a simple harmonic oscillator which can be solved by standard

methods. The non-normalised eigenstates are given by

φN (γ) = HN

((
kd2I

1 + 2d2

) 1
4

γ

)
exp

(
−
(

kd2I

4 + 8d2

) 1
2

γ2

)
(3.30)

where HN are the Hermite polynomials. We can then use these to find the energies to O(1)

in k. They are

Eγ,n = −k +
√
k

√
1 + 2d2

d2I

(
N +

1

2

)
− 1 + 2d2

32d2I

(
2N2 + 2N + 1

)
+O

(
1√
k

)
. (3.31)

The O(k) term is from the constant in the potential. The O(
√
k) term is the usual harmonic

oscillator energy, and the O(1) term is the contribution from the γ4 term in the potential,

evaluated by first order perturbation theory. We have ignored all overlap terms between

cells, but these are exponentially suppressed for large enough k.

Due to the lattice structure, the labels we used for the free states continue to label the

states in the tight binding limit. Since there is no crossing for fixed I and J , theN th excited

free state (which has the label qγ where qγ ∈ [−N+1
2 ,−N

2 ]∪ [N2 ,
N+1
2 ]) flows smoothly to the

state labelled by N in the tight binding limit. This is confirmed by numerical calculations

as seen in figure 6, which shows the analytic and numerical energies as a function of k for

the four lowest energy states for fixed (I,J ) = (0, 1). The eigenvalues Eγ are found using

a shooting method.

From the numerical data in figure 6 we see that the analytic expressions (3.25)

and (3.31) have different regions of validity depending on which state we examine. We

can explain this as follows. The large k calculation relied on two approximations: that the

wavefunction is concentrated within a unit cell and that it is concentrated within a region

where we may expand the potential to quartic order. If we satisfy the second constraint

we certainly satisfy the first so we shall examine the second. The expansion (3.28) is, very

roughly, good for |γ| < 2. Thus, we need the wavefunction to be decaying exponentially

there. For large γ, φn is of the form

φN ∼ γNκ
N
4 exp

(
−γ

2

2
κ

1
2

)
= exp

(
N log γ +

N

4
log κ− γ2κ

1
2

2

)
(3.32)
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Figure 6. The energy spectrum for (I,J ) = (0, 1) and d = 1 as k varies. As in figure 5, these values

give qγ ≡ 1
3 (mod 1). Our analytic expressions are represented by the bold lines while numerical

results are displayed as dots. The N th excited free state (and thus the free state in the N th band)

flows to the N th excited state of the tight binding limit.

where we have defined κ = kd2I
1+2d2

. For the wavefunction to be concentrated within −2 <

γ < 2 we require

N log 2 +
N

4
log κ− 2κ

1
2 < −c (3.33)

where c is some positive constant. We see that as N increases we need a larger κ, and

hence kI, for our approximation to be valid, as the numerical results confirm.

The regions of validity of the small k perturbative energy expansion (3.25) can be

explained by calculating the next non-trivial term. It is

k4
(d2I)3

(1 + 2d2)3
20q2γ + 7

(4q2γ − 1)3(4q2γ − 4)
. (3.34)

Away from degenerate points, this goes as k4q−6γ and as such is small for states with large

qγ . This explains why the perturbative energy calculation works for a larger range of k for

states with larger qγ .

The problem has now been solved in both small and large k limits. Thanks to the

lattice structure we can extrapolate the free states to the large k states without fear of

crossing between states. We have found that the energetically favourable states in the large

k limit come from free states which satisfy

|qγ | =
1

2 + 4d2
∣∣l − 2d2 (s1 + s2)

)
| ≤ 1

2
. (3.35)

This is our form of spin-orbit coupling. States with orbital angular momentum and spins

aligned are more likely to satisfy the inequality while they are less likely to if they are anti-

aligned. Note the connection between the classical minimum energy condition (3.4) and

our energetically favourable state condition (3.35). To be more definite let us fix the spins

– 10 –
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Figure 7. The energy spectrum for some low lying states with various values of J , with I = 0 and

s1 = 1
2 . Each is labelled by their (s1, s2, l;J ) value at k = 0. In all but the extreme case, l = −1,

the energetically favoured states have spin and orbital angular momentum aligned.

of the discs be ±1
2 . Then s1 + s2 can be 1, 0 or −1. Take s1 + s2 = 1 first. Energetically

favoured states satisfy

|l − 2d2| ≤ 1 + 2d2 . (3.36)

Thus these states have orbital angular momentum l ∈ [−1, 1+4d2]. As l is usually positive,

spin and orbital angular momentum are usually aligned. The extreme case, l = −1,

corresponds to a degenerate point in the energy spectrum. Here, our labels lose meaning

and we cannot distinguish between the free states (s1, s2, l) = (12 ,
1
2 ,−1) and (s1, s2, l) =

(−1
2 ,−

1
2 , 1) as the potential is turned on. Both of these have spin and orbital angular

momentum anti-aligned. The result is essentially the same for s1 + s2 = −1. Here l is

always non-positive, except for the degenerate state. As this example demonstrates, the

direction of the spins is correlated with the direction of the orbital angular momentum for

most of the energetically favoured states. When s1 +s2 = 0 the condition (3.35) reduces to

|l| ≤ 1 + 2d2 . (3.37)

This time there is no spin-orbit coupling as the orbital angular momentum has no preferred

direction. Figure 7 displays how the energy spectrum changes as k is turned on for the

lowest energy states which satisfy I = 0 and s1 = 1
2 . We focus on these states as this is

where the spin-orbit force is present in our model. Note that states with equal |l| in the

free case become non-degenerate for positive k, just as they do in traditional spin-orbit

coupling. For this figure, we take I = 1, d = 0.9, with d not equal to 1 so that we avoid

certain degeneracies.

In the large k limit only those states which came from free states with |qγ | ≤ 1
2 are

contenders for the ground state. These are then ordered by the I,J energy contribution.

This limit is exactly rigid body quantisation and in the strict limit the wavefunction is a

delta function, the system completely fixed in the attractive channel. As we are studying
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Figure 8. A small disc orbiting a large disc.

a simplified model, we cannot fit the strength of k to real data. However we know that

the Skyrmions do interact strongly but that they are not rigidly stuck together. Thus, we

expect the true strength of k to be between the two limits we understand analytically. This

is also seen in the traditional spin-orbit force: the coupling is strong enough that it has

an effect on the energy spectrum but weak enough that an understanding of the spectrum

without the force is necessary too.

We may do an analogous calculation for the sliding configuration from figure 3c. The

calculation is very similar to the one above and the main physical consequence is that the

energetically favoured states come from free states with small s1 − s2. Thus, the sliding

configuration couples the spins. This is what is required for the tensor force — another

key ingredient in nucleon-nucleon interactions. Thus, our model unifies the spin-orbit force

and the tensor force while giving them both a classical microscopic origin. In the full 3D

model both sliding and rolling motion can occur simultaneously and both need to be taken

into account at the same time.

3.2 Unequal discs

Consider a generalisation of the system. Now a small disc orbits a larger one as seen in

figure 8, with small and large discs labelled 1 and 2 respectively. Let the colour field repeat

n times along the edge of the large disc. This is a model for a nucleus with baryon number

one more than a magic number, with a single nucleon orbiting a core. The core is generally

a boson and this is how we treat the large disc. Defining our variables analogously to

the variables in the previous section and using the initial configuration as in figure 8, the

Lagrangian (3.2) is modified to

L =
1

2
I1α̇

2
1 +

1

2
I2α̇

2
2 +

1

2
µr2β̇2 + k cos ((n+ 1)β − α1 − nα2) . (3.38)
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The classical conserved quantities are now

J = I1α̇1 + I2α̇2 + µr2β̇ = s1 + s2 + l , (3.39)

I = nI1α̇1 − I2α̇2 = ns1 − s2 . (3.40)

We are using the same notation as before: l is the orbital angular momentum while si is

the spin of disc i. The classical minimum energy solution is when the discs are locked in

the attractive channel and thus act like cogwheels. This gives a condition on the momenta

of the system as follows:

I1I2(n+ 1)l − I2µr2s1 − I1µr2ns2 = 0 . (3.41)

We can change coordinates so that the potential depends on one angle, γ, while the

others are conjugate to J and I. Further, we can insist that the Hamiltonian splits into

two independent sectors (one depending only on J and I, the other determined purely by

the γ sector) as we did in the previous section. Once again, this gives a unique coordinate

transformationγξ
η

 =

 −1 −n n+ 1
I1I2(n+1)

C
I1I2n(n+1)

C
µr2(I2+I1n2)

C
I1(I2+I2n+µr2n)

C − I2(I1+I1n+µr2)
C

µr2(I2−I1n)
C


α1

α2

β

 (3.42)

where C = I1I2(n+ 1)2 + I1µr
2n2 + I2µr

2. This, combined with Bloch’s theorem gives us

the form of the wavefunction after canonical quantisation. It is

ψ(γ, η, ξ) = eiJ ξeiIηeiqγγw̃(γ) . (3.43)

where w̃ has period 2π and qγ = (I1I2(n+ 1)l − I2µr2s1 − I1µr2ns2)C−1. Since the small

disc is a fermion, s1 must be a half-integer while s2 and l are both integers. Once again,

the allowed values of qγ are separated by an integer. The Schrödinger equation is now

− C

2I1I2µr2
d2

dγ2
(
eiqγγw̃

)
− k cos γ eiqγγw̃ = Eγe

iqγγw̃ , (3.44)

where the energy of the system is

E = Eγ +
I1n

2 + I2
2C

J 2 +
I2 − I1n

C
IJ +

I1 + I2 + µr2

2C
I2 (3.45)

≡ Eγ + EI,J . (3.46)

This is simply equation (3.23) with an adjusted mass. Thus we may apply all our anal-

ysis from the previous section to this problem; namely we can reuse the equations (3.25)

to (3.31) with the replacement

1 + 2d2

d2I
→ C

I1I2µr2
. (3.47)
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The physical consequence is that when k is increased, the energetically favourable

states have small

qγ =
1

I1I2(n+ 1)2 + I1µr2n2 + I2µr2
(
I1I2(n+ 1)l − I2µr2s1 − I1µr2ns2

)
. (3.48)

Note the relationship between this and the classical condition (3.41).

To gain more insight we must estimate the moments of inertia. First we assume that

the circumference of the large disc is n times the circumference of the small one. Then we

use the Skyrmion inspired approximation that the radius of solutions with baryon number

B scales as B
1
3 and that their mass scales linearly with B. Finally, we assume that the

discs are touching. These give us I2 and µr2 in terms of I1 as follows:

I2 = n5I1 , µr2 =
2n3

n3 + 1
(n+ 1)2I1 . (3.49)

It follows that
C

I1I2µr2
=

3

2I1

n3 + 1

n3
(3.50)

and

qγ =
1

3(n+ 1)

(
l − 2n3

n2 − n+ 1
s1 −

2

n(n2 − n+ 1)
s2

)
. (3.51)

In (3.41) we saw that the classical minimum energy solution obeyed qγ = 0. If we also

demand that the core is inert (s2 = 0) then l scales as 2ns1 for large n. This gives a natural

explanation why orbital angular momentum increases as the size of the core increases, a

relationship obeyed by the first few magic nuclei.

We also see that if s2 is non-zero, its contribution does not have much effect on the

value of qγ ; the most important contribution is from the first two terms. Naively this looks

promising: after quantisation, energetically favoured states obey |qγ | ≤ 1
2 and this can be

achieved by having s1 and l aligned. However, the number of energetically favoured states

is rather large. To be concrete, let us fix s1 = 1
2 and s2 = 0 from now on. Then

qγ =
1

3(n+ 1)

(
l − n3

n2 − n+ 1

)
. (3.52)

To satisfy |qγ | ≤ 1
2 we require

l ∈
[
− n3 + 3

2(n2 − n+ 1)
,

5n3 + 3

2(n2 − n+ 1)

]
. (3.53)

Thus, the restriction to energetically favourable states is in fact not very limiting and the

range of allowed values of l grows with n. The centre of this range corresponds to the

classical minimum energy solution, qγ = 0. In the k = 0 limit the states are ordered by |l|.
As k increases we become more interested in the energetically favoured states. These are

ordered, in the extreme large k limit, by EI,J . In terms of l this quantity is

EI,J =
1

24I1n3(n3 + 1)

(
4l2
(
n2 − n+ 1

)2
+ 4ln3

(
n2 − n+ 1

)
+ n3

(
n3 + 3

))
=

1

24I1n3(n3 + 1)

(
4(n2 − n+ 1)2

(
l +

n3

2(n2 − n+ 1)

)2

+ 3n3

)
. (3.54)
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Figure 9. Energy for a variety of low lying states of unequal discs with n = 3, as a function of k.

Here all states with s1 = 1
2 , s2 = 0 and l ∈ [−4, 4] are shown. For large |l| the states with s1 and l

aligned are favoured. However for small |l|, the opposite is true.

This means that the states are ordered energetically by the magnitude of |l + n3

2(n2−n+1)
|.

From comparison with (3.53) we see that the state with minimal EI,J lies within the

energetically favoured range of l values. Thus the ground state of the system in the large

k limit has spin and orbital angular momentum anti-aligned as l is negative, going against

our classical intuition.

Let us consider n = 3 in detail to illustrate these points more concretely. Here, there

are twelve energetically favoured states, with l ∈ [−2, 9]. Two of these have l and s1 anti-

aligned and these two are the lowest energy states in the large k limit. However, most of

the energetically favoured states do have spin and orbital angular momentum aligned. The

energy, as a function of k, of the states with l ∈ [−4, 4] is plotted in figure 9.

4 Conclusions

The Skyrme model provides a classical microscopic origin for the spin-orbit force based on

the classical pion field structure. In this paper, we have constructed a model of interacting

Skyrmions based on discs interacting through a contact potential which depends only on

their relative colouring. The classical behaviour resembles a pair of cogwheels and our

quantisation of the model has shown that most low energy states have their spin and

orbital angular momentum aligned. However, the ground state does not.

To make any real predictions from the model we must extend it to three dimensions.

This is considerably more difficult as there will be three relative orientations on which the

potential depends, instead of one. There is also work to be done in the Skyrme model

itself. Dynamical solutions of the model which look like a B = 1 Skyrmion orbiting a core

have not yet been found.
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