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1 Introduction

Recently, there have been great advances in determining the AdS/CFT spectrum by using

integrability techniques [1]. In particular, the study of the finite-volume corrections [2–9]

for the anomalous dimensions/string energies spectrum of AdS5/CFT4, has culminated

in the formulation of the so-called Thermodynamic Bethe Ansatz (TBA) equations and

Y-system [10–18], which in principle govern the spectrum exactly at any order of the cou-

pling constant and the volume parameter. Very recently, the TBA equations have been

reduced first to few non-linear integral (so-called FiNLIE) equations [19] (see [17, 18, 20–

27] for some previous developments in that direction), then to an impressively simple set

of Riemann-Hilbert equations [28].

However, the highest order correction known analytically by now at weak coupling,

derived by using the FiNLIE, is the 8-loop term of the Konishi operator anomalous di-

mension1 [31, 32]. It seems to be impossible to check analytically, at the present moment,

this result by using other methods, also because, the formula provided by the generaliza-

tion of the Lüscher method [2–9, 33–35] already reached its limit of applicability with the

calculation of the 7-loop correction to the Konishi spectrum [36].

The main aim of this paper is to start the investigation to fill this gap and to give a

formula, based on the S-matrix of the theory, to calculate next-to-leading (NLO) finite-size

corrections in any integrable theory.

1Actually, a 9-loop result, obtained by using the methods of [28], has been presented in the talks [29, 30].
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This will be done by using the experience with the calculation of double-wrapping cor-

rections in the vacuum of the deformed O(4) σ-model and AdS/CFT [37], and by consid-

ering the physical excited states as momenta-dependent defects, which twist the boundary

conditions of the vacuum. We shall observe, at least in a diagonal case, that the inser-

tion of such defects modifies the ground-state TBA equations in the same way as resulting

from the standard analytical continuation of the ground-state TBA [15, 16, 38]. More

importantly for our purposes, the twist matrices involved in the NLO Lüscher-like formula

for the twisted vacuum [37] will be replaced by the S-matrices describing the scattering

between physical and virtual particles. This will give as a result the first proposal of NLO

Lüscher-like formulas for the excited states’ energies and rapidities, even in a non-diagonal

integrable theory.

In this paper, in particular, these formulas will be checked in some simple relativistic

model - the Gross-Neveu model, the O(4) σ-model and the sine-Gordon model - against the

large volume expansion of their non-linear integral equations (NLIE), while the generaliza-

tion for the non-relativistic case of AdS5/CFT4 will be just conjectured. We hope to come

back to the actual calculation of the Konishi double-wrapping correction in the near future.

2 Main idea

If we consider the physical particles as defects introduced in the compactified space of a

cylinder, then we have that the usual defect transmission phase [39, 40] is given by the

S-matrix, which describes the scattering of a probe particle against N excitations, that is,

in a relativistic case

T−θi(θ) =

N∏
i=1

S(θ − θi) . (2.1)

Of course, the transmission matrix in this case will depend on the rapidities of the excita-

tions. In this way, we are also ensured that, if the particle moves in the opposite direction,

then it picks up the inverse phase:

eipL =
N∏
i=1

S(θ − θi)⇒ e−ipL =
N∏
i=1

S−1(θ − θi) =
N∏
i=1

S(θi − θ) , (2.2)

where p = sinhπθ. Furthermore, we have the usual relation between left and right trans-

mission matrices

T+θi(−θ) =
N∏
i=1

S(θi − θ) =
N∏
i=1

S−1(θ − θi) = T−1
−θi(θ) , (2.3)

and our transmission matrix satisfies also the defect crossing symmetry [39, 40]:

T−θi(θ) = T+θi(i− θ)⇔ S(θ − θi) = S(i+ θi − θ) . (2.4)

– 2 –
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Figure 1. On the left the momentum-dependent defect is circling the compactified space. On the

right it is located in (Euclidean) time, and it acts as an operator on the periodic Hilbert space of

the rotated channel. The red point is a scattering between virtual particles, the blue one between

a virtual particle and the defect.

Upon a double Wick rotation, the defect line, which defines, in our case, the asymptotic

Bethe equations for the physical theory,2 becomes a defect operator [37, 39, 40] (see fig-

ure 1), which modifies the expression of the mirror3 partition function:

Z̃(L,R) = Tr(e−H̃(R)LD) , (2.5)

where, introducing the mirror theory rapidity θ̃ = θ+i/2, the defect operator, for a diagonal

theory with single species particles, is given by4

D = exp

[∫
dθ̃

2

N∏
i=1

S(θi − θ̃ + i/2)A(θ̃)A†(θ̃)

]
, (2.6)

with A,A† being the Zamolodchikov-Faddeev annihilation and creation operators, respec-

tively, in the mirror theory. In particular, the n-particle matrix element of the mirror

partition function can be calculated as

Z̃(L,R) =
∑

|α1,...,αn〉∈H

〈α1, . . . , αn|D|α1, . . . , αn〉
〈α1, . . . , αn|α1, . . . , αn〉

e−Ẽn(R)L , (2.7)

2At this point a possible reasonable objection could be: the S-matrix describes well the interaction

among particles only in the limit of large L. Then, for finite L, the physical excitations should correspond

to an operator describing the exact Bethe equations, with the form of the r.h.s. of (4.3). We found only a

posteriori justifications to this fact: the exact Bethe equations would reduce to the asymptotic ones if the

probe particle belongs to the rotated theory, or, in other words, particles of physical and rotated theories

seem to interact only through the S-matrix, as it is confirmed by the results of this paper.
3Even though in the relativistic case the space-time rotated theory is the same as the physical one, in

view of the generalization to the AdS/CFT case, we already start to use here the terminology related to

the non-relativistic case, were the rotated theory is different from the physical one and is called mirror

theory, first introduced in [10].
4One should be careful with the analytical continuation to the mirror theory, since shifting back the

integration contour to the real line, poles of the S-matrix, corresponding to bound-states between mirror

and physical particles, could be met, giving additional contributions to the energy, called µ-terms. We

shall not consider this case through the paper.

– 3 –
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Figure 2. One-particle (left) and two-particle (right) eigenvalues of the defect operator. The

horizontal thick lines represent mirror particles, whose flavors are denoted by greek indexes. The

vertical thin lines with latin indexes are physical particles.

where

D|α1, . . . , αn〉 =
N∏
i=1

S(θi− θ̃1 + i/2) . . . S(θi− θ̃n + i/2)|α1, . . . , αn〉+ permutations . (2.8)

Thus, for the large volume expansion of the mirror partition function, also called cluster

expansion, we have

lim
R→∞

Tr(e−H̃(R)LD)=1+
∑
k,α

〈α|D|α〉
〈α|α〉

e−Ẽ(θ̃k)L+
∑

k 6=l,(α,β)

〈α, β|D|α, β〉
〈α, β|α, β〉

e−(Ẽ(θ̃k)+Ẽ(θ̃l))L+ . . . ,

(2.9)

where Ẽ(θ) = coshπθ. On the other hand, the physical partition function should be dom-

inated at R → ∞ by the ground state energy of the twisted physical theory: Z(L,R) ∼
e−RE

d
0 (L). However, as we shall show in what follows, expression (2.9) will give the finite-

size corrections to excited states’ energies, hence we can say that we are calculating the

ground state energy of a theory whose vacuum corresponds actually to some excited state

of the original theory. In other words, the insertion into the mirror partition function of

the defect operator (2.6), given by the S-matrix related to a particular excited state, selects

the contribution of the particular excited state energy to the large R limit of the physical

partition function.5

In particular, in a generic non-diagonal integrable relativistic theory with particles’

flavors labeled by an index a, the r.h.s. of (2.9) can be calculated as follows (see figure 2)
〈α|Da|α〉
〈α|α〉 =

∑
α1,...,αN−1

Sα1a
αa (θ̃ − θ1 + i/2)Sα2a

α1a(θ̃ − θ2 + i/2) . . . SαaαN−1a(θ̃ − θN + i/2) , (2.10)

〈α, β|Da|α, β〉
〈α, β|α, β〉 =

∑
α1,β1,...αN ,βN

(Ta)α1β1
αβ (θ̃1, θ̃2, θ1)(Ta)α2β2

α1β1
(θ̃1, θ̃2, θ2) . . . (Ta)αβαN−1βN−1

(θ̃1, θ̃2, θN )

+
∑

α1,β1,...αN ,βN

(Ta)α1β1
αβ (θ̃1, θ̃2, θ1)(Ta)α2β2

α1β1
(θ̃1, θ̃2, θ2) . . . (Ta)βααN−1βN−1

(θ̃1, θ̃2, θN ) , (2.11)

5We thank Ryo Suzuki for a comment on this point.
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where

(Ta)
kl
ij (θ̃1, θ̃2, θi) =

∑
m

Skmia (θ̃1 − θi + i/2)Slajm(θ̃2 − θi + i/2) (2.12)

and, for later purposes, we used the crossing symmetry of the defect operator. In general,

the expectation value of the non-diagonal defect operator on two generic mirror Bethe

states is
〈α1, α2, . . . , αn|D|α1, α2, . . . , αn〉
〈α1, α2, . . . , αn|α1, α2, . . . , αn〉

=
∑
σ

∑
β
1
,...,β

N−1

(Ta)
β
1
α (θ̃1, . . . , θ̃n, θ1)(Ta)

β
2
β
1
(θ̃1, . . . , θ̃n, θ2) . . .

. . . (Ta)
σ(α)
β
N−1

(θ̃1, . . . , θ̃n, θN ) , (2.13)

where α = {α1, α2, . . . , αn}, βi = {βi1 , βi2 , . . . , βin}, σ(α) is any permutation of α and

(Ta)
β
α(θ̃1, . . . , θ̃n, θi)=

∑
a1,...,an−1

Sβ1a1α1a (θ̃1−θi+i/2)Sβ2a2α2a1(θ̃2−θi+i/2) . . . Sβnaαnan−1
(θ̃n−θi+i/2) .

(2.14)

On the other hand, assuming that the rapidity-dependent defect does not change the

mirror Bethe equations, the TBA equations of a diagonal theory result to be modified only

by the introduction of a rapidity-dependent chemical potential

µθi [ρ] = R
∑
i

∫
dθ ρ(θ) log[S(θi − θ̃ + i/2)] , (2.15)

which enters in the definition of the mirror partition function as follows

Z̃(L,R) = Tr(e−H̃(R)LD) =

∫
d[ρ, ρ̄]eS[ρ,ρ̄]+µθi [ρ]−LẼ[ρ] . (2.16)

Following the usual procedure for the derivation of the TBA equations, the mirror free

energy f(L) = S[ρ, ρ̄] + µθi [ρ] − LẼ[ρ] is minimized with the constraint of the mirror

density equation

ρ+ ρ̄− 1

2
∂θ̃p̃ =

∫
dθ̃′K(θ̃, θ̃′)ρ(θ̃′) , (2.17)

and the pseudo-energy ε = ln ρ̄/ρ turns out to satisfy the following TBA equation

ε(θ̃) +
∑
i

log[S(θi − θ̃ + i/2)] = Ẽ(θ̃)L− log(1 + e−ε) ? K(θ̃) , (2.18)

that coincides with the standard excited states TBA equation.

Even in a case where the physical particle was a two-particle bound-state, for instance,

we would have the product S(θ1 − θ + i/2)S(θ2 − θ + i/2) in the l.h.s. of (2.18), with θ1,2

being the rapidities of the bound-state’s constituents. For example, in the Lee-Yang model,

the leading order rapidities would be θ1,2 = ±i/3 in our normalization, giving the same

source term as in [38], once crossing symmetry and unitarity are used.

Unfortunately, we did not find any argument in the particle-defects analogy in order

to derive the momentum quantization condition independently from the standard analytic

continuation of the TBA. Then the rapidities are not fixed by the TBA equations them-

selves but somehow in this approach they are put by hand. The only evidence supporting

– 5 –
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that θi are the rapidities of the physical excitations is that, as we shall see also in section

3.3, the equation (2ni + 1)iπ = ε(θi + i/2) at leading order at large L reduces to the

asymptotic Bethe equations.

So, this is just a nice check of the analogy between excited states and defects, at least

in the case of a diagonal theory with single species particles. While this analysis can be

easily generalized to the case with more particles’ species and its extension to non-diagonal

theories would be interesting, more importantly we can use this analogy to skip the solution

of the excited states TBA equations in a non-diagonal case and to calculate, using equa-

tions (2.9) and (2.11), the next-to-leading Lüscher corrections in a generic integrable theory.

3 Lüscher corrections

3.1 Leading order

Following the analysis of [37], we can easily write now the second term in the r.h.s. of (2.9) in

integral form. Then the first correction to the twisted ground-state energy, that corresponds

to the energy of some particular excited state in the original model, takes the well known

expression of the Lüscher formula:

Ea(L) = − lim
R→∞

R−1 ln[Tr(e−H̃(R)LD)] = δE(1)
a (L) +O(e−2ẼL) ,

δE(1)
a (L) = −

∫
dθ̃

2
coshπθ̃e−Ẽ(θ̃)LTr

N∏
i

Sa(θ̃ − θi + i/2) , (3.1)

where the trace in the integrand denotes the sum over the mirror states of (2.10)

Tr

N∏
i

Sa(θ̃− θi + i/2)=
∑

α,α1,...,αN−1

Sα1a
αa (θ̃− θ1 + i/2)Sα2a

α1a(θ̃− θ2 + i/2) . . . SαaαN−1a
(θ̃− θN + i/2) ,

(3.2)

and we recall that a labels the flavor of the particular excited state we want to analyze. In

the cases we shall consider in the following sections and for the SU(2) representative of the

Konishi multiplet in N = 4 Super-Yang-Mills, the scattering between mirror and physical

particles will be diagonal, then the expression above will simplify to6

Tr

N∏
i

Sa(θ̃ − θi + i/2) =
∑
α

N∏
i=1

Sαaαa(θ̃ − θi + i/2) . (3.3)

3.2 Next-to-leading order

At the next-to leading order, like in [37], there is a diagonal contribution to the last term

in (2.9), given by

− 1

2

∑
k,α

〈α, α|D|α, α〉
〈α, α|α, α〉

e−2Ẽ(p̃k)L , (3.4)

6Actually, in the supersymmetric case one has to consider the super-trace: sTr
∏N
i Sa =∑

α(−1)Fα
∏N
i=1 S

αa
αa , with Fα = 0, 1 for bosons/fermions respectively.

– 6 –
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where the mirror momenta p̃k satisfy the single-particle mirror Bethe equations eip̃kR = 1,

and whose translation into integral form reads

δE(2,1)
a (L) =

∫
dθ̃

4
coshπθ̃ e−2Ẽ(θ̃)L

[
Tr

N∏
i

Sa(θ̃ − θi + i/2)

]2

. (3.5)

The remaining term
1

2

∑
k,l,(α,β)

〈α, β|D|α, β〉
〈α, β|α, β〉

e−[Ẽ(p̃k)+Ẽ(p̃l)]L , (3.6)

summed over any k, l, α, β, instead needs the solution of the two-particle mirror Bethe

equations, that is the diagonalization of the mirror S-matrix. Taking into account the

proper Jacobian in the change of variables (k, l)→ (p̃k, p̃l) as in [37], we obtain

δE(2,2)
a (L)=−1

2

∫
dθ̃1 coshπθ̃1 e

−Ẽ(θ̃1)L

∫
dθ̃2

2π
e−Ẽ(θ̃2)L

∑
µ

[
N∏
i

Ta(θ̃1, θ̃2, θi)

]
µ

∂θ̃1δµ(θ̃1 − θ̃2) ,

(3.7)

where δµ are the eigenvalues’ phases of the S-matrix S(θ̃1 − θ̃2) describing the interactions

of the two mirror particles,
∏N
i Ta(θ̃1, θ̃2, θi) denotes the r.h.s. of (2.11), the components

of Ta are written in (2.12) and we need the expectation values of
∏
i Ta on the normalized

eigenvectors |µ〉 of the mirror S-matrix:[
N∏
i

Ta(θ̃1, θ̃2, θi)

]
µ

≡ 〈µ|
N∏
i

Ta(θ̃1, θ̃2, θi)|µ〉 . (3.8)

An equivalent way to write the sum over µ in the integrand above is as follows

− iTr[

N∏
i

Ta(θ̃1, θ̃2, θi)U∂θ̃1 log Λ(θ̃1 − θ̃2)U−1] , (3.9)

where Λ(θ̃1 − θ̃2) is the diagonal matrix of the mirror S-matrix eigenvalues and U is the

change of basis matrix, that is needed here differently from the twisted vacuum case [37],

since this time the S-matrix does not commute with the defect operator.

3.3 Rapidities’ corrections

As stated above, we cannot derive the momentum quantization condition from the particle-

defects analogy. So, to understand what are the finite-size corrections for the rapidities of

the physical particles, we consider the exact Bethe equations as from the standard analytic

continuation of the TBA, written in terms of the pseudo-energy in a diagonal, single species

case

(2ni + 1)iπ = ε(θi + i/2) . (3.10)

Thus, we expand at large volume, up to order e−2LẼ , the r.h.s. of (3.10):

2iπni = iL sinh θi +
∑
j 6=i

logS(θi − θj)

−
∫
dθ̃ φ

(
θi − θ̃ +

i

2

) N∏
j

S

(
θj − θ̃ +

i

2

)
e−LẼ(θ̃) (3.11)

– 7 –
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+

∫
dθ̃

2
φ

(
θi − θ̃ +

i

2

) N∏
j

S2

(
θj − θ̃ +

i

2

)
e−2LẼ(θ̃)

−
∫
dθ̃1dθ̃2 φ

(
θi − θ̃1 +

i

2

)
φ(θ̃1 − θ̃2)

×
N∏
j

S

(
θj − θ̃1 +

i

2

)
S

(
θj − θ̃2 +

i

2

)
e−L(Ẽ(θ̃1)+Ẽ(θ̃2)) + . . . ,

where φ(θ) = 1
2πi

d
dθ lnS(θ).

The first line corresponds to the asymptotic Bethe equations, while the second line

is the leading order correction. In the non-diagonal case, this corresponds to the formula

proposed in [9]

δΦ
(1)
i,a = i

∫
dθ̃

2π
e−Ẽ(θ̃)L∂θiTr

N∏
j

Sa(θj − θ̃ + i/2) . (3.12)

Now, with the help of the formulae for the energy corrections (3.5) and (3.7), and the three

last lines of (3.11), we can guess for the non-diagonal case the following next-to-leading

order rapidities’ corrections:

δΦ
(2,1)
i,a = − i

4

∫
dθ̃

2π
e−2Ẽ(θ̃)L∂θi

Tr

N∏
j

Sa(θj − θ̃ + i/2)

2

, (3.13)

and

δΦ
(2,2)
i,a =

i

2

∫
dθ̃1

2π
e−Ẽ(θ̃1)L

∫
dθ̃2

2π
e−Ẽ(θ̃2)L∂θi

∑
µ

 N∏
j

Ta(θj , θ̃1, θ̃2)


µ

∂θ̃1δµ(θ̃1 − θ̃2) .

(3.14)

Equations (3.5), (3.7), (3.13) and (3.14) are the main results of this paper. Now we shall

check them against the large volume expansion of some relativistic models’ well known

NLIEs.

4 Comparison with NLIE

4.1 Gross-Neveu model

The S-matrix of the chiral SU(2) Gross-Neveu model is

S(θ) =
S0(θ)

(θ − i)
Ŝ(θ) , Ŝ(θ) = θ I− iP , (4.1)

where the scalar factor is

S0(θ) = i
Γ(1

2 −
iθ
2 )Γ( iθ2 )

Γ(1
2 + iθ

2 )Γ(− iθ
2 )
. (4.2)

In the U(1) sector, the DdV equation can be written as [41]

g(x) = eiL sinhπx
N∏
j=1

S0(x− θj) exp{2iImK−0 ∗ log[1 + g+]} , (4.3)

– 8 –
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where K0(x) = 1
2πi∂x logS0(x) and f±(x) = f(x± i/2).7 Actually, since in the formula for

the energy

E =
∑
j

cosh(πθj)−
1

2

∫
dθ̃ cosh(πθ̃)[log(1 + g+) + log(1 + 1/ḡ−)] (4.4)

one needs g+ and its complex conjugate 1/ḡ−, we find convenient to define A ≡ g+ and to

use the following NLIE:

A(x) = e−L coshπx
N∏
j=1

S0(x− θj + i/2) exp[K0 ∗ log(1 +A)−K++
0 ∗ log(1 + Ā)− log(1 + Ā)] ,

(4.5)

where one has to take the principal value of the convolution involving K++
0 and the last

term in the exponential is due to its (−1/2) residue in y = x.

Now, in order to calculate the leading energy correction, we consider the leading order

of A(x) in the large L expansion,

A0(x) = e−L coshπx
N∏
j=1

S0(x− θj + i/2) ; Ā0(x) = e−L coshπx
N∏
j=1

S−1
0 (x− θj − i/2) , (4.6)

which gives the well known Lüscher term

δE(1) = −1

2

∫
dθ̃ coshπθ̃

 N∏
j=1

S0(θ̃ − θj + i/2) +

N∏
j=1

S−1
0 (θ̃ − θj − i/2)

 e−L coshπθ̃

= −1

2

∫
dθ̃ coshπθ̃Tr

N∏
j=1

S(θ̃ − θj + i/2) . (4.7)

At the next-to-leading order, the function A(x) is

A1(x) = e−L coshπx
N∏
j=1

S0(x−θj+i/2)[K0 ∗ log(1+A)−K++
0 ∗ log(1+Ā)−log(1+Ā)] ,

Ā1(x) = e−L coshπx
N∏
j=1

S−1
0 (x−θj−i/2)[K0 ∗ log(1+Ā)−K−−0 ∗ log(1+A)−log(1+A)] ,

that implies the following energy correction

δE(2,1) + δE(2,2) =
1

4

∫
dθ̃ coshπθ̃

[
S+(θ) +

1

S−(θ)

]2
e−2L coshπθ̃

−1

2

∫
dθ̃1dθ̃2 coshπθ̃1e

−L(coshπθ̃1+coshπθ̃2)

{
K0(θ̃1 − θ̃2)

[
S+(θ̃1)S+(θ̃2) +

1

S−(θ̃1)S−(θ̃2)

]
−K0(θ̃1 − θ̃2 + i)

S+(θ̃1)

S−(θ̃2)
−K0(θ̃1 − θ̃2 − i)

S+(θ̃2)

S−(θ̃1)

}
, (4.8)

where S±(θ) ≡
∏N
j=1 S0(θ − θj ± i/2). We checked that the integrands of (4.8) are the

same of equations (3.5) and (3.7) with the S-matrix given by (4.1) and (4.2), with flavor

7We are using through all this section the notations of [41].
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label a = 1, for any values of the physical rapidities. The agreement between (3.7) and the

second integral of (4.8) is not automatic: in order to show it, one has to use the identities

S+
0 (θ)S−0 (θ) =

θ − i
2

θ + i
2

, K0(θ) +K±±0 (θ) =
1

2πθ(θ ± i)
. (4.9)

Thus, at least for the states belonging to the U(1) sector of the Gross-Neveu model we

have full agreement with our formulas (3.5), (3.7).

On the other hand, the exact Bethe equations are given by

g(θi) = −1 . (4.10)

Then, at the zeroth order at large L, it gives the ABA

g0(x) = eiL sinhπx
N∏
j=1

S0(x−θj) = −1 , x = θi ⇒ 2inkπ = iL sinhπθk+

N∑
j=1

logS0(θi−θj) .

(4.11)

At the first order, (4.10) gives the Bajnok-Janik formula [9]

g1(x) = g0(x) + 2iIm[K−0 ∗ log(1 + g+
0 )] = −1 , x = θi ⇔ 2iniπ = BYi + δΦ

(1)
i , (4.12)

where

δΦ
(1)
i = 2i

∫
dθ̃Im[K−0 (θi−θ̃) ∗ log(1+g+

0 (θ̃))]=

∫
dθ̃

[
K−0 (θi−θ̃)S+(θ̃)−K

+
0 (θi−θ̃)
S−(θ̃)

]

= i

∫
dθ̃

2π
∂θiTr

N∏
j

S(θj − θ̃ + i/2) . (4.13)

At the second order, we obtain

g2(x)=g0(x)+2iIm[K−0 ∗ log(1+g+
1 )]=−1 , x=θi ⇔2iniπ=BYi+δΦ

(1)
i +δΦ

(2,1)
i +δΦ

(2,2)
i ,

(4.14)

where the NLO corrections result to be

δΦ
(2,1)
i =

1

2

∫
dθ̃K+

0 (θi − θ̃)

[
1

(S−)2(θ̃)
+
S+(θ̃)

S−(θ̃)

]
−K−

0 (θi − θ̃)

[
(S+)2(θ̃) +

S+(θ̃)

S−(θ̃)

]
(4.15)

δΦ
(2,2)
i = −

∫
dθ̃1dθ̃2K

+
0 (θi − θ̃1)

[
K0(θ̃1 − θ̃2)

S−(θ̃1)S−(θ̃2)
−K0(θ̃1 − θ̃2 − i)

S+(θ̃2)

S−(θ̃1)

]

−K−
0 (θi − θ̃)

[
K0(θ̃1 − θ̃2)S+(θ̃1)S+(θ̃2)−K0(θ̃1 − θ̃2 + i)

S+(θ̃1)

S−(θ̃2)

]
. (4.16)

While in order to show the agreement between (4.15) and (3.13), in the case of a = 1 for

instance, it is enough to use the unitarity of S0, the matching between (4.16) and (3.14)

requires the use of identities (4.9). Still, the integrands of (3.14) and (4.16) differ by a term

that is, for example in the one-particle case, equal to

− K++
0 (θ̃1 − θ̃2)−K−−0 (θ̃1 − θ̃2)

8πi(θ̃1 − θ1 + i/2)(θ̃2 − θ1 + i/2)
, (4.17)

where θ1 is the rapidity single physical excitation. This term is antisymmetric under the

exchange θ̃1 ↔ θ̃2, then we have complete agreement upon the double integration in θ̃1, θ̃2.
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4.2 Sine-Gordon and O(4) σ-model

We checked our formulas also in the cases of sine-Gordon, whose limit ν →∞ is the Gross-

Neveu model, and the O(4) σ-model (SU(2) principal chiral model), which is basically the

tensor product of two Gross-Neveu models.

In the first case, it is enough to replace the S-matrix (4.1) by

S(θ, ν) = S0(θ, ν)Ŝ(θ, ν) , Ŝ(θ, ν) =


1 0 0 0

0
sinh(πν θ)

sinh(πν (θ−i))
− sinh(πν i)

sinh(πν (θ−i))
0

0
− sinh(πν i)

sinh(πν (θ−i))
sinh(πν θ)

sinh(πν (θ−i))
0

0 0 0 1

 , (4.18)

and the scalar factor by

S0(θ, ν) = −i exp i

∫ ∞
0

dω
sinωx

ω

sinh
(
ν−1

2 ω
)

cosh
(
ω
2

)
sinh

(
ν
2ω
) . (4.19)

All the other quantities follow from these in both sides, Lüscher and NLIE, of the compar-

ison. In the case of the O(4) σ-model, instead, one needs to use

S(θ) =
S2

0(θ)

(θ − i)2
Ŝ(θ)⊗ Ŝ(θ) , Ŝ(θ) = θ I− iP , (4.20)

where the scalar factor S0 is the same as that for the Gross-Neveu model (4.2). In more

detail, the main formula for the double-wrapping correction (3.7) becomes

δE(2,2)
a (L) = i

∫
dθ̃1 cosh θ̃1e

−Ẽ(θ̃1)L

∫
dθ̃2

2π
e−Ẽ(θ̃2)LTr

[
N∏
i

T SU(2)
a (θ̃1, θ̃2, θi)

]

×Tr

[
N∏
i

T SU(2)
a (θ̃1, θ̃2, θi)U∂θ̃1 log ΛSU(2)(θ̃1 − θ̃2)U−1

]
, (4.21)

where T
SU(2)
a , U and ΛSU(2) are the same quantities involved in the SU(2) chiral Gross-

Neveu model, while the NLIE for the U(1) sector changes to [41]

A(x) = e−L coshπx
N∏
j=1

S0(x− θj + i/2) exp

[
K0 ∗ log

1 +A

1− |A| −K
++
0 ∗ log

1 + Ā

1− |A| − log
1 + Ā

1− |A|

]
. (4.22)

In both cases, we obtained exact agreement between our NLO Lüscher-like formulas and

the expansions of the well known NLIEs [41–44], at least for excitations belonging to the

U(1) sectors, in the same way as for the Gross-Neveu model. In the sine-Gordon case we

needed to use a generalized version of the identities (4.9):

S+
0 (θ, ν)S−0 (θ, ν)=

sinh π
ν (θ− i

2)

sinh π
ν (θ+ i

2)
, K+

0 (θ, ν) +K−0 (θ, ν)=
coth π

ν (θ− i
2)−coth π

ν (θ+ i
2)

2νi
.

(4.23)

Clearly, it would be interesting to perform the same check for other sectors, and for other

integrable relativistic theories. In the case of complex solutions, bound-states etc. there

can be additional contributions which are not taken into account in our analysis.
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5 Conjectures for AdS/CFT

On the basis of the previous results, it is not so difficult to guess the following formula

as the usual quadratic contribution to the next-to-leading energy corrections for excited

states in AdS5/CFT4

δE(2,1)
a (L) =

1

2

∞∑
Q=1

∫
dp̃

2π
e−2ẼQ(p̃)L

[
sTr

N∏
i

SQ,1a (p̃, pi)

]2

, (5.1)

where

ẼQ(p̃) = 2arcsinh

(√
Q2 + p̃2

2g

)
(5.2)

is the mirror dispersion relation depending on the mirror momentum p̃, and sTr denotes

the super-trace, that in the simple case of diagonal mirror-physical scattering, like in the

SU(2) sector for instance, becomes

sTrSQ,1a =
∑
b

(−1)Fb
N∏
i

(SQ,1(p̃, pi))
ba
ba . (5.3)

SQ,1 is the S-matrix describing the scattering between a mirror bound-state with charge Q

and a single physical particle [45], where S is the AdS5/CFT4 S-matrix [46–52]:

S = S2
0(SSU(2|2) ⊗ SSU(2|2)) . (5.4)

So, (5.1) can be written in terms of the SU(2|2)-invariant S-matrix as

δE(2,1)
a (L) =

1

2

∞∑
Q=1

∫
dp̃

2π
e−2ẼQ(p̃)L

[
N∏
i

SQ,10 (p̃, pi)
∑
b

(−1)Fb
N∏
i

(SQ,1SU(2|2))
ba
ba(p̃, pi)

]4

.

(5.5)

It matches also the prediction from the large volume expansion of the excited states TBA

δETBA = −
∞∑
Q=1

∫
dp̃

2π
Y

(0)
Q (p̃, pi)−

1

2
(Y

(0)
Q )2(p̃, pi) + . . . , (5.6)

where Y
(0)
Q is the asymptotic solution [14] for the YQ-functions of the excited states TBA

equations [15, 16]. The more complicated contribution reads

δE(2,2)
a (L) = 2i

∑
Q1,Q2

∫
dp̃1

2π
e−ẼQ1

(p̃1)L

∫
dp̃2

2π
e−ẼQ2

(p̃2)LsTr

[
N∏
i

TQ1,Q2
a (p̃1, p̃2, pi)

]

× sTr

{
N∏
i

TQ1,Q2
a (p̃1, p̃2, pi)U

Q1,Q2

SU(2|2)

[
∂p̃1 log ΛQ1,Q2

SU(2|2)(p̃1, p̃2)
]

(UQ1,Q2

SU(2|2))
−1

}
, (5.7)

where

(TQ1,Q2
a )klij (p̃1, p̃2, pi) = SQ1,1

0 (p̃1, pi)S
Q2,1
0 (p̃2, pi)

∑
m

(SQ1,1
SU(2|2))

km
ia (p̃1, pi)(S

Q2,1
SU(2|2))

la
jm(p̃2, pi) .

(5.8)
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Moreover, ΛQ1,Q2

SU(2|2) is the diagonalized SU(2|2)-invariant S-matrix for the scattering between

two generic mirror bound-states [53], and UQ1,Q2

SU(2|2) is its change of basis matrix. In order to

calculate the finite-size correction to the 8-loop anomalous dimension of the Konishi opera-

tor one needs just formulas (5.5) and (5.7), with a = 1, j = 1, 2, p1 = −p2 = 2π/3, together

with the leading order formulas of [9] for energy and rapidities’ corrections, expanded to

g16. A preliminary check of (5.7) can be done by isolating the scalar factor from ΛSU(2|2)

and choosing a = 1; then one gets

δE
(2,2)
1 (L) = −

∑
Q1,Q2

∫
dp̃1dp̃2

2π
e−(ẼQ1

(p̃1)+ẼQ2
(p̃2))LKQ1Q2

sl(2) (p̃1, p̃2) (5.9)

× sTr
N∏
i

(SQ1,1
1 )(p̃1, pi)sTr

N∏
i

(SQ2,1
1 )(p̃2, pi) ,

that matches the result from the TBA

δE
(2,2)
TBA = −

∞∑
Q2=1

∫
dp̃2

2π
Y

(0)
Q2

(p̃2, pi)Y
(1)
Q2

(p̃1, p̃2, pi) , (5.10)

where one considers the only contribution in the NLO solution Y
(1)
Q2

given by the dressing

kernel

Y
(1)
Q2

(p̃1, p̃2, pi) = Y
(0)
Q1

(p̃1, pi) ? K
Q1Q2

sl(2) (p̃1, p̃2) + . . . . (5.11)

It will be also possible to go further in the number of loops - up to 11 in particular,

since at 12 loops triple-wrapping effects appear - by considering the following conjectures

for the corrections of the rapidities

δΦ
(2,1)
i =

i

4

∑
Q

∫
dp̃

2π
e−2ẼQ(p̃)L∂p̃

sTr(

N∏
j

SQ,1a (p̃, pj)

2

, (5.12)

δΦ
(2,2)
i = −2

∑
Q1,Q2

∫
dp̃1

2π
e−

˜EQ1
(p̃1)L

∫
dp̃2

2π
e−

˜EQ2
(p̃2)LsTr

[
∂p̃1

N∏
i

TQ1,Q2
a (p̃1, p̃2, pi)

]

× sTr

{
N∏
i

TQ1,Q2
a (p̃1, p̃2, pi)U

Q1,Q2

SU(2|2)

[
∂p̃1 log ΛQ1,Q2

SU(2|2)(p̃1, p̃2)
]

(UQ1,Q2

SU(2|2))
−1

}
. (5.13)

We do not consider here the contributions from possible µ-terms, which could appear

at this or higher loops.

6 Summary and outlook

We proposed next-to-leading Lüscher-like formulas, involving just the S-matrix and the

dispersion relation of the theory, for generic integrable theories, also for the finite-size

corrections to the rapidities of the physical particles/excited states.

In doing this, we were helped by a similar derivation for the twisted ground-states [37],

and by the idea that the excited states could be seen as defects, at least from the point of

view of the interaction with the virtual/mirror particles.
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We found full agreement with the large volume expansion of the NLIE in the cases

of few relativistic theories and conjectured a generalization of our formulae for the case of

AdS5/CFT4. Due to the complication of the calculations, we leave the check against the

known results for the Konishi operator, the attempt to calculate its anomalous dimension

up to 11 loops and the analysis of possible µ-terms for future work.

A simpler check in the AdS/CFT case could be a comparison between the results from

our formulas at strong coupling, with a single physical particle and at most two mirror sin-

gle particles (Q1 = Q2 = 1) and a mirror bound-state with Q = 2, against the F-term

already calculated at any order for generic string solutions moving in AdS3 × S1 [54] or

the giant magnon [8, 55].

Other checks could be also performed in theories different form those analyzed in this

paper or in other sectors of the excited states’ spectrum.

Finally, it would be absolutely interesting to study possible generalizations of this

approach to higher orders in the large volume expansion, in order to investigate possi-

ble simplifications or regular patterns, which could guide us to the exact solution of the

spectra in particular sectors of interesting integrable theories, such as various examples of

AdSd+1/CFTd.

Acknowledgments

I am especially indebted to Zoltan Bajnok for enlightening insights, discussions and useful

comments on the manuscript. I am grateful to the Wigner Research Centre in Budapest,

where part of this work was performed, for the warm hospitality. I thank also Davide

Fioravanti, Rafael Nepomechie, Francesco Ravanini, Simone Piscaglia and Emilio Tre-

visani for helpful discussions, Ryo Suzuki and Dmytro Volin for useful comments. The

author is supported by the FCT fellowship SFRH/BPD/69813/2010. Centro de F́ısica

do Porto is partially funded by FCT through the projects PTDC/FIS/099293/2008 and

CERN/FP/116358/2010.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012)

3 [arXiv:1012.3982] [INSPIRE].

[2] J. Ambjørn, R.A. Janik and C. Kristjansen, Wrapping interactions and a new source of

corrections to the spin-chain/string duality, Nucl. Phys. B 736 (2006) 288 [hep-th/0510171]

[INSPIRE].

[3] R.A. Janik and T. Lukowski, Wrapping interactions at strong coupling: the giant magnon,

Phys. Rev. D 76 (2007) 126008 [arXiv:0708.2208] [INSPIRE].
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[34] M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 1.

Stable particle states, Commun. Math. Phys. 104 (1986) 177 [INSPIRE].

[35] T.R. Klassen and E. Melzer, On the relation between scattering amplitudes and finite size

mass corrections in QFT, Nucl. Phys. B 362 (1991) 329 [INSPIRE].

[36] Z. Bajnok and R.A. Janik, Six and seven loop Konishi from Lüscher corrections, JHEP 11
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