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1 Introduction

Flux quantisation is a general topological condition on string compactifications. It is the

source of a discretuum of vacua after moduli stabilisation which is the basis of the string

landscape. The flux superpotential of type IIB string theory compactified on a Calabi-Yau

X is given by [1, 2]:

Wflux =

∫

X
(F3 − iSH3) ∧ Ω , (1.1)

where F3 and H3 are respectively the RR and NSNS three-forms, S is the complex dila-

ton and Ω the Calabi-Yau (3, 0)-form. Turning on background three-form fluxes fixes S

and the complex structure moduli U . The value of Wflux after moduli stabilisation, W0,

is determined by a set of integers coming from flux quantisation and it is expected to be

of order O
(√

χ
24

)

≃ O(10) where χ is the Euler number of the corresponding F-theory

four-fold. Standard tadpole cancellation conditions set upper bounds on the magnitude of

W0 which is usually W0 . O(100).

Even though W0 is determined from quantised fluxes, over the years several arguments

have been given that tend to prefer very small values of W0.
1 These arguments can be

grouped as based on either consistency, phenomenology and statistics:

1Notice that in supergravity the superpotential is defined up to a Kähler transformation, and so talking

about small or large magnitudes of superpotentials is not a Kähler invariant statement. The Kähler

invariant quantity with physical meaning is e
K |W |2 = m

2

3/2. Hence the superpotentials discussed here are

in a particular basis.
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1. Argument from Consistency I : a small W0 has been required by the following con-

sistency argument. The use of a derivative expansion in a supersymmetric effective

field theory indicates that there should also be an expansion in powers of ǫ ≡ F/M2

where F is the auxiliary field of the relevant light fields and M an ultraviolet cutoff.

Imposing ǫ ≪ 1 implies that the superpotential which is proportional to F should be

very small [3, 4].

2. Argument from Consistency II : a natural value W0 ≃ O(1− 10) has been argued to

be incompatible with a four-dimensional effective field theory since it implies back-

ground fluxes with an energy density of order the string scale: Vflux ≃ O(M4
s ). This

is not true since the important quantity to look at is not the scaling of the flux poten-

tial energy but its vacuum expectation value (VEV). If the dilaton and the complex

structure moduli are fixed supersymmetrically, then this VEV is vanishing at leading

order, even if it would formally scale as M4
s . In order to trust the four-dimensional

effective field theory, one has to check that the effects used to fix the Kähler moduli,

develop a potential whose VEV satisfies 〈V 〉 ≪ M4
KK . For a systematic treatment of

integrating out of the complex structure and dilaton see [5–7].

3. Argument from Phenomenology I : a small W0 has been argued to be necessary also

for a viable phenomenology. In the original efforts to stabilise the Kähler moduli T , a

non-perturbative term Wnp was added to Wflux [8]. In order to stabilise the T -moduli

at values large enough to trust the effective field theory, Wnp has to be of the same

order as Wflux, requiring the latter to be ‘fine tuned’ to values as small as 10−10 in

string units. Even though Wflux is determined from a combination of integers, small

values of Wflux are allowed in the multi-dimensional space of integer fluxes.

4. Argument from Phenomenology II : the string scale Ms is set by the Planck scale MP

and the internal volume V , Ms ≃ MP /V1/2, whereas the gravitino mass depends also

on W0: m3/2 ≃ W0MP /V . Therefore the standard phenomenological preference for

Ms ≃ MGUT ≃ 1016GeV from unification and m3/2 ≃ Msoft ≃ O(1)TeV in order to

address the hierarchy problem, requires V ≃ O(104) and W0 ≃ O(10−11).

5. Argument from Statistics: a small W0 has also been argued to be preferred on statis-

tical grounds. In the original treatments [9–11] the magnitude of W0 was argued to be

uniformly distributed. More recently, arguments have been given that the statistical

distribution of W0 can peak at zero [12, 13], indicating some preference for a hierar-

chically small value of W0. Similarly, recent statements have been made arguing that

a small cosmological constant requires a small W0 [14, 15].

In this note we revisit these arguments and argue that actually the natural values

for the flux superpotential are the largest possible allowed by tadpole constraints, that is

W0 ≃ O(10). As is well known, the requirement in the original KKLT scenario that the

flux superpotential be the same order as the non-perturbative superpotential no longer

holds in the LARGE Volume Scenario (LVS) [5, 16] where there is also no need to tune W0

– 2 –
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to obtain physically interesting scales. More importantly, we will argue that the consis-

tency argument on the derivative expansion, while apparently severe, in fact only imposes

the mild constraint W0 ≪ V1/3 which is easily satisfied for generic values of W0 for large

enough volume. Finally we also explore the statistics of W0 for uniform distribution and

its impact on the Bousso-Polchinski [17] argument for the cosmological constant and find

that large W0 is statistically preferred and in the LVS it substantially improves the tuning

needed in the Bousso-Polchinski mechanism.

2 Arguments from consistency

It has been argued that since the supersymmetry multiplet for a chiral superfield includes

the auxiliary fields F , the standard derivative expansion in an effective field theory will

also incorporate an expansion in powers of F . Concretely, if heavy fields of mass M have

been integrated out, then the effective theory will naively contain an expansion in powers

of F/M2 [3, 4] (here F is the normalised magnitude of the F-term: F ≡
√

KT T̄F
TF T̄ ).

In particular consider string flux compactifications where |F T | ≃ M2
PW0/V . If the

heavy mass is set to be the ten-dimensional Kaluza-Klein scale MKK ≃ MP /V2/3, then

imposing |F |/M2
KK ≪ 1 would imply:

|F |
M2

KK

≃ W0V1/3 ≪ 1. (2.1)

As the volume of the compact space has to be large for the effective field theory to be valid,

if correct, this condition would set a strong constraint on the value ofW0, implyingW0 ≪ 1.

We will review this argument here and readdress the original argument for the identi-

fication of the right expansion parameter. As the analysis is made after integrating out the

heavy fields, the key-point is that the physical implications must depend on the strength

of the coupling between heavy and light fields.

In order to get some intuition let us discuss this issue in global supersymmetry. We

require a case in which supersymmetry is broken and the F-terms are not trivially small.

We therefore revisit the simplest O’Raifertaigh model.

2.1 O’Raifertaigh model revisited

Recall that this model contains three chiral superfields L,H1, H2 with canonical kinetic

terms. The superpotential looks like:

W = gL
(

H2
1 −m2

)

+MH1H2, (2.2)

with g a dimensionless coupling and mass parameters m,M with m ≪ M .

In the component action the couplings of light (L) and heavy (H1, H2) states can be

read explicitly from the scalar potential:

V = g2|H2
1 −m2|2 + |2gLH1 +MZ|2 +M2|H1|2, (2.3)

from which we can easily extract the light-heavy couplings: the cubic coupling gMLH1H2

of strength gM and the quartic coupling g2L2H2
1 of strength g2.

– 3 –
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Supersymmetry is broken since the equations FL = FH1
= FH2

= 0 cannot be si-

multaneously satisfied. In a simple vacuum with H1 = H2 = 0 and FH1
= FH2

= 0

supersymmetry is broken by FL = −gm2. The splitting of the multiplets is such that for

the H1 multiplet the two scalar components acquire masses of order:

M± = M ±∆M, ∆M =
g2m2

M
=

g|F |
M

. (2.4)

with the fermionic component of mass M . Therefore the small expansion parameter is:

ǫ =
∆M

M
=

g|F |
M2

. (2.5)

If the coupling g were of order one, this would correspond to the naive expansion parameter

quoted in the literature F/M2 [3, 4]. However in cases of parametrically weak coupling g

between light and heavy sectors, this factor can play an important rôle. This will in fact

be realised in string compactifications, where the heavy states are Kaluza-Klein modes and

their couplings to the light sector will be suppressed by volume factors, as in gravitational

interactions.

2.2 The Kaluza-Klein case

Let us now consider the case of interest in which the heavy states are Kaluza-Klein (KK)

modes of mass MKK ∼ Ms/V1/6 ∼ MP /V2/3. We will show from three different approaches

that the coupling of heavy KKmodes to light states is of order g ∼ MKK/MP ∼ 1/V2/3 ≪ 1.

2.2.1 Naive KK approach

As MKK ∼ MP /V2/3, the Lagrangian for the heavy Kaluza-Klein modes H is:

L = −1

2
∂µH∂µH − 1

2

(

MP

V2/3

)2

H2 . (2.6)

We can then work out the couplings of the heavy KK states with the light volume modulus

by expanding the volume around its VEV as V = 〈V〉 + δV . Writing the canonically

normalised light field as L ∼ δV/〈V〉, the heavy-light couplings then become:

δLHL = M2
KKH

2 +
MKK

〈V〉2/3LH
2 +

1

〈V〉4/3L
2H2 + · · · (2.7)

From this we can read the (approximate) coupling between the light and heavy fields to be

g ∼ 1

〈V〉2/3 ∼ MKK

MP
, (2.8)

and we have, similar to the O’Raifertaigh case, gMKKLH
2 and g2L2H2 couplings.

– 4 –
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2.2.2 Holomorphy approach

There is also an argument based on holomorphy of four-dimensional supergravity theories,

that can be applied to the higher order couplings as well. As the light volume modulus

Re(T ) ∼ V2/3 has an axion for its imaginary part, it cannot appear perturbatively in the

superpotential. The superpotential must then read:

W (L,H) = f0(U)MPH
2 + f1(U)H3 + f2(U)

H4

MP
+ . . . (2.9)

where fi(U) are functions of the complex structure moduli. The fact that the mass of H

scales as MKK ∼ MP /V2/3 then enforces the unnormalised kinetic terms to look like:

K = −2 lnV + V4/3HH̄ + . . . (2.10)

Lkinetic = − 3

(T + T̄ )2
∂µT∂

µT̄ + V4/3∂µH∂µH̄. (2.11)

The interactions between the light modulus L ∼ lnV and the heavy KK modes H are all

then induced by canonical normalisation. Prior to normalisation we have:

Vunnormalised = M2
PH

2 +MPH
3 +H4 +

H5

MP
+ . . . (2.12)

Normalisation then gives:

Vnormalised = M2
KKH

2 +MKK ×
(

MKK

MP

)2

H3 +

(

MKK

MP

)4

H4 + . . . (2.13)

As any power of V can be written as e−λL/MP for some λ, we extract the heavy-light

couplings by expanding the exponential, to obtain:

VHL = MKK

(

MKK

MP

)

LH2 +

(

MKK

MP

)2

L2H2 +

(

MKK

MP

)3

LH3 + . . . (2.14)

We therefore see that any heavy-light interaction is suppressed by the dimensionless cou-

pling g ∼ MKK/MP ∼ V−2/3.

2.2.3 Explicit dimensional reduction approach

Next, we show how this coupling arises from dimensional reduction of the higher-

dimensional theory. Our discussion will be similar to that in [18]. In particular we show

how integrating out the extra dimensions leads to an effective field theory with cut-off scale

MKK and dimensionless coupling g ∼ MKK/MP ∼ V−2/3.

We wish to track how the effective field theory in four dimensions can capture the

couplings of massive and massless KK modes and how they depend on the underlying scales

like MKK or Ms or equivalently on the overall volume V . Starting from the Einstein-Hilbert

term in ten dimensions we will extract the volume dependence of the four-dimensional

couplings. As usual we will split the metric into background and fluctuations: gMN =

– 5 –
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gMN + κhMN . We also explicitly scale out the local linear size of the extra dimensions,

eu(x), from the total metric:

ĝMNdx
MdxN = ω e−6u gµνdx

µdxν + e2ugmndy
mdyn + off-diagonal terms . (2.15)

The factor ω = M2
P /M

2
s numerically converts to four-dimensional Planck units, and the

vacuum value 〈eu〉 ∝ MsL provides a dimensionless measure of the extra-dimensional

linear size ( 〈e6u〉 ≃ (MsL)
6 ≡ V). Recall the four-dimensional Planck scale is related to

the dimensionless volume, V = VM6
s , by M2

P = VM8
s = VM2

s , and so ω = M2
P /M

2
s = V ,

or Ms ≃ MP /V1/2.

Using
√

−ĝ(10) =
√−g(4)

√
g(6) ω2e−6u and

∫

d6y ∝ M−6
s , expanding the action in

powers of fluctuations and focussing on the four-dimensional scalar KK modes ϕi contained

within hmn, gives the following four-dimensional Einstein term and scalar kinetic terms:

−Lkin =M8
s

∫

d6y
√

−ĝ(10) ĝ
µνR̂µν = ωM2

s

√

−g(4)
(

gµνRµν + gµνGij(ϕ)∂µϕ
i∂νϕ

j + · · ·
)

=M2
P

√

−g(4) g
µν

(

Rµν + Gij(ϕ)∂µϕ
i∂νϕ

j + · · ·
)

. (2.16)

On the other hand the contributions to the scalar potential for the ϕi fields scale as follows:

−Lpot ≃ M8
s

∫

d6y
√

−ĝ(10) ĝ
mnR̂mn

= ω2M2
s e

−6u√−g(4) (e
−2ugmn)fij(ϕ)∂mϕi∂nϕ

j + · · ·

=
M4

P

V4/3

√

−g(4) U(ϕ) = M2
KKM

2
P

√

−g(4) U(ϕ) , (2.17)

where we have used e8u = V4/3 and M2
KK/M

2
P = (M2

KK/M
2
s )(M

2
s /M

2
P ) ≃ V−

1

3 V−1 = V−
4

3 .

In terms of the canonically normalised fields φi determined by ϕi ∝ φi/MP , we find

the following schematic quadratic, cubic and quartic interactions:

M2
KKM

2
P U

(

φ

MP

)

= M2
KK φ2 + gMKKφ

3 + g2 φ4 +
g3

MKK

φ5 + · · · , (2.18)

with:

g =
MKK

MP
∼ 1

V2/3
. (2.19)

Therefore each of the couplings can be clearly written in terms of the dimensionless

coupling g and the four-dimensional cut-off scale MKK . Note that φ here stands for both

light (L) and heavy (H) states and therefore this potential captures the light-heavy KK

couplings needed in the text to show that in the supersymmetric extension the expansion

parameter is ǫ = gF/M2 = F/(MPMKK) ∼ W0/V1/3.

Note also that the expansion of the kinetic terms is of the form (∂φ)2 + φ
MP

(∂φ)2 +
(

φ
M2

P

)2
(∂φ)2 + · · · illustrating that the low-energy derivative interactions are Planck

suppressed in contrast to those in the scalar potential that have a universal additional

suppression by a factor of M2
KK/M

2
P = 1/V4/3 relative to the generic Planck size [18].

We note that this is in agreement with the results obtained from the requirement of

holomorphy of the superpotential.

– 6 –
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Having identified g from three different approaches we may then continue to determine

the consistency expansion parameter in terms of g and F :

ǫ =
∆M

M
=

m3/2

MKK

=
W0

V1/3
=

gF

M2
KK

, (2.20)

where we have used that in supergravity theories with (almost) vanishing cosmological

constant the value of F is of order F ∼ W/(MPV).2 Imposing ǫ ≪ 1 implies:

W0

V1/3
≪ 1 , (2.21)

which is easily satisfied for W0 ∼ O(1− 10) and large volume.3

The last equality in (2.20) can be seen as a consistency check that the identification

of g and ǫ are correct since it has the same functional form as in the O’Raifertaigh case.

The fact that the expansion parameter is gF/M2 instead of F/M2 makes a big difference

since g ∼ V−2/3.

2.3 Integrating out dilaton and complex structure moduli

A crucial ingredient to stabilise the dilaton S and the complex structure moduli U is the

turning on of three-form background fluxes G3 which carry an energy density of order:

ρflux = α′−4

∫

d6y
√
g6G3 · Ḡ3 ∼ W 2

0M
4
s . (2.22)

A natural value W0 ≃ O(1− 10), then leads to an energy density of order the string scale

which might look incompatible with a four-dimensional effective field theory. However

this argument is too naive since the important quantity to look at is the VEV of the

previous expression. In the context of the four-dimensional supergravity theory, ρflux can

be rewritten as:

ρflux = Vflux = eK
∑

S,U

KIJ̄DIWDJ̄W̄ ∼ M4
P

V2
|DS,UW |2 ∼ W 2

0M
4
s . (2.23)

Therefore the effective field theory is under control if the S and U moduli are fixed

supersymmetrically by imposing DS,UW = 0, which implies 〈Vflux〉 = 0. Once the dilaton

and the complex structure moduli have been integrated out, one has then to make sure

that subleading effects needed to fix the Kähler moduli develop a potential whose VEV

satisfies the constraint 〈V 〉 ≪ M4
KK . When expressed in terms of W0 and the volume

this translates to W0 ≪ V1/6 [5]. We note that the above analysis assumes that one is

considering small fluctuations about the vacuum. During the cosmological evolution of

the universe the moduli fields can be displaced far from their minimum; in such situations

it is possible that moduli dynamics does not decouple from that of the KK modes.

2In no-scale models F = m3/2MP exactly at leading order.
3This is consistent with the independent discussion of the validity of the effective field theory in LVS

made in section 4.5 of [5].
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3 Arguments from phenomenology

In general terms, the Kähler moduli are not stabilised at tree-level and therefore quantum

corrections play an important rôle in their stabilisation. The scalar potential depends

on the corrections to the superpotential W and the Kähler potential K. In the original

KKLT scenario for moduli stabilisation, the volume modulus T was stabilised by a

superpotential of the form W = W0+Ae−aT . In this case, W0 ≪ 1 is required to ensure T

is stabilised at large enough values to trust the supergravity approximation. However, in

LVS models the volume mode T can be stabilised at exponentially large values even with

W0 ∼ O(1) by exploiting perturbative corrections to the Kähler potential. Stabilisation in

the supergravity regime then does not require a small value for W0.

A related argument concerns the gravitino mass m3/2 = eK/2W . Low-scale supersym-

metry can be obtained for m3/2 ≪ MP , which might seem to require W0 ≪ 1. However

this is only true if eK/2 is not particularly small. Given that K = −2 lnV , eK/2 gives a

factor of 1/V . If the dimensionless volume in string units is much greater than one, then

the gravitino mass can be much smaller than the Planck scale with W0 ∼ O(1). This is

realised in the LVS framework where a gravitino mass m3/2 ∼ 10−15MP can be achieved

with W0 ∼ 1 if the volume is stabilised at V ∼ 1015.

4 Arguments from statistics

Let us now consider the statistical distribution of flux compactifications and concentrate

on how it depends on the magnitude of W0. Away from the tail of the distribution, W0 is

assumed to be uniformly distributed as a complex function [9–11]. In [9–11] general argu-

ments were given to justify the uniform distribution of the Kähler invariant combination

eK |W0|2 before Kähler moduli stabilisation. This has been confirmed in recent studies of

particular Calabi-Yau flux compactifications where complex structure moduli stabilisation

was explicitly computed [19–21]. The O(100) moduli were reduced to only two by the use

of discrete symmetries to make the problem tractable.

On the other hand different conclusions have recently been found for a simplified

toy-model of the superpotential for the many moduli case without the use of discrete

symmetries [12, 13]. Furthermore, this exploration indicates the possibility that the

distribution for the cosmological constant peaks at zero. However this toy model does not

correspond to Calabi-Yau compactifications. In particular, it assumes a Kähler potential

for the dilaton and complex structure model of the form

K = − ln(S + S̄)−
h2,1
∑

i=1

ln(Ui + Ūi) (4.1)

and a linear superpotential

W = c1 + c2S +

h2,1
∑

i=1

(ai + biS)Ui. (4.2)

– 8 –
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These choices lead to a superpotential VEV that is a product of h2,1 factors, and the

peaking at zero reflects the possibility that any one of these factors may be close to zero.

However, the structure of equations eq. (4.1) and (4.2) are not those appropriate to

Calabi-Yau compactifications, as the complex structure moduli are not separate and are

coupled to each other. In order to gain a clear understanding of the distribution of W0,

a complete treatment of the many moduli case for explicit Calabi-Yau compactifications

should be performed.

In what follows we assume that W0 is uniformly distributed (in the region of values

suitable for moduli stabilisation) and study implications for the distribution of the

cosmological constant. Let us take the density of states to be ρ. Then the number of

states in an area dA of the (Re(W0), Im(W0))-plane is dN = ρ dA. Thus the number of

states between |W0| and |W0|+ δ|W0| is:

dN = 2πρ|W0|δ|W0| . (4.3)

Therefore for uniformly distributed W0 the number of states is proportional to its

magnitude |W0| and a generic O(10) superpotential is also preferred statistically over the

tuned small W0. Given this, let us compare the distribution of the cosmological constant

in the KKLT and LVS constructions. Both of these scenarios give rise to AdS minima

and an uplifting is needed. The uplifting mechanism can be of several sources from anti

D3-branes to D-terms, non-perturbative effects, etc. (see [22] for a recent review of all

these effects in LVS models). The rôle of the uplifting term is to bring the minimum to

a value close to Minkowski. The tuning of the cosmological constant can then be done by

variation of the fluxes as in the Bousso-Polchinski scenario. We will assume the uplifting

has been done and concentrate on the tuning that is achieved by knowing there is an

enormous number of flux vacua for a small range of values of |W0| say from 0 to 100.

For KKLT the vacuum energy Λ is of order |W0|2/V2. At the minimum of the scalar

potential V ∼ ln |W0| and so the vacuum energy behaves as |W0|2. Now suppose we want

the number of states between Λ and Λ+δΛ. δΛ would be 10−120M4
P to have a good spacing

to realise the Bousso-Polchinski scenario for the cosmological constant:

δΛ ∼ 2|W0|
(ln |W0|)2

δ|W0| . (4.4)

The number of states between Λ and Λ + δΛ is then almost uniform:

dN ∼ ρ (ln |W0|)2 δΛ , (4.5)

since it depends on |W0| only logarithmically. This means that even though larger values

of |W0| are statistically preferred, for the cosmological constant tuning there is no further

difference between small or larger values of |W0|. The tuning of the cosmological constant

is achieved as in the original Bousso-Polchinski proposal by having an enormous value of

ρ in a uniform distribution of values of Λ. The relevant quantity for this tuning is δ|W0|
and not the magnitude of W0.
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However for LVS the situation is different. In this case:

Λ ∼ |W0|2
V3

with V ∼ |W0| ea/gs , (4.6)

implying that the cosmological constant scales as:

Λ ∼ e−3a/gs

|W0|
. (4.7)

Let us study the distribution at fixed gs. A small shift δ|W0| causes a shift in Λ of the order:

δΛ ∼ |W0|−2e−3a/gsδ|W0| , (4.8)

and so, by using (4.3), the number of states between Λ and Λ + δΛ is:

dN ∼ ρ|W0|3e3a/gsδΛ , (4.9)

which is not independent of |W0| anymore. Thus from the point of view of the cosmological

constant, LVS models have an increasing density as |W0| increases. (Furthermore, recently

in [23] it was found that the decay from a typical vacuum with value |W0| to another one

with a different value of |W0| is such that the change in |W0|, |∆W0| (not to be confused

with δ|W0| above) is also of order O(1)).

These results can also be rephrased in terms of the number h1,2 of complex structure

moduli required for efficient tuning of the cosmological constant. Recall that the number

of flux vacua for a Calabi-Yau is given by:

Nvac ∼ N
4(h1,2+1)
tad , (4.10)

where Ntad is the number of different values that each flux quanta is allowed to take. Ntad

is set by tadpole cancellation and is typically of O(10), giving:

ρ ∼ Nvac

π|W0|2max

∼ 104h
1,2

for |W0|max ∼ 100 . (4.11)

Using this in (4.9) and demanding δN & 1 for δΛ ∼ 10−120 one arrives at:

104(h
1,2−30)|W0|3e3a/gs & 1 . (4.12)

Note that ea/gs ∼ V/|W0| ∼ MP /m3/2, and so (4.12) can be rewritten as:

104(h
1,2−30)|W0|3

(

MP

m3/2

)3

& 1 . (4.13)

Parameterising the flux superpotential as |W0| ∼ 10x and the gravitino mass asMP /m3/2 ∼
10y, the previous relation becomes:

h1,2 & 30− 3(x+ y)

4
, (4.14)
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implying that in LVS models for a given y, larger values of x are more efficient on the

tuning of the cosmological constant since they allow the existence of a reasonable density

of states with the observed value of Λ for smaller h1,2. The above analysis is for the AdS

minimum of LVS; to get a dS minimum one needs an uplift sector. This can be done by

an anti-brane in a warped throat [8], magnetised D7 branes [24] or gaugino condensation

on D3 branes [22]. The effect of the additional sector on the cosmological constant is

the addition of a constant piece; the density of states close to zero cosmological constant

becomes equal to the density of states at the LVS minimum.

5 Conclusions

We have revisited the question regarding the magnitude of the flux superpotential in

Calabi-Yau compactifications of IIB string theory.

We found that the derivative expansion of supersymmetric field theories with broken

supersymmetry can have a control parameter which is significantly smaller that F/M2. We

have estimated the expansion parameter by three independent methods: a naive Kaluza-

Klein reduction, an argument based on holomorphy and a study of the volume dependence

of different terms in detailed dimensional reduction. They all give g ≃ V−2/3. This implies

that the consistency condition for the effective field theory to be valid is gF/M2 ≃ W0 ≪
V1/3 which is satisfied for large volumes without imposing strong constraints on W0. The

fact that the coupling among heavy and light KK states is of order V−2/3 may have other

physical implications which may be worth exploring.

We also concluded that for moduli stabilisation, KKLT requires small values of W0 but

this is not needed in the LVS context. A generic value of W0 ∼ O(1− 10) is also preferred

statistically and in LVS it makes the Bousso-Polchinski mechanism more efficient. What

is needed to have a small cosmological constant is a small spacing δ|W0| and not small

W0. Also, since the scale of the soft terms depends on the values that both W0 and the

volume take, the smallness of W0 is not a necessary criterion for TeV-scale soft terms.

This in keeping with the fact that it is the gravitino mass, determined by eK/2|W0|, that
is Kähler invariant while W0 by itself is not.
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