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1 Introduction

By employing the holomorphic arguments of Intriligator, Leigh, and Seiberg [3], one can

show that the full non-renormalization theorems of N = 1 supersymmetry apply unaltered

to theories with Lorentz violating (LV) interactions of either the Berger-Kostelecky (BK)

type [1] or the Nibbelink-Pospelov (NP) type [2]. The essential point of the proof is that

Lorentz symmetry plays no direct role in the holomorphy argument. As long as the normal

rules of N = 1 SUSY are followed when constructing the model, and as long as the LV

interaction creates no new anomalies or other surprises, then the superpotential will be

protected against perturbative quantum corrections, and under appropriate conditions an

exact expression for the quantum effective superpotential can be obtained, using now-

standard arguments from [3].
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The rest of the paper is organized as follows: first, we review the general holomorphy

arguments for non-renormalization in supersymmetric theories. Next we examine BK-type

theories, demonstrating that they satisfy the conditions of Seiberg’s holomorphy argu-

ment. Third, we show that BK-type theories require additional constraints on the values

of the LV coupling constant in order for the positive energy theorem to hold. Next, we

comment briefly on NP-type theories, explaining how holomorphy arguments more or less

automatically prove that superpotential LV couplings and potentially divergent FI terms

are protected against perturbative corrections. Holomorphy arguments go one step farther,

and prove that the NSVZ β-function (in holomorphic coupling) remains subject only to

one-loop renormalization and that NP-type LV couplings that enter into the gauge-kinetic

function are immune to perturbative renormalization (but still subject to wavefunction

renormalization). Finally, we summarize and conclude.

2 Non-renormalization of Berger-Kostelecký models by holomorphy

2.1 Review of Seiberg’s proof by holomorphy in standard supersymmetric

theories

The arguments of Seiberg et al. [3] hinge on three key points: 1) respect of symmetries,

2) holomorphy of the superpotential, and 3) the fact that holomorphic functions are com-

pletely determined by their singularities and asymptotic behavior [9]. All tree-level cou-

plings in the superpotential are treated as auxiliary fields, or fully-fledged chiral superfields

that just happen to be non-dynamical. A coupling that explicitly breaks a global symmetry

of the rest of the theory in turn provides a selection rule constraining quantum corrections:

since symmetry-breaking terms in the quantum effective potential must ultimately descend

from tree-level breaking terms, we can employ the usual “that which is not forbidden is

compulsory” algorithm simply by pretending that the coupling itself transforms in just

the right way to preserve the broken symmetry. This provides a simple check on whether

symmetry-breaking terms in the effective superpotential are consistent with the tree-level

breaking terms. This is how Seiberg’s prescription respects all symmetries, even the broken

ones [3, 9]. Lorentz-violating theories themselves almost invariably employ that technique

for the LV couplings [1, 5]. In much of the Lorentz-violating literature, these transforma-

tion properties of the LV couplings are dubbed “observer Lorentz invariance.” See [4, 5] for

detailed discussions. In the recent work of [27], native to the AdS/CFT correspondence,

this phenomenon is referred to more simply as diffeomorphism invariance.

Holomorphy of the superpotential is a proxy condition for invariance under supersym-

metry, given that one is constructing a theory using the formalism of superfields. In some

sense, this is just another symmetry to respect, but this symmetry is powerful enough to

deserve special mention. Supersymmetry is so restrictive that it enables divergence can-

cellations in 1-loop diagrams in the traditional, pre-Seiberg proofs of non-renormalization.

Part of Seiberg’s great insight was that holomorphicity could be taken literally and was

every bit as restrictive mathematically as supersymmetry invariance is physically. This

leads to point 3, which is the punchline: respect of symmetries makes it possible to write
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down the most general holomorphic function of couplings and superfields for the superpo-

tential. Many coefficients are fixed outright by the requirement of holomorphy. Still more

coefficients can be obtained by analyzing the theory in some appropriate limit, since holo-

morphic functions are completely determined by their singularities and their asymptotics.

Often these constraints will completely determine the superpotential [3, 9].

2.2 Berger-Kostelecky Lorentz violation

Even spacetime symmetries could be viewed by a model-builder as “just another set of sym-

metries.” In the BK-type theories, spacetime symmetries are altered by broken Lorentz

invariance, and the superalgebra is modified [1, 6]. In NP-type theories, spacetime symme-

tries are altered, but the superalgebra is not [2, 7]. In both cases, the theory can still be

described in terms of superfields, and the superpotential is a holomorphic function of said

superfields. In the BK-construction these superfields are not necessarily the same as the

chiral and vector superfields used in traditional SUSY. Whether or not the superalgebra is

modified, invariance under the (possibly modified) supersymmetry is still encoded in the

holomorphy of the superpotential.

Berger and Kostelecky begin with an ordinary Wess-Zumino model, then add Lorentz-

violating interactions to the Kähler potential.1 They then show that the resulting La-

grangian is almost invariant under ordinary supersymmetry but becomes completely in-

variant (up to total derivative terms) under slightly modified SUSY transformations [1].

Fermion and boson propagators are modified in the Lorentz-violating theories, but they

retain the parallel structure which is essential for brute-force proofs of divergence cancella-

tion in traditional SUSY theories, leading [1] to very plausibly assert that those divergences

should still cancel. Berger and Kostelecky construct modified chiral superfields for their

LV SUSY theories, which we will exploit to concisely prove that Berger and Kostelecky

were correct about the non-renormalization theorem and divergence cancellation.

Berger and Kostelecky construct LV theories using Majorana spinors following the

notation conventions of Wess and Bagger’s seminal work [14]. We begin by first rewriting

in the slightly more modern notation of [15] and writing an LV Wess-Zumino model for a

chiral multiplet with Weyl spinors rather than Majorana. Our chiral superfield for normal

SUSY theories is

Φ = φ(x) + iθ†σ̄µθ∂µφ(x) +
1

4
θθθ†θ†∂µ∂

µφ(x) (2.1)

+
√
2θψ(x)− i√

2
θθθ†σ̄µ∂µψ(x) + θθF (x) .

The usual Wess-Zumino Langragian in superfield form is given by

LWZ =

∫

d4θ Φ∗Φ+

∫

d2θ W (Φ) + c.c. (2.2)

1While [1] does not use this term explicitly, they do point out that their LV interactions do not affect

the superpotential. This is not obvious, since their construction involves modifying the superfields rather

than adding an LV interaction constructed out of superfields. We clarify this point in section 2.2.
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with

W (Φ) =
M

2
ΦΦ +

g

3
ΦΦΦ. (2.3)

More general theories could be constructed by promoting W to an arbitrary holomorphic

function of Φ and replacing Φ∗Φ with a more general Kähler potential. To facilitate contact

with the work of Berger and Kostelecky, we expand the basic Wess-Zumino lagrangian as

LWZ = −∂µφ∗∂µφ+ iψ†σ̄µ∂µψ + F ∗F (2.4)

+

(

−1

2
Mψ2 +MφF − 1

2
gφψψ

)

+ c.c.

In the conventional picture (i.e. without using superfields), Lorentz-Violating interac-

tions are added in the form of the following term, LLV [1]

LLV = 2kµν∂
µφ∗∂νφ+ kµνk

µ
ρ (∂

νφ∗∂ρφ) (2.5)

+
i

2
kµνψ

†σ̄µ∂νψ,

which can also be obtained from the original Lagrangian by replacing the derivative operator

with a so-called “twisted” derivative operator [6]:

∂̃µ =
(

δ α
µ + k α

µ

)

∂α. (2.6)

This operator is also denoted by ∇m in [18]. Indeed, many quantities in conventional

theories can be extended to BK theories by the replacement ∂µ → ∂̃µ and “twisting” all

vector indices by the δ α
µ + k α

µ operator used in (2.6) [6]. This “folk theorem” extends to

superfields, as we see when looking at the LV version of the chiral superfield [1]:

Φ = φ(x) + iθ†σ̄µθ (∂µ + kµα∂
α)φ(x) +

√
2θψ(x) (2.7)

+
1

4
θθθ†θ† (∂µ + kµα∂

α)
(

∂µ + kµβ∂β

)

φ(x)

− i√
2
θθθ†σ̄µ (∂µ + kµα∂

α)ψ(x) + θθF (x).

Building the LV interaction terms into a change of the superfield itself obfuscates the

nature of the LV interaction as belonging to the superpotential or the Kähler potential.

In [1] it is noted in passing that the LV interaction does not affect the superpotential. To

understand this, note that the LV coupling kµν appears only in terms including both θ

and θ†; therefore, since the superpotential will only be integrated
∫

d2θ or
∫

d2θ†, kµν will

never appear in the action in a term born of the superpotential. Thus, the LV interactions

are best thought of as part of the Kähler potential in the BK-construction.

When the full Lagrangian for the Lorentz-violating Wess-Zumino model with one chiral

multiplet is written by adding up the various pieces of the Lagrangian (equations (2.5)

and (2.4)) in conventional notation or by using the normal superfield Lagrangian (2.2) but

with the modified LV superfields, the resulting theory is not quite invariant under normal

SUSY transformations [1]. If one modifies the superalgebra and SUSY transformations by

the same prescription of “twisting” the derivative operator, then the modified Lagrangian

– 4 –
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is invariant (up to total derivative) under the modified SUSY transformations [1]. In

summary, the Lagrangian L = LWZ + LLV is invariant under SUSY generators Q and Q†

with superspace representations

Q = i∂θ − σµθ†∂µ − kµνσ
µθ†∂ν (2.8)

Q† = i∂θ† − σ̄µθ∂µ − kµν σ̄
µθ∂ν (2.9)

and anti-commutation relation:

{

Q,Q†
}

= 2σµ∂µ + 2kµνσ
µ∂ν , (2.10)

where σ0 and σ̄0 are each the 2 × 2 identity matrix, σi is the ith Pauli spin matrix,

and σ̄i = −σi. We will strive to avoid the need for tracking spinor indices as much as

possible, but when unavoidable we follow [15]. In brief, undotted Greek indices from the

beginning of the alphabet (α, β, . . .) denote left-handed Weyl spinor indices while their

dotted counterparts denote right-handed Weyl spinor indices (α̇, β̇, . . .). Spinor indices

are implicitly raised and lowered as needed with the two-index Levi-Civita ε. Our only

exception to leaving spinor indices implicit is the gauge superfield strength, Wα, which we

write out to distinguish from the superpotential, W .

There are some trivial but potentially confusing differences in notation. Berger and

Kostelecky use θ and θ̄ where we use θ† and θ, respectively. Invariance under the modified

SUSY transformations proceeds the same with Majorana or with Weyl spinors, so we do

not repeat the proof of invariance from [1]. Similar constructions exist for supersymmetric

gauge theories, and we will quote results from these theories only as needed. The main

difference between the spinor conventions of [15] and [1] is that the former removes the

need for awkward-looking left- and right-handed projection operators involving γ5 by work-

ing with Weyl-spinors so that undaggered spinors are implicitly left-handed and daggered

spinors right-handed.

The BK-construction for SUSY gauge theories is constructed similarly [6]. When writ-

ing out the vector superfield in terms of component fields, simply “twist” each spacetime

index on a field or derivative operator with the
(

δ α
µ + k α

µ

)

operator. Recasting the results

of [6] with Weyl-spinors instead of Dirac we get

V = θ†σ̄µθ
(

δ ν
µ + k ν

µ

)

Aν + θ†θ†θλ+
1

2
θθθ†θ†D (2.11)

Wα = −1

4
D†D†DαV, (2.12)

where the supercovariant derivatives are also twisted by the δ + k operator: Dα = ∂θα −
i
(

σµθ†
)

α

(

δ ν
µ + k ν

µ

)

∂ν . The pure gauge Lagrangian is then the usual superspace integral

ofWαW
α. This can be generalized to the non-Abelian case in the usual way. We emphasize

that in this construction, the LV interactions live entirely in the gauge-kinetic function, in

contrast to the original BK-model with only chiral multiplets, where the LV interaction

was implicitly part of the Kähler potential.

– 5 –
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2.3 Non-renormalization in Berger-Kostelecky theories

As discussed above, supersymmetric BK theories can be constructed out of modified super-

fields with a superpotential which is an arbitrary holomorphic function of those modified

superfields [1], as with ordinary SUSY. Holomorphy of the superpotential now encodes

invariance under the modified superalgebra. Seiberg’s holomorphy arguments [3, 9] then

apply in full, as they don’t reference a specific form of SUSY but more generally what-

ever (super)symmetry is “proxied” by holomorphy. Non-supersymmetric Lorentz-violating

theories have been shown to be renormalizable in cases of pure gauge [12], in QCD [11],

and in the electroweak sector [10]. Additionally, the renormalization of LV φ4 theory has

been worked out to all orders, and renormalization of LV Yukawa theories has been solved

to one-loop order [17]. We conclude from this litany of examples that nothing intrinsic to

LV interactions impedes the standard program of renormalization. Furthermore, BK-type

LV interactions are not chiral in nature and do not introduce any additional fermions, so

they are not expected to produce new anomalies. We therefore conclude that the results

of [3] apply to supersymmetric BK theories. It is worth noting that a brute force calcu-

lation using supergraphs has been carried out in [13] for BK theories with diagonal kµν ,

confirming the original suspicions of [1] and proving non-renormalization in the special case

of diagonal kµν .

Our holomorphy argument goes further and shows that all the non/renormalization

results of traditional SUSY apply to all supersymmetric BK theories: the superpotential

is not renormalized at any order in perturbation theory, although it may be subject to

renormalization through instantons or other non-perturbative effects. Additionally, such

non-perturbative renormalization can often be computed using the methods of [3]. With

Wess-Zumino models, such as studied in [1], it is quite well known that Seiberg’s arguments

prove the tree-level superpotential is exact. We have shown that this continues in the

presence of LV interactions, and this proof opens the door to further Seiberg-style analysis

of BK-type LV extensions to the MSSM.

The non-renormalization theorem goes beyond the LV Wess-Zumino model. Vector

superfields for BK-type theories were constructed in [6]. As with chiral superfields in [1],

the prescription was to “twist” the derivative operator and all space-time indices. Also as

with chiral superfields, the LV coupling appears only in terms with both θ and θ†, so the LV

interaction is most properly thought of as part of the Kähler potential. The holomorphy

argument is identical to the chiral superfield case. Furthermore, since practically anyN = 1

SUSY theory can be built with a collection of vector and chiral superfields with various

interactions, our proof of non-renormalization for BK-type theories extends quite broadly.

It is important to note, however, that the LV coupling, as part of the Kähler potential in

BK-type theories, is not protected against renormalization.

2.4 Robustness against coordinate transformations

A cautionary note has been pointed out numerous times [2, 6] that the BK-type LV inter-

actions can be absorbed into the metric by the coordinate transformation xµ′ = xµ−kµνxν .
It is argued in [6] that this coordinate transformation causes Lorentz-violation to manifest

– 6 –
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itself in peculiarities of the coordinate system, namely non-orthogonality. Nevertheless,

BK-type LV interactions could be realized outside the metric in a different setting. Any

theory with extended SUSY and multiple sectors, one with BK-type LV and one respecting

Lorentz symmetry, would be immune to complete removal of the LV interaction. In such

a setup, the coordinate transformation to undo the LV interaction in one sector would

reintroduce it in the other sector. A simple demonstration is N = 2 gauge theory with

one hypermultiplet where BK-type LV interactions exist for only one of the two N = 1

chiral multiplets that comprise hypermultiplet. The BK-type LV interaction would par-

tially break the SUSY down to N = 1, but attempting to undo the LV interaction with a

coordinate transformation would then swap the roles of the two multiplets. Similar con-

structions have been outlined for N = 1 supersymmetry in [6] and in [13] where the two

sectors interact only via soft SUSY-breaking terms. Analogous constructions could be used

to partially break N = 4 to either N = 2 or N = 1.

We emphasize that using BK-type LV interactions to partially break extended SUSY

results in a theory with manifest Lorentz violation. Furthermore, the details of both non-

renormalization and energy positivity are largely unchanged in the extended SUSY sce-

nario. Thus, we can view the originalN = 1 Berger-Kostelecký construction as a laboratory

for exploring universal features of this class of Lorentz violating supersymmetric theories.

We speculate that Seiberg’s seminal results [20] for N = 2 and N = 4 theories2

will also continue to hold (in a sense) for BK-type theories. These theories with Lorentz

violation in extended SUSY were first constructed in [6]. There are countless examples in

the literature of theories that break N = 4 → N = 2, N = 4 → N = 1, or N = 2 → N = 1

where the broken theory inherits many useful properties from the unbroken theory, so

partial breaking BK-type LV interactions should likewise inherit many features from the

unbroken theory. Our reasons are twofold: first, analyticity/holomorphy is the centerpiece

of Seiberg’s arguments, and we have shown that these arguments are unchanged by BK-

type Lorentz violation. Second, as discussed above, uniform BK-type Lorentz violation

is equivalent to a change of coordinates, and it does not seem credible that a change of

coordinates, however peculiar and non-orthogonal, could introduce running couplings into

a theory well known to be exactly conformal. This would be tantamount to an anomaly in

the rescaling symmetry, which does not exist.

One might expect that an LV theory could develop unusual behavior rendering the

powerful methods of [3] inapplicable, but such concerns prove groundless. For example, LV

theories generically exhibit some form of instability at Planck-scale energies. Fortunately,

these are reasonably well understood in the LV literature and can usually be dealt simply

by taking the LV theory to be an effective theory with a UV-completion where Lorentz

symmetry is restored at some sub-Planckian scale [5]. As long as the cutoff scale for the

effective theory is sufficiently below the scale where instabilities develop, Lorentz symme-

try is restored long before any instability can develop, as has been thoroughly explained

in [5], for example. A second possibility is that modifying the superalgebra will render it

inconsistent. For BK-type theories, this is not the case, but care must be taken lest the

energy positivity theorem be destroyed.

2The so-called analytic “prepotential” of N = 2 that determines all the dynamics is only renormalized

to one-loop order. The N = 4 theory is exactly conformal.
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2.4.1 Extended supersymmetry and Berger-Kostelecký Lorentz violation

We begin with a very brief review of N = 2 SUSY. For more detailed development, the

reader is directed to one of the many excellent review articles available on the subject,

such as [25, 26]. This version of supersymmetry has 4 fermionic generators, Qa
α, where

α is a spinor index, and a simply labels the SUSY generators. After appropriate unitary

transformations have been made to skew-diagonalize the central charges, the algebra of the

supercharges is

{

Qa
α, Q̄bβ̇

}

= 2 (σµ)αβ̇ Pµδ
a
b

{

Qa
α, Q

b
β

}

= 2
√
2ǫαβǫ

abZ (2.13)
{

Q̄aα̇, Q̄β̇b

}

= 2
√
2ǫα̇β̇ǫabZ.

An N = 2 vector multiplet can be thought of as a standard N = 1 vector multiplet

and a standard N = 1 chiral multiplet in the same representation of the gauge group. The

full set of supersymmetry transformations can be deduced from the superalgebra (2.13)

above, but an oversimplified heuristic is that the extra supersymmetry generators mix

fields between the two N = 1 multiplets. We will use the same notation for N = 2 as

we do for N = 1, with Φ denoting the N = 1 chiral superfield, V denoting the N = 1

vector superfield, and components denoted φ(x) for the complex scalar field, ψ(x) for the

Weyl fermion, F (x) for the chiral auxiliary field, Aµ for the real vector field, λ for the Weyl

fermion, and D for the vector auxiliary field.

The N = 2 vector multiplet Lagrangian can be similarly extended from N = 1

Lagrangians. A general (not necessarily renormalizable) Lagrangian for supersymmetric

gauge theories can be written as

L =

∫

d4θK
(

Φ, Φ̄
)

+

(∫

d2θ

(

1

4
WαWα +W (Φ)

)

+ c.c.

)

, (2.14)

where K
(

Φ, Φ̄
)

is a general function of the chiral superfield, Φ, and its complex conjugate,

W (Φ) is a holomorphic function of Φ, and Wα is the gauge field-strength chiral superfield,

given by Wα = −1
4D

†D†
(

e−VDαe
V
)

. If we rescale all the fields so that the vector kinetic

term is 1
4g2

Tr FµνF
µν , set W (Φ) = 0 and K

(

Φ,Φ†
)

= Φ†e−2V Φ, then the Lagrangian is

manifestly N = 2 supersymmetric.

After eliminating the auxiliary fields in favor of their equations of motion, the N = 2

Lagrangian has the following form, expanded out in component fields [26]:

L =
1

g2
Tr

(

−1

4
FµνF

µν + g2
θ

32π2
FµνF̃

µν + (Dµφ)
†Dµφ− 1

2

[

φ†, φ
]2

(2.15)

− iλσµDµλ̄− iψ̄σ̄µDµψ − i
√
2[λ, ψ]φ† − i

√
2
[

λ̄, ψ̄
]

φ

)

,

– 8 –
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where Dµ is the (not super) gauge covariant derivative. To add LV interactions, we follow

the prescription of [1] and “twist” any derivative that acts on φ or ψ: ∂µ → ∂µ + k ν
µ ∂ν .

L =
1

g2
Tr

(

−1

4
FµνF

µν + g2
θ

32π2
FµνF̃

µν − iλσµDµλ̄

+
(

Dµ + k ν
µ Dν

)

φ†
(

Dµ + k ν
µ Dν

)

φ− 1

2

[

φ†, φ
]2

− iψ̄σ̄µ(Dµ + k ν
µ Dν)ψ

− i
√
2[λ, ψ]φ† − i

√
2
[

λ̄, ψ̄
]

φ

)

, (2.16)

where we have organized the equation to emphasize the N = 1 supersymmetries. The first

line of (2.16) contains all the terms for the Lagrangian of an N = 1 vector multiplet, the

second anN = 1 chiral multiplet with LV interactions, and the third line contains the terms

needed to combine the two multiplets into N = 2 SUSY if LV were not present. It is easy

to see that this preserves gauge invariance by writing the twisted derivative as a product:

Dµ + k ν
µ Dν =

(

δ ν
µ + k ν

µ

)

Dν . As in [1] this almost preserves ordinary SUSY. In the

N = 1 [1] and the unbroken N = 4 theories [6], we modify the superalgebra (suppressing

spinor indices):
{

Qa, Q̄b

}

→ 2δab
(

δ ν
µ + k ν

µ

)

σµPν . (2.17)

To implement partial SUSY breaking by LV, we promote k ν
µ to an operator that simply

multiplies fields φ and ψ (the N = 1 chiral multiplet) but annihilates Aµ and λ (the N = 1

vector multiplet). Invariance of the first two lines of (2.16) is obvious. Invariance of the

third line is more subtle but can quickly be shown by using the fact that the LV coupling

only appears in the variation of ψ and is imaginary, so it will show up with opposite sign

in the two terms.

An alternative way to see that (2.16) preserves N = 1 SUSY is to write the Lagrangian

using superfield notation:

L =
1

8π
Im Tr

[

τ

∫

d2θ WαWα + 2

∫

d4θ Φ†e−2V Φ

]

, (2.18)

as demonstrated in, for instance, [26]. The LV interaction is hidden within the superfields

themselves using the construction of [1], so the Lagrangian appears the same as the non-

LV version. However, this obscures the fact that the full N = 2 SUSY of (2.18) is broken

down to N = 1. This is manifest in the on-shell component form (2.16), where the kinetic

term of ψ is modified by the LV interaction while that of λ is not. A useful heuristic

from [26] for identifying the extra SUSY transformations of N = 2 is to make the switch

λ → ψ, ψ → −λ in the SUSY transformation relations. It is clear from this that (2.16)

does not satisfy full N = 2.

2.4.2 A manifestly non-trivial theory with BK-type Lorentz violation

We wish to reemphasize the most salient features of the theory described by (2.16). It is

an N = 1 SUSY gauge theory with an adjoint chiral multiplet where LV interactions affect

only the chiral sector. The coordinate transformation that would normally absorb the LV
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interaction into the metric in a theory with only a vector multiplet [6] or with only chiral

multiplets [1] will here have the effect of moving the LV interaction from the chiral sector

to the vector sector. Similar constructions are possible in N = 4 super Yang-Mills or in

N = 2 theories with hypermultiplets.

Since the bulk of this paper addresses non-renormalization and energy positivity, we

emphasize that the extra structure of theories with extended supersymmetry does not

impair any of the N = 1 arguments. In fact, spurion analysis and constraints such as

holomorphy and R-symmetry will likely introduce additional constraints on a theory using

BK-type LV interactions to partially break extended SUSY. However, those constraints

will depend on the particulars of the model in question. In this paper we focus only on

model-independent results that apply to any model in the BK class. As such, we will work

in the N = 1 theory, even though the theory is likely trivial, so as to avoid introducing

any model-specific features into our results.

3 Energy positivity in the BK construction

Examination of the modified superalgebra relation (2.10) reveals the concern at once. The

operator
{

Q,Q†
}

is positive definite by construction. In traditional SUSY this guarantees

energy positivity by well known arguments. With the modified superalgebra of BK-type

Lorentz violation, positive definiteness of
{

Q,Q†
}

can actually require negative energy if

the components of kµν are too negative. By inspection one can see that the choice k00 < −1,

for example, will require negative energy.3 Clearly the components of kµν must be subject

to additional constraints if the positive energy theorem is to survive.

It is worth noting that ambiguities arise when defining the Hamiltonian for the Dirac

equation in the presence of Lorentz violation, and that it is necessary to perform a

spinor-field redefinition in order to have a hermitian Hamiltonian for Dirac particles [5].

Fortunately, the redefinition of what is meant by the “Hamiltonian” and “energy” does

not impact this discussion, since the questions here relate to p0, the space-like pi, and the

LV coupling kµν . The phrase “energy positivity” describes the p0 ≥ 0 condition, and even

after redefining spinor fields, it remains true that p0 is equal to the Hamiltonian.

In this section we take the expectation value of
{

Q,Q†
}

for various generic spin-0

and spin-1/2 states and explore the constraints on kµν necessary to preserve the positive

energy theorem.

3.1 Constraint from spin 1/2 particles at rest

Taking the expectation value of
{

Q,Q†
}

for a generic spin 1/2 state, |ψ〉, yields the following
modified positive energy condition:

0 ≤ 〈ψ|
(

σµ(pµ + k ν
µ pν

)

|ψ〉 (3.1)

We are interested in constraints on kµν such that (3.1) guarantees p0 ≥ 0, i.e. energy

positivity. We will evaluate this with the assumption that |ψ〉 is a generic but normalized

3This was noted earlier in [18]. The LV coupling in that case was restricted to the special form kµν =

αuµuν , where uµ was a 4-vector of norm ±1 or 0.
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two-component spinor, parametrized as |ψ〉 =
(

a

b

)

. This yields

0 ≤ (p0 + k α
0 pα) + (p3 + k α

3 pα)
(

|a|2 − |b|2
)

+ 2 (p1 + k α
1 pα)Re(a

∗b) + 2 (p2 + k α
2 pα) Im(a∗b).

(3.2)

When evaluated in the rest frame of the particle, the inequality becomes

0 ≤ p0

(

1 + k 0
0 + k 0

3

(

|a|2 − |b|2
)

+ 2k 0
1Re(a

∗b) + 2k 0
2 Im(a∗b)

)

.
(3.3)

This expression does not lend itself easily to analysis and completely obscures the rotational

symmetry of our theory (when k ν
µ is taken to transform appropriately). To simplify this ex-

pression, we note that the terms of (3.3) involving the k 0
i have the structure of a dot prod-

uct of two 3-vectors. Define ~k =
(

k 0
1 , k

0
2 , k

0
3

)

and ~a =
(

2Re(a∗b), 2Im(a∗b), |a|2 − |b|2
)

.

The vector ~a has unit norm since spinor |ψ〉 is normalized. With this replacement, equa-

tion (3.3) becomes manifestly invariant under rotations:

0 ≤ p0

(

1 + k 0
0 + ~k · ~a

)

. (3.4)

We can now more easily explore different scenarios by considering the orientation of the

vector ~a relative to ~k. The case ~a ⊥ ~k gives us a constraint on k 0
0 (also mentioned above,

obtained by inspection of (2.10)):

k 0
0 > −1, (3.5)

where we have chosen strict inequality, since any value of p0 would still satisfy the inequality

if we chose k 0
0 = −1. Once we have fixed 1+k 0

0 to be positive, the worst case scenario arises

when ~a is chosen to be anti-parallel to ~k. Satisfying (3.4) with positive p0 then requires

|~k| =
√

(

k 0
1

)2
+
(

k 0
2

)2
+
(

k 0
3

)2
< 1 + k 0

0 . (3.6)

In other words, if k 0
0 or ~k violate the bounds set by (3.5) and (3.6), then there exists some

spinor |ψ〉 such that p0 < 0 for that state in order to satisfy equation (3.1). Thus a BK

theory violating either of those equations is unstable in a manner that cannot be rectified

with a UV completion.

Similar constraints were explored via the dispersion relation in [18], with the restriction

to the case kµν = αuµuν . They found that |α| ≪ 1 together with uµu
µ = ±1, 0 were suffi-

cient to ensure consistency and that the LV terms could be treated as “small corrections”.

We go beyond the “small correction” case here to explore more detailed constraints for

future model builders that may succeed in finding additional SUSY-scale suppression of

LV coupling constants.
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3.2 Constraints from scalar particles

Let us now evaluate (3.1) with scalar states instead of fermions. The equation becomes

0 ≤ 〈φ |
{

Q, Q̄
}

|φ〉 = 〈φ |



2

3
∑

µ=0

(

pµ + k ν
µ pν

)



 |φ〉

= 〈φ |2



p0



1 +
3
∑

µ=0

k 0
µ



+ p1



1 +
3
∑

µ=0

k 1
µ



 (3.7)

+p2



1 +

3
∑

µ=0

k 2
µ



+ p3



1 +

3
∑

µ=0

k 3
µ







 |φ〉.

A simple starting expression is obtained by evaluating this in the rest frame of the

state φ, we see that p0 ≥ 0 is guaranteed only if

3
∑

µ=0

k 0
µ ≥ −1. (3.8)

If the µ0 components of k violate this inequality, then any state with scalar particles

necessarily has negative energy, even when the particles are at rest.

Equation (3.7) can be used to obtain more general constraints by plugging boosted

values of 4-momentum. This is discussed below in section 3.3.

As mentioned earlier, stringent phenomenological limits on the size of Lorentz violat-

ing couplings exist. For the non-supersymmetric Standard Model Extension, the results

of recent literature are nicely summarized and tabulated in [8]. The supersymmetric LV

parameter kµν is related to the non-SUSY c and kF coefficients from [8]. The most forgiv-

ing of these constraints is O
(

10−10
)

, so consistency constraints (3.5) and (3.6) are more or

less automatically satisfied in any phenomenologically interesting theory. However, should

a means be found to give Berger-Kostelecky twisted SUSY-LV couplings additional sup-

pression of order the SUSY-breaking scale (as has been done with non-twisted SUSY-LV

in [2]), such a theory would need to respect these O(1) constraints.

3.3 Constraints from moving particles

3.3.1 General form of constraint

If we allow any pi to be non-zero, then the bound of (3.6) no longer applies. We must

re-examine the constraint condition (3.2). We first consider, for simplicity, a particle

moving in the 1-direction. Instead of (3.3), we now find

0 ≤ p0

(

1 +
(

k 0
0

)

+
(

k 0
3

) (

|a|2 − |b|2
)

+ 2
(

k 0
1

)

Re(a∗b)

+ 2
(

k 0
2

)

Im(a∗b)
)

+ p1

(

(

k 1
0

)

+
(

k 1
3

) (

|a|2 − |b|2
)

+ 2
(

1 + k 1
1

)

Re(a∗b) + 2
(

k 1
2

)

Im(a∗b)
)

.

(3.9)
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This can be simplified by use of the previously introduced vector ~k and a new vector that

captures information about the space-space components of the second row of
(

k ν
µ

)

. Let

~R =
(

1 + k 1
1 , k

1
2 , k

1
3

)

. (3.10)

Then, mirroring the procedure that led to (3.4) we can reorganize (3.9) as

0 ≤ p0

(

1 +
(

k 0
0

)

+ ~k · ~a
)

+ p1

(

(

k10
)

+ ~R · ~a
)

. (3.11)

This makes it easy to generalize to the case of arbitrary 3-momentum by introducing one

such ~R for each space direction. Define a more general construction of ~Ri as
(

~Ri
)

j
= δ i

j + k i
j . (3.12)

Then the general SUSY constraint equation for arbitrary 3-momentum is

0 ≤ p0

(

1 + k 0
0 + ~k · ~a

)

+ p1

(

k 1
0 + ~R1 · ~a

)

+ p2

(

k 2
0 + ~R2 · ~a

)

+ p3

(

k 3
0 + ~R3 · ~a

)

,
(3.13)

It will simplify computations to rearrange this expression into a term which is constant for

all choices of spinor and a dot product term which varies from spinor to spinor as follows:

0 ≤
[

p0
(

1 + k 0
0

)

+
∑

i

pik
i
0

]

+

[

p0~k +
∑

i

pi ~R
i

]

· ~a. (3.14)

The worst case scenario occurs when
(

p0~k +
∑

i pi
~Ri
)

is anti-parallel to ~a, so the strictest

constraints from (3.14) are

0 ≤ p0
(

1 + k 0
0

)

+
∑

i

pik
i
0 −

∣

∣

∣

∣

∣

p0~k +
∑

i

pi ~R
i

∣

∣

∣

∣

∣

. (3.15)

Similarly, equation (3.7) now applies in full when we consider moving scalar particles.

There are two ways to further think about constraints (3.7) and (3.15): first, we can

obtain the momentum by applying a particle boost (i.e. a boost that does not affect kµν);

second, we can impose a mass-shell condition on the momentum.

3.3.2 Boosted particles

Consider first a boost in the 1-direction, such that p′0 = γp0 and p′1 = −vγ, where γ =

1/
√
1− v2 as usual. Under this boost, equation (3.15) becomes

0 ≤ γp0
(

1 + k 0
0

)

+−vγp0k 0
1 −

∣

∣

∣γp0~k +−vγp0 ~R1
∣

∣

∣

= γp0

(

1 + k 0
0 − vk 0

1 −
∣

∣

∣

~k − v ~R1
∣

∣

∣

)

= γp0

(

1 + k 0
0 − vk 0

1 −
[

(

k 0
1 − v

(

1 + k 1
1

))2

+
(

k 0
2 − vk 1

2

)2
+
(

k 0
3 − vk 1

3

)2
]1/2

)

. (3.16)
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The generalization to arbitrary boosts is straightforward but unilluminating. Consistency

of the twisted superalgebra then demands the components of kµν are chosen so that no

choice of boost speed v violates inequality (3.16) and its generalizations unless v is high

enough that the UV completion of the LV theory should be used, i.e. if γp0 is greater than

the cutoff scale. We find it convenient to think about this in the following way: k00 sets a

scale for the upper limit of the absolute value of the other components of kµν

3.3.3 Enforcing the mass shell or dispersion relation

Another important feature of BK-type LV theories is the modification of the dispersion

relation of particles due to Lorentz violation [5] . Instead of p2 = −m2, the appropriate

relation is

((gµν + kµν)pν)
2 = −m2, (3.17)

as found by looking at the propagator of the fields in [5]. Lorentz violating terms in the

Lagrangian change the pole of the propagator in precisely the same way as simply applying

the “twisting” rule of thumb to the traditional relation. We may profitably think about

this as a modification to the mass shell condition. Where we normally think of the on-shell

condition as −m2 = −p20 + ~p 2 (with ~p denoting the space-like components of momentum),

the relationship is now much more complicated, with direction-dependent corrections to

the old terms (arising from the diagonal elements of kµν) and the addition of cross-terms

(arising from off-diagonal elements of kµν).

Consider, for simplicity, a particle moving purely in the 1-direction. In a Lorentz

invariant theory the mass shell condition would require p1 = ±
√

p20 −m2. In a BK-type

LV theory, that relation becomes

p1 =
p0

2(1 + 2k11 + (k2)11)

(

−
(

4k01 + 2
(

k2
)01
)

±
(

(

4k01 + 2
(

k2
)01
)2

+ 4
(

1 + 2k11 +
(

k2
)11
)

× (3.18)

((

1 + 2k00 +
(

k2
)00
)

−m2/p20

)

)1/2
)

,

where
(

k2
)µν

= kµαk ν
α . Note that similar but less general constraints from the dispersion

relation have been obtained in [18] for the form of kµν considered there.

For a particle moving in a fixed direction, the mass shell condition can be used as

a constraint to eliminate one of the space-like components of momentum in favor of an

expression similar to (3.18).

A general boost would be parameterized by the three components of boost velocity,

vi, subject to the constraint
√

v21 + v22 + v23 ≤ 1. The mass shell condition could be used to

eliminate one of these degrees of freedom in favor of a constraint of the form of (3.18). The

resulting expression is complicated and unilluminating. A better use of this constraint in

model-building would be to first propose a choice of kµν then check to see whether (3.15)

and (3.7) can be violated for some on-shell choice of momentum.
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3.4 An alternate view on the positive energy constraints

The results from section 2.2 on the non-renormalization theorem had a reassuring interpre-

tation when viewed from the complementary perspective of the transformation that “un-

does” the LV interaction in a single-sector non-extended SUSY theory: xµ′ = xµ − kµνxν .

It would be very disturbing indeed if a simple linear coordinate transformation invalidated

the non-renormalization theorem or the positive energy theorem, unless the coordinate

transformation was singular or otherwise illegal. An obviously illegal choice of k00 = −1

marks a theory that transparently violates SUSY’s positive energy theorem. Viewed as a

coordinate transformation, it is equally obvious that the transformation is singular if any

diagonal element of k equals −1. However, k00 < −1 continues to violate the positive

energy theorem, whereas the coordinate transformation is no longer singular, but would

change the signature of the metric. A natural first guess is that legal choices of kµν corre-

spond to coordinate transformations that preserve the signature of the metric, or even the

signs of all the diagonal entries. Enforcing this condition requires, for example,

− 2k00 + k µ
0 kµ0 > 1, (3.19)

which is not obviously related to the other constraints on energy positivity from this section.

We conjecture that some appropriate condition exists for kµν when viewed as a coordinate

transformation that captures both the rest frame constraints as well as the boosted particle

constraints.

4 Non-renormalization of Nibbelink-Pospelov type LV theories

4.1 Review of Nibbelink-Pospelov construction

The approach of Nibbelink and Pospelov (NP) does not alter the superalgebra. Rather,

they construct LV operators that explicitly break the boost part of the superalgebra but

preserve the subalgebra generated by translations and supercharges only [2]. Their con-

struction is native to superspace and follows the usual convention of a holomorphic superpo-

tential and non-holomorphic Kähler potential. As with the BK construction, Nibbelink and

Pospelov work with 4-component Dirac spinors in the language of Wess & Bagger [14]. We

apply the same translations to the conventions of [15] as we did with the BK-construction.

Nibbelink and Pospelov classify the possible types of LV operators consistent with

exact SUSY up to dimension 5. We list here for reference those LV operators relevant for

SUSY gauge theories. Charged chiral superfields have only a single Kähler potential term

at dimension 5 (and none at lower dimensions) [2]:

NµΦ̄eV DµΦ. (4.1)

The gauge sector has one dimension 4 Kähler term [2]:

aα̇αtr W̄α̇e
VWαe

−V , (4.2)

and three superpotential or gauge-kinetic terms [2]:

bαβtrW(αWβ), cαβtr ΦW(αWβ), T λ
µνtrWασ

µν
αβ∂λWβ , (4.3)
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where parentheses denote symmetrization of indices, and the gauge super field strength

Wα is given by

Wα = −1

4
D†D†

(

e−VDαe
V
)

. (4.4)

We take pains to distinguish the holomorphic superpotential W from the gauge superfield-

strength Wα by always including the spinor index of the latter, even when contracted. To

accommodate this convention, we have used the notation of [7] for this operator but made

the spinor indices explicit.

The operators of (4.3) all represent modifications to the gauge-kinetic function. As [2]

explains, only the last term of (4.3) is non-vanishing for SQED or SQCD, and even that is

only true for SQED. The gauge super field strength Wα is gauge invariant only for a U(1)

group, but replacing the ordinary spacetime derivative with a covariant derivative destroys

the chirality condition, making the term not supersymmetric.

4.2 Non-renormalization in NP-type theories

As in the BK-construction, holomorphy is key. With the NP-construction, the superalgebra

is unmodified, so holomorphy of the superpotential encodes invariance under traditional

SUSY. Thus, even with NP-type LV interactions, the superpotential is immune to per-

turbative renormalization, and even non-perturbative renormalization is subject to tight

controls. None of the well-known LV operators in the NP-construction can be added to

the superpotential of SQCD, so we do not exhibit an exact superpotential calculation.

An SQCD model including NP-type LV interactions in the gauge superpotential or in the

Kähler potential would at most alter the running of the gauge coupling, changing Seiberg’s

results only by altering the coefficient of the beta function.

Weinberg [16] extends Seiberg’s proof in three important ways: first, he extends the

SUSY non-renormalization theorems to non-renormalizable theories, so one need not worry

that higher dimension LV operators ruin these familiar results. Second, he clearly demon-

strates that superpotential terms dependent on the gauge superfield strength Wα are also

protected against perturbative renormalization. Third, he proves that FI terms in U(1)

theories are also non-renormalized, as long as the U(1) charges of all the chiral superfields

add to zero. This condition is already a well-known necessity for anomaly cancellation,

and is included in the SQED model considered by [2] as well as the richer models of [7].

Weinberg’s argument about the FI term has to do with gauge invariance. After pro-

moting the FI coupling to a superfield, the FI term would not be gauge invariant if the

coupling depended on any other superfield. The only gauge-invariant correction to the FI

coupling arises from a diagram that vanishes when the charges are chosen as above [16].

These conditions do not change in the presence of NP-type Lorentz violation. This

provides a very elegant alternative proof of the result from [7] that NP-type LV interactions

do not induce a potentially divergent FI term. If the FI term is not present in the bare

Lagrangian, it will not be induced in the effective Lagrangian, even by LV interactions.

Conversely, if the bare Lagrangian includes an LV coupling in an FI term, that coupling will

be protected against perturbative renormalization. This can be seen simply via holomorphy,

without the need for computing divergent loop diagrams.
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Additionally, SUSY gauge theories are subject to powerful restrictions on the renor-

malization of the gauge coupling. When the fields are normalized with “holomorphic”

coupling, the famous NSVZ β-function is only renormalized at one-loop order. When the

fields are rescaled to canonical normalization, the β-function has a slightly different form

but is exact. The original results were obtained in [21, 22]. An alternative derivation

of the same results was obtained in [23]. An illuminating discussion of the alternative

computation can be found in [24]. However, Weinberg offers an interesting proof of the

one-loop-only renormalization result that holds for arbitrary superpotential interactions

and arbitrary gauge-kinetic function couplings [16]. We briefly summarize his technique

here and extend it to Lorentz-violating theories.

Weinberg begins by using Seiberg’s spurion prescription, treating new coupling con-

stants as background superfields with appropriate transformation properties for maintain-

ing all symmetries of the lagrangian. Of particular importance will be the R-charge of the

coupling and the nature of the coupling as either a chiral or vector superfield. New interac-

tions in the Kähler potential must have vector superfield couplings, and as such these new

coupling constants can only appear in non-perturbative corrections to the chiral pieces of

the action, namely the superpotential and the gauge-kinetic function. So the Kähler LV

interactions of (4.1) and (4.2) cannot contribute to perturbative renormalization of the

effective superpotential or gauge-kinetic function. Weinberg then counts the number of

graphs of different types that could contribute to a term in the effective superpotential

and/or gauge-kinetic function. He considers graphs with EV external gaugino lines and an

arbitrary number of external Φ lines, Φ being any component field of the chiral superfield(s)

charged under the gauge group, and IV internal V-lines, V denoting any component of the

vector superfield. Let Am denote the number of pure gauge vertices with m ≥ 3 V-lines,

which will bring factors of the holomorphic coupling, τ . Let Bmr denote the number of

vertices with m ≥ r V-lines and any number of Φ lines which arise from extra terms in the

gauge-kinetic function with r factors of the vector superfield strength,Wα. In the tree-level

Lagrangian, the coefficient of such interactions is denoted fr, so each of these diagrams will

bring a factor of the appropriate fr. Finally, let Cm denote the number of vertices with 2

Φ lines and m ≥ 1 V-lines, arising from the traditional Kähler potential term, Φ†e−V Φ.

Matching gauge lines with the various types of vertices yields Weinberg’s relation:

2IV + EV =
∑

m≥3

mAm +
∑

r

∑

m≥r

mBmr +
∑

m≥1

mCm. (4.5)

Diagrams corresponding to the Am and Cm terms arise from standard terms in SUSY

gauge theories. Those corresponding to Bmr terms come from new interactions in the

gauge kinetic function. Since Wα has R-charge +1, the couplings fr must have R-charge

2− r for the new term to have the requisite R-charge of +2 for gauge-kinetic terms. Since

the gaugino component of the vector superfield has R-charge +1, the focus on graphs

with EV external gauginos enforces a relationship between EV and the coefficients Bmr

appearing in the diagram, which in turn allows one to compute the number of factors of

the gauge coupling in terms of the A,B, C coefficients. Enumerating the possibilities shows

that only five distinct choices of the A,B, C coefficients are legal, all of which contribute

graphs independent of the gauge coupling, and all of which allow only a single non-zero
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coefficient. One of the five choices allows for a single Bmr = 1, which is just the tree-level

contribution; the other choices only turn on an A or C. Exhausting this enumeration shows

that the gauge coupling only receives perturbative corrections at the one-loop level and that

all coefficients fr in the gauge-kinetic function receive no perturbative corrections, apart

from wavefunction renormalization which is not addressed by Weinberg’s argument.

Thus all LV coupling constants for superpotential or gauge-kinetic function terms in the

NP-construction are protected against perturbative renormalization. In [7], β−functions

were computed to first-order in LV for all LV couplings relevant to N = 1 SQED. Our

results are in perfect agreement with their findings for the beta function T λ
µν from (4.3).

We take this one step further, showing that to any order in the LV couplings, this term is

only subject to wavefunction renormalization.

4.3 Berger-Kostelecký models with charged matter

Now that we have fleshed out Weinberg’s argument, we can apply it also to the

BK-construction for pure gauge theories. Since the LV coupling enters into redefinitions

of the vector superfield, it will be part of the gauge-kinetic function, and thus protected

against perturbative corrections. It is an interesting puzzle whether the BK-construction

can accommodate charged matter, as the gauge- and matter-sector LV couplings appear

to have such wildly different renormalization properties. It may simply not be possible.

Another, more tantalizing possibility is that quantum effects might force the LV couplings

to differ in the two sectors, thereby breaking supersymmetry. A third possibility is that

gauge-chiral interactions will cancel against pure chiral interactions and ultimately protect

the LV coupling, kµν , despite its presence in the Kähler potential.

4.4 A comment on the possibility of SUSY-scale suppression of LV couplings

There is some discrepancy in the literature over whether SUSY breaking effects can lead to

additional suppression of Lorentz violating couplings. When Lorentz violation in a Wess-

Zumino model occurs via the cutoff regularization procedure as studied in [19], it is found

quite generally that quantum effects rescale Lorentz violating couplings by a term propor-

tional to (M/Λ)2 log(M/Λ), whereM is the SUSY scale and Λ is the Lorentz-breaking scale.

On the other hand, the results of [13] indicate that SUSY-scale suppression of LV couplings

is incompatible with gauge theories and can only occur with neutral chiral superfields.

While each of these works looks at different models of Lorentz violation, the “no-go”

results of [13] for LV SUSY gauge theories are compatible with our results. Generically, we

find that LV interactions in the superpotential or the gauge-kinetic function are protected

against perturbative renormalization by an extension of Seiberg’s holomorphy arguments.

Those concerned with fine-tuning problems will need to consider more exotic models than

the original BK- and NP-constructions. The model we put forward in (2.16) is one such

candidate. In that theory, the LV interactions affect only the adjoint chiral multiplet and

not the gauge multiplet itself, and since the LV interaction lives in the Kähler potential

for chiral superfields, it will not be protected against running. This toy model serves

as “proof of concept” both that charged fields can exhibit LV interactions and that LV

couplings could be brought within phenomenological limits by additional scale suppression

from SUSY breaking effects.
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5 Conclusion

Lorentz symmetry is not a necessary ingredient in Seiberg’s holomorphy arguments. Thus,

Lorentz-violating SUSY theories of both Berger-Kostelecky and Nibbelink-Pospelov type

preserve all the divergence-cancellation and non-renormalization aspects of traditional

SUSY theories.

NP-type theories always preserve SUSY’s positive energy theorem since they do not

alter the superalgebra, and LV couplings in superpotential terms are protected against

perturbative renormalization. While the LV couplings are still subject to non-perturbative

effects, this is limited to wave-function renormalization, and Seiberg’s techniques for ob-

taining exact quantum superpotentials continue to apply. Kähler potential LV interactions

are not protected. Kähler potential as well as gauge field-strength superpotential LV in-

teraction terms may alter the gauge-coupling beta function and in turn change some of

the constants in the exponents of Seiberg’s exact formulas, but in the absence of matter

LV terms in the superpotential, Seiberg’s exact results are altered only in a trivial way [3].

The NP construction of LV superpotential terms does not appear compatible with gauge

invariance for any but abelian gauge theories, so LV terms that might have a more dramatic

impact on Seiberg’s results are disallowed [2, 7].

In BK-type theories, the single LV interaction is built into a redefinition of the super-

fields and the superalgebra itself. The construction is such that the LV coupling constant

will only survive Grassman integration in the Kähler potential, so the superpotential re-

mains unchanged. Seiberg’s holomorphy arguments guarantee that the superpotential in

BK-type theories remains non-renormalized (perturbatively), but this offers no protection

to the LV coupling constant itself in Wess-Zumino models.

The positive energy theorem only continues to hold if the LV coupling, kµν obeys

constraints (3.5), (3.6), (3.8), in addition to (3.7) and (3.15), which must hold for arbitrary

on-shell momentum below the cutoff scale of the effective theory. While these constraints

are many orders of magnitude less stringent than current phenomenological limits, they

become important in models with O(1) LV couplings that are suppressed as we run to

lower energies. As noted above, such suppression requires different LV couplings for gauge

and matter multiplets, which typically requires some level of SUSY breaking itself.

We have laid out such an example whereby BK-type LV interactions can be used to

partially break extended SUSY, rendering a theory that possesses both (some) unbroken

SUSY and BK-type LV interactions that are robust against coordinate transformations.

We currently know of no such model that has been fully fleshed out in the literature.

We save detailed investigation of such models for the future, noting for the time being

that the positive energy theorem has essentially the same form regardless of the degree of

supersymmetry. Our results here for the possibly trivial N = 1 BK-type models serve as

a model-independent baseline set of constraints for non-trivial BK-type models using LV

to partially break extended SUSY. Each specific non-trivial realization of will likely carry

additional, model-specific constraints.

This work opens the door to the application of powerful modern techniques in super-

symmetry, such as Seiberg’s holomorphy arguments, to theories with Lorentz-violation. To

our knowledge, the main body of the Lorentz violation literature has not yet employed
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these techniques.4 It would be interesting to extend the “mixed sector” BK-type approach

described in (2.16) to N = 4 as well as extending NP-type theories to that degree, in

order to compare with the general AdS/CFT computations of [27]. It will also be partic-

ularly interesting to consider BK-type Lorentz violation in the context of N = 2 gauge

theory with matter, where the Lorentz violation affects only the matter multiplets. The

machinery of Seiberg-Witten theory should apply, with SUSY breaking originating from

the LV couplings rather than mass terms.
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