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1 Introduction

With the recent discovery of a new resonance at the LHC [1, 2] the focus now shifts to

the determination of its detailed properties including its spin, CP, and electroweak (EW)

quantum numbers. It has been shown in recent studies [3–8] and also emphasized for

quite some time [9–13], that the decay to four charged leptons is a powerful channel in

accomplishing this goal. Because of the experimental precision with which this channel

is measured, it offers one of the few opportunities to use analytic methods to analyze

the data. We thus seek to extend previous analytic calculations of both the signal and

the standard model (SM) background and present completely general, leading order (LO)

fully differential cross sections for the 2e2µ final state mediated by intermediate Z and γ

gauge bosons. In addition to performing discovery/exclusion analysis and signal hypothesis

testing one could, with enough data, experimentally determine all possible couplings of a

spin-0 scalar to pairs of neutral electroweak (EW) gauge bosons in one multi-parameter fit

using these expressions.

Analytic expressions are ideal for use in the matrix element method (MEM) taking

full advantage of all of the kinematic information in the event. One can then use the fully

differential cross section to build a likelihood function [14, 15] to be used as a discriminant.

For a recent study of the golden channel comparing existing leading order MEM-based

– 1 –



J
H
E
P
0
1
(
2
0
1
3
)
1
8
2

approaches and software [16], along with providing code which calculates kinematic dis-

criminants based on the Madgraph [17] matrix element squared see [18]. We view this

‘analytic approach’ as equivalent and complementary to these other approaches. These

analytic expressions also allow for more flexibility in performing multidimensional fits to

determine coupling values which will be useful when performing parameter extraction. Our

parametrization allows for easy implementation of various hypothesis tests as well as the

addition of NLO effects which can also be implemented into an MEM framework [19, 20].

For the signal we compute the fully differential decay width for the process ϕ →
ZZ + Zγ + γγ → 2e2µ where ϕ is a spin-0 scalar. We allow for the most general CP

odd/even mixtures and include all interference between intermediate vector bosons. While

these expressions are applicable to the newly discovered boson at 125 GeV, they are also

applicable for any new scalar decaying to neutral gauge bosons. This allows one to consider

a variety of hypotheses which can be tested against one another. It should be emphasized

however that for optimal performance, even when testing between two different signal CP

and spin hypothesis, one should also include the background in the discriminant since in

any given sample it is not known with full certainty which are background and which are

signal events. Thus we seek to provide both signal and background distributions which can

be used together to build a complete likelihood.

For the background we compute the fully differential cross section for the qq̄ → 2e2µ

process. This includes the contributions from all the intermediate vector bosons through

both t-channel pair production and the singly resonant four-lepton production s-channel

process qq̄ → Z → 2e2µ. We include all interference effects between the intermediate

vector bosons as well the interference between the s-channel and t-channel diagrams which

can affect the differential distributions as we will see below. Also, unlike the analytic

calculations in [5, 21] of the golden channel background differential cross section, these

expressions are valid for a much larger energy range for the four lepton invariant mass as

well as the invariant mass of each lepton pair. In particular, since these also include the

γγ contribution one can probe lower values in the differential mass spectrums, which as we

will see is a highly discriminating region. The intermediate vector bosons are allowed to

be on or off-shell and in what follows we do not distinguish between the two. We do not

discuss the 4e and 4µ final states explicitly, but in some kinematic regimes the interference

effects between identical final state particles can be sizable [18]. We leave an inclusion of

these final states to future work.

Although other channels can also probe the tensor couplings of a resonance to neu-

tral gauge bosons, the golden channel, with a four body final state has the advantage of

extra kinematic variables, such as the azimuthal angle between lepton decay planes. This

variable would be unavailable for example in the γγ final state. In addition to offering

more kinematic observables, the golden channel offers the unique opportunity to test all

of the possible tensor couplings including any potential interference effects between the

different operators in one direct (and very precise) fully correlated measurement without

any recourse to theoretical input (other than the production cross section of course). This

allows for stringent tests of the SM to be performed and perhaps allow us to uncover new

physics which may be hiding in subtle effects within the golden channel.
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In addition to presenting the calculation of the fully differential cross sections we exam-

ine various singly and doubly differential distributions and elucidate the subtle interference

effects between the different contributions to the signal and background. Of course a proper

treatment of the golden channel requires careful study of detector resolution and acceptance

effects, but we leave that to ongoing analyses.

The organization of this paper is as follows: in section 2 we briefly review the kinematics

of the four lepton final state. In section 3 we describe the calculation of the signal fully

differential cross section and examine the differential mass spectra for a variety of signal

hypotheses. In section 4 we describe the calculation of the background fully differential

cross section and examine how the kinematic variables are affected by NLO and pdf effects

before concluding in section 5. We also present in the appendix a pair of expressions for

the signal and background doubly differential mass spectrums and also show plots for a

multitude of singly and doubly differential spectra.

2 Four lepton events

The kinematics of four lepton (4`) events are described in detail in many places in the lit-

erature and here we use the convention found in [3]. We comment on the kinematics briefly

and point out that in the case of the background the physical interpretation of the kine-

matic variables is not as intuitive as in the case of previous studies which only considered

the t-channel ZZ contribution. Now since we include the contribution from resonant four

lepton production, the lepton pairs do not necessarily reconstruct to a physical particle.

In this case, resonant production of a Z (or possibly γ) is followed by decay to charged

leptons one of which radiates a Z/γ, which again decays to charged leptons (see figure 4).

The first lepton pair which radiates the second vector boson does not reconstruct to the

Z boson four momentum, which in this case is also equal to the invariant mass of the 4`

system. The kinematics remain unchanged, but now we must interpret the angles defined

in the lepton pair rest frame with respect to the direction of momentum of the lepton pair

system as opposed to that of one of the gauge bosons. Thus, we have the following more

general interpretations for the kinematic variables defined in the 4` rest frame;

• M1,2 — The invariant mass of the two lepton pair systems.

• Θ — The ‘production angle’ between the momentum vectors of the lepton pair which

reconstructs to M1 and the total 4` system momentum.

• θ1,2 — Polar angle of the momentum vectors of e−, µ− in the lepton pair rest frame.

• Φ1 — The angle between the plane formed by the M1 lepton pair and the ‘production

plane’ formed out of the momenta of the incoming partons and the momenta of the

two lepton pair systems.

• Φ — The angle between the decay planes of the final state lepton pairs in the rest

frame of the 4` system.
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Figure 1. Definition of angles in the four lepton CM frame X.

These variables are all independent subject to the constraint (M1 + M2) ≤
√
s where s is

the invariant mass squared of the 4` system. We have also ignored the irrelevant azimuthal

production angle.

In the case of the signal events one can replace ‘lepton pair’ momentum with Z or γ

momentum since in those cases, both lepton pairs do indeed decay from a vector boson

and the intuition follows that found in Fig 1. The same can be said for background events

which proceed through t-channel pair production. In these cases, the angle Φ1 defines the

azimuthal angle between the di-boson production plane and the plane formed by the lepton

pair which reconstructs to M1 and Θ is the vector boson production angle. Other than

this more subtle interpretation of the various kinematic variable however, in practice the

definitions of these variables are left unchanged from the definitions found in [3] which we

follow from here on.

3 Signal

In this section we present the calculation of the signal fully differential cross section and

examine the differential mass spectra for several signal hypothesis. We take our signal to

be a general spin-0 scalar and consider all possible couplings to any combination of Z and

γ pairs allowing for mixtures of both CP even and odd interactions. Previous studies have

analytically computed the ZZ [3, 4] contribution to the golden channel, but as far as we

are aware, none consider the contributions from the Zγ and γγ intermediate states. There

are also interference effects between the intermediate state which are not present when γ is

not allowed to decay. As we will see, these effects can manifest themselves in the kinematic

distributions. Of course for a SM Higgs, the Zγ and γγ contributions to the golden channel

are expected to be small, but this need not be true for a general scalar or if the discovered

resonance turns out to have enhanced couplings to Zγ or to γγ. How large these effects

are once one takes into account detector and acceptance effects deserves careful study, but

we leave this for ongoing work.
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The most general couplings of a spinless particle to two gauge bosons with four mo-

menta k1 and k2 can be expressed as,

iΓµνij = v−1
(
A1ijm

2
Zg

µν +A2ij(k1 · k2g
µν − kν1k

µ
2 )

+A3ijεµναβk
α
1 k

β
2

)
(3.1)

where ij = ZZ,Zγ, or γγ. The A1,2,3 are dimensionless arbitrary complex form factors

and v is the Higgs vacuum expectation value (vev), which we have chosen as our overall

normalization. For the case of a scalar coupling to Zγ or γγ electromagnetic gauge invari-

ance requires A1 = 0, while for ZZ it can be generated at tree level as in the SM or by

higher dimensional operators. We have chosen to write the vertex in this form to make the

connection with operators in the Lagrangian which may generate them more transparent.

For example the following list of operators may generate a coupling as in eq. (3.1),

L ∼ 1

v
ϕ
(
ghm

2
ZZ

µZµ + gZZ
µνZµν + g̃ZZ

µνZ̃µν

+ gZγF
µνZµν + g̃ZγF

µνZ̃µν

+ gγF
µνFµν + g̃γF

µνF̃µν + . . .
)

(3.2)

where Zµ is the Z field while Vµν = ∂µVν−∂νVµ the usual bosonic field strengths. The dual

field strengths are defined as Ṽµν = 1
2εµνρσV

ρσ and the . . . is for operators of dimension

higher than five. For a given model many of these are of course zero. If ϕ is the Standard

Model Higgs, then gh = i, while gZ , gZγ and gγγ are 6= 0, but loop induced and small.

Detailed studies of the ZZ contribution to the golden channel mediated through the op-

erators with coefficients gh, gZ were conducted in [4, 6, 22]. The operators corresponding

to gZγ were studied in [8] for the golden channel final state and in [23] for the `+`−γ final

state and both were shown to be useful discriminators.

Other recent studies of these operators, though not only through the golden channel

final state, have also been done. The pseudo scalar couplings g̃Z , g̃Zγ , g̃γ were studied

recently in the context of the newly discovered resonance in [24] where it was shown that

a purely CP odd scalar is disfavored as the new resonance. The analysis of [25] shows

that with a fit of the γγ, ZZ∗, and WW ∗ rates, as well as the absence of a large anomaly

in continuum Zγ, that the scenario of the four lepton decays being due to gZ or gZγ is

strongly disfavored. While these statements contain few assumptions, they are still model

dependent and should be confirmed by direct measurements.

Even if the newly discovered resonance appears to be ‘SM like’, it is still possible that

it can have contributions to the 2e2µ channel coming from operators other than gh which

are slightly enhanced relative to the SM prediction. Here we are motivated by asking

what information can be extracted from this channel with out any a-priori reference to

other measurements or theoretical input. In addition, there still exists the possibility that

another scalar resonance will be discovered which can also decay to EW gauge boson pairs.

In this case it may have comparable contributions from the various operators. Thus we

allow for all operators in eq. (3.2) to contribute simultaneously including all interference

effects between the ZZ, Zγ, and γγ intermediate states. Because the vertex in terms of

arbitrary complex form factors is more general than the Lagrangian, for purposes of the

calculation we use eq. (3.1) explicitly. Below we summarize the details of the calculation.
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γ

Z
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γ
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1
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Z

2̄

2

1̄

1

Figure 2. Feynman diagrams contributing to ϕ→ 2`12`2. The arrows are to indicate the direction

of momentum flow.

3.1 Calculation

To compute the process ϕ→ ZZ+Zγ+γγ → 4` we include the diagrams shown in figure 2

and parametrize the scalar coupling to gauge bosons as in eq. (3.1). The total amplitude

can be written as,

M =MZZ +MZγ +MγZ +Mγγ (3.3)

which upon squaring gives,

|M|2 = |MZZ |2 + |MZγ |2 + |MγZ |2 + |Mγγ |2

+ 2Re
(
MZZM∗

Zγ +MZZM∗
γZ +MZZM∗

γγ

MγγM∗
Zγ +MγγM∗

γZ +MZγM∗
γZ

)
.

(3.4)

An explicit calculation of all of these terms is overwhelming, but things can be simplified

greatly by taking the final state leptons to be massless. In this case, the momentum

dependent terms in the Z boson propagator numerators do not contribute. This leads to

the propagators of both Z and γ to have the same Lorentz structure, namely the Minkowski

metric gµν . This implies that all of these terms have the same general Lorentz structure.

The only difference from these terms comes from Breit-wigner factors in the propagators

as well as in the couplings of the vector bosons, some of which are zero thus ‘turning off’

the contributions from their corresponding Lorentz structure. To see this, let us consider

the amplitude for any combination of intermediate Z and γ shown in figure 2,

Mij = ūj

(
iγγ(gj2RPR + gj2LPL)

)
vj

(
−igνγ

M2
2 −m2

j + imjΓj

)

Γµνij

(
−igµσ

M2
1 −m2

i + imiΓi

)
ūi
(
iγσ(gi1RPR + gi1LPL)

)
vi (3.5)

where i, j label Z or γ while 1 and 2 label the final state leptons and can in principal be e or

µ. In the 4e and 4µ case one must also include the interference between identical particles,

but we do not address that issue here. Upon squaring the amplitude and summing over final
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state lepton polarizations we can obtain a general amplitude squared which encompasses

any of terms in eq. (3.4) and is given by,

MijM∗
īj̄ = (D1iD2jD

∗
1̄iD

∗
2j̄)

−1

(gµσT σσ̄1īi gµ̄σ̄)(gνγT γγ̄2jj̄
gν̄γ̄)Γµνij Γ∗µ̄ν̄

īj̄
(3.6)

where
T σσ̄1īi = (gi1Rg

ī
1R + gi1Lg

ī
1L)Tr(6 p1γ

σ 6 p1̄γ
σ̄)

D1i = M2
1 −m2

i + iΓimi

(3.7)

and Γµνij are given in eq. (3.1). The giR,L are at this point general left and right handed

couplings of a ‘Z-like’ spin-1 vector boson to a pair of fermions. The bars are to indicate

that the corresponding index belongs to the conjugated amplitude and are distinct indices

from the un-bared ones. We treat all couplings at every vertex encountered when tracing

over the Dirac strings as distinct as well as all Breit-Wigner factors so for any amplitude

squared term there can in principal be four different vector bosons as intermediate states.

In the case of the photon we have of course gγR = gγL = −eem and mγ = Γγ = 0. Since at

this stage the various couplings and masses are completely general, eq. (3.6) applies to any

process where a scalar decays to two spin-1 vector bosons which then decay to massless

fermions through ‘Z-like’ couplings.

Expanding out the terms in eq. (3.6) we can write the amplitude squared as,

MijM∗
īj̄ = C++

ijīj̄
L++
ijīj̄

+ C+−
ijīj̄

L+−
ijīj̄

+

C−+
ijīj̄

L−+
ijīj̄

+ C−−
ijīj̄

L−−
ijīj̄

=
∑
ab

Cabijīj̄L
ab
ijīj̄

(3.8)

where a, b = (+,−) with a and b corresponding to the fermion pairs labeled 1 and 2

respectively and

C±±
ijīj̄

=
(gi1Rg

ī
1R ± gi1Lgī1L)(gj2Rg

j̄
2R ± g

j
2Lg

j̄
2L)

(D1iD2jD∗
1̄i
D∗

2j̄
)

L±±
ijīj̄

= (gµσT
σσ̄
1±gµ̄σ̄)(gνγT

γγ̄
2±gν̄γ̄)Γµνij Γ∗µ̄ν̄

īj̄
.

(3.9)

The T σσ̄1± are the Dirac traces found in eq. (3.7) and ± indicates whether the trace ends

with a γ5 (−) or not (+). The full amplitude squared can then be built out of the objects1

in eq. (3.9),

(MijM∗
īj̄)

ab = Cabijīj̄L
ab
ijīj̄ . (3.10)

Since all of the angular information is contained in the Lab
ijīj̄

we can take advantage of the

simple nature of these terms to perform the desired integration before summing over ±
and the various vector boson intermediate states, after which analytic integration becomes

unmanageable. Expressions for the Lab
ijīj̄

are obtained in terms of invariant dot products

and CM variables. These objects can be used to build the differential cross section of any

scalar decay to four massless fermions via two spin-1 vector bosons. From these one can

1Expressions for the various coefficients and Lorentz structure can be obtained by emailing the corre-

sponding author.
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also reproduce analytic results for other processes such as the semi-leptonic decay of the

Higgs to `νjj [26].

The final fully differential decay width can now be written as,

dΓϕ
dM2

1dM
2
2dΩ

= Π4`

∑
ab

(∑
ijīj̄

Cabijīj̄L
ab
ijīj̄

)
(3.11)

where dΩ = dcΘdcθ2dcθ1dΦdΦ1 (cθ = cos θ) and Π4` is the final state lepton four body

phase space derived following [27] and given by,

Π4` =

(
1

2π

)2( 1

32π2

)2( 1

32πs

)
·
(

1 +
(M2

1 −M2
2 )2

s2
− 2(M2

1 +M2
2 )

s

)1/2
. (3.12)

We can obtain the differential mass spectrum2 via,

dΓϕ
dM2

1dM
2
2

= Π4`

∑
ab

(∑
ijīj̄

Cabijīj̄(
∫
dΩLabijīj̄)

)
. (3.13)

We note that we perform the sum over vector bosons before the sum over ± which allows

for greater simplification of the expressions. We can now go on to examine the differential

mass spectrum for different signal hypothesis. In the appendix we show various singly and

doubly differential spectra for a number of signal hypotheses. We also give in eq. (A.1) of

the appendix, an explicit expression for the doubly differential mass spectrum of a scalar

with SM-like ZZ couplings and both CP even and CP odd Zγ couplings including all

interference effects.

3.2 The differential mass spectra

In this section we examine the singly differential mass spectra for various signal hypotheses

and give a feel for how M1 and M2 might be able to distinguish between the different

operators in eq. (3.2). Explicitly we consider the following cases,3

1. SM including Zγ and γγ (A1ZZ = 2, A2Zγ = 0.014, A2γγ = −0.008)4

2. SM coupling to ZZ plus enhanced Zγ and γγ (A1ZZ = 2, A2Zγ = 3 ∗ 0.014, A2γγ =

−1.3 ∗ 0.008)

3. SM coupling to ZZ plus CP odd couplings to γγ and Zγ (A1ZZ = 2, A3Zγ =

0.01, A3γγ = 0.01)

4. CP odd/even mixed coupling to ZZ only (A1ZZ = 2, A3ZZ = 0.1)

5. General Scalar (A1ZZ = 0.1, A2ZZ = 1, A2Zγ = 0.01, A2γγ = 0.01, A3ZZ = 1, A3Zγ =

0.01, A3γγ = 0.01)

2We give an analytic expression for a particular hypothesis in the appendix.
3We have validated these cases with FeynRules/CalcHEP [16, 28] and the Monte Carlo generator intro-

duced in [3].
4Values obtained from [25] after translating to our parametraziation.
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Figure 3. In the top plot we take 4 GeV < M1,2 < 120 GeV while in the bottom plot we take the

range 40 GeV < M1 < 120 GeV, 4 GeV < M2 < 120 GeV at
√
s = mh = 125 GeV when integrating

over phase space. The SM is shown in blue, but is essentially indistinguishable from hypothesis 3

(see text).

where we also show the values for the couplings chosen in eq. (3.1). Couplings whose

values are not shown in a given hypotheses are taken to be zero and we take all values at√
s = mh = 125 GeV. Note that all of these couplings can be interpreted in terms of the

couplings in eq. (3.2) if we assume only up to dimension 5 operators contribute.

We obtain the differential mass spectra via eq. (3.13), followed by integration over M1

or M2, and compare them for different hypotheses. These are shown in figure 3 for two

ranges. The first range we take 4 GeV< M1,2 < 120 GeV treatingM1 andM2 symmetrically

shown in the top plot. In this case we only show the M1 distribution since it is identical to

the M2 distribution and only show the lower mass region above which the different cases

are very similar.

We also consider the more ‘experimental’ cut requiring a wide window around the Z

boson mass 40 GeV < M1 < 120 GeV and 4 GeV < M2 < 120 GeV for the ‘off-shell’ vector

boson. In this case the M1 distribution is indistinguishable for the separate cases so we

only show the M2 distribution. One can see, that in particular in the low mass region, these

variables can be highly discriminating between the different cases. We point out also that,

if values of M2 . 10 GeV can be probed, the requirement of a window around a Z boson

may decrease sensitivity to certain hypotheses which have a sizable γγ or Zγ component

such as hypothesis 5.

Our lower bound on M2 is chosen to be 4 GeV since lower values of M2 runs the risk of

contamination from J/ψ states whose mass is ∼ 3 GeV. We emphasize that experimental

analyses should be made to push down as far possible since as can be seen in figure 3, one

needs to be able to probe M2 below ∼ 10 GeV in order to discriminate between a SM scalar

(hypothesis 1) and one with enhanced Zγ and γγ couplings (hypothesis 2) for example.

Though current experimental signal searches in the golden do not yet consider such low

values for M2, it seems feasible to push the M2 cut down further as was done in the CMS

observation of the Z → `+`−`+`− process [29]. We therefore include this highly interesting

region here and hope that it may motivate efforts to push the M2 reach lower. We leave a

complete analysis including detector effects to an ongoing study.
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4 Background

The dominant irreducible background to the golden channel comes from qq̄ annihilation

into gauge bosons. At energies ∼ 125 GeV the dominant contribution comes from t-channel

Zγ production. However, as we will see contributions from s-channel Z → 4` diagrams

can effect the angular distributions such as the distribution of the angle between the decay

planes Φ defined in section 2. Furthermore, we include the ZZ and γγ contributions since

in principal these are always present and may have observable interference effects due to the

fact that they add at the amplitude level when decaying to charged leptons. In addition,

the inclusion of these contributions allows for considering a much larger energy range in

one fully differential cross section than can be considered when including only the t and

u channel contributions. Of course NLO effects, including the gg initiated process [30–32]

will contribute as well, but these are expected to be small and mainly only effect the ‘input’

invariant mass (and overall normalization) for the fully differential cross sections. We will

examine this point below.

It should also be noted that ideally one would like to include the 4e and 4µ final states

which in some kinematic regimes can have non-negligible contributions from interference

between final state particles [18]. The inclusion of this channel would allow for greater

sensitivity for the same amount of luminosity. However, because of the interference between

identical final states in this case, the Lorentz structure becomes severely more complicated

and we thus leave this calculation for future work.

4.1 Calculation

The background calculation is much more involved than the signal calculation due to a

higher number of Feynman diagrams in addition to a more complicated Lorentz structure.

As in the signal case the amplitude can be written as,

M =MZZ +MZγ +MγZ +Mγγ . (4.1)

Now however, each of these amplitudes breaks down into six ‘sub-amplitudes’. To see this,

let us first consider the ZZ mediated decays. There are three diagrams which contribute to

the 2e2µ process shown in figure 4. First there is the t-channel contribution shown in the

bottom diagram. This contribution (and its u-channel counterpart) has been computed

previously for both on-shell [21] and off-shell [5] Z bosons. The second contribution comes

from resonant 2e2µ production proceeding through the top two diagrams. Each of these

diagrams also has a corresponding ‘crossed’ diagram taking into account the other possi-

bility for attaching the vector boson lines. This gives six diagrams for the ZZ contribution

to the golden channel. Similarly, there are six more for the γγ contribution plus six for

Zγ and six for γZ giving a total of twenty four diagrams. At first this many diagrams can

seem intractable, but as we will see, when organized in a proper manner the calculation

is relatively straightforward with the help of Tracer [33] and Mathematica to perform the

Lorentz contraction and symbolic manipulation.
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Figure 4. Feynman diagrams contributing to qq̄ → ZZ → 2e2µ and qq̄ → Z → 2e2µ. The arrows

are to indicate the direction of momentum flow.
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Figure 5. Feynman diagrams contributing to qq̄ → ViVj → 2`12`2 and qq̄ → Vi → 2`12`2. Note

that diagrams (c) − (f) are in fact s-channel diagrams so the fermions labeled by 1 and 2 are not

to be confused as being in the initial state. This is taken into account in how the various momenta

are assigned as indicated by the arrows.

To begin we first note that the six diagrams can be ‘twisted’ and arranged into the

form found in figure 5 where we now allow the vector bosons to take on any Z or γ, but

once chosen are treated as fixed. We use the conventions indicated in the diagrams and

in particular refer to the diagrams (a), (c), and (e) as ‘t-channel’ type diagrams and (b),

(d), and (f) as ‘u-channel’. This is not to be confused with the typical vocabulary for this

process which refers to diagrams (a) and (b) as t and u channel and diagrams (c)− (f) as

s-channel. We find this re-naming convenient for organizing and reducing the many terms

which need to be computed for the differential cross section. The Lorentz structure for all

of these amplitudes is clearly the same. One needs only to keep proper track of how the

various momentum are routed through each diagram. We can see this by considering the
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amplitude explicitly. Using the massless initial quark and final state lepton approximation

we can write any of the amplitudes in figure 5 as,

Mn
Xij = ūZ

(
iγσ(gjZRPR + gjZLPL)

)
vZ

(
−igµσ

M2
Z −m2

j + imjΓj

)

v̄X
(
iγµ(giXRPR + giXLPL)

)( i 6 kXn
k2
Xn

)(
iγν(gjXRPR + gjXLPL)

)
uX(

−igνγ
M2
Y −m2

i + imiΓi

)
ūY
(
iγγ(giY RPR + giY LPL)

)
vY

(4.2)

where we label the amplitude by the ‘long’ dirac string, in this case X. The labels X/Y/Z =

1, 2, q where 1, 2 are for final state lepton pairs while q is for the initial state quarks. The

i, j = Z, γ label the vector bosons and n = t, u labels the t and u-channel diagrams in

our new vocabulary. The invariant masses are defined as M2
Y = (pY + pȲ )2. The internal

fermion momentum are given in terms of external momentum by,

kqt = pq − (p1 + p1̄), kqu = pq − (p2 + p2̄)

k1t = −p1̄ − (p2 + p2̄), k1u = (pq + pq̄)− p1̄

k2t = (pq + pq̄)− p2̄, k2u = −p2̄ − (p1 + p1̄) . (4.3)

Note that the invariant masses MY and MZ do not necessarily correspond to the invariant

mass formed by the final state lepton pairs, as they do in the signal case and in previous

analytic calculations of the golden channel background which neglect the s-channel dia-

grams. Now with the inclusion of the resonant four lepton processes in (c) − (f) we have

for these diagrams M2
Y/Z = M2

q = s which is equal to the invariant mass of the four lepton

system. To obtain any of the physical amplitudes one simply assigns the appropriate labels

to eq. (4.2) as well as the appropriate momenta. Thus for example for diagram (c) we have

X → 1, Y → q, Z → 2, and n → t. To switch from t-channel type to u-channel diagrams

(staying in the same row in figure 5) one simply takes t → u and γσ ↔ γγ . Of course at

this stage all these labels are arbitrary meaning that the amplitude in eq. (4.2) applies to

any process with this topology and Lorentz structure. Note that for the Z propagators we

drop the momentum dependent terms since they do not contribute in the massless lepton

approximation. As mentioned in the signal case, for the photon gγR = gγL and mγ = Γγ = 0,

but for now we take the couplings and propagators as general.

As in the case of the signal, the next step is to find a generalized amplitude squared

for any two of the six diagrams. Although there are in principal thirty six terms when

squaring the amplitudes, these organize themselves into only two distinct types of Lorentz

structure. The first type is found when multiplying any two diagrams in the same row

of figure 5. This is the Lorentz structure found in our previous calculations of the ZZ

contribution in which only diagramsMqt andMqu are included (the top row). The square

of M1t +M1u and M2t +M2u (second and third rows) will also exhibit this Lorentz

structure. The second type of Lorentz structure is obtained when taking the product of

any two diagrams in different rows. In the conventional language, interference between
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the first and second row or first and third row corresponds to interference between the t-

channel di-boson production amplitudes and the s-channel diagrams. Interference between

the second and third row corresponds to interference between the two types of s-channel

diagrams. We first discuss the ‘squared’ terms where the amplitudes are contained within

the same row before examining the interference terms between rows.

Using the conventions just described, we can write the product of any two amplitudes

within a row as
Mn

XijMm∗
Xīj̄ = (DY iDZjD

∗
Y īD

∗
Zj̄)

−1

(gµσT σσ̄Y īigµ̄σ̄)(gνγT γγ̄Zjj̄gν̄γ̄)T νµµ̄ν
Xijīj̄nm

(4.4)

where the T σσ̄
Y īi

and DY i are defined similarly to those in eq. (3.7) and the long Dirac string

is given by,

T νµµ̄ν
Xijīj̄nm

= (giXRg
j
XRg

ī
XRg

j̄
XR + giXLg

j
XLg

ī
XLg

j̄
XL)

· Tr( 6 pXγν 6 kXnγµ 6 pX̄γµ̄ 6 kXmγν̄) +

(giXRg
j
XRg

ī
XRg

j̄
XR − g

i
XLg

j
XLg

ī
XLg

j̄
XL)

· Tr(6 pXγν 6 kXnγµ 6 pX̄γµ̄ 6 kXmγν̄γ5) .

(4.5)

Expanding out the terms in eq. (4.4) we can organize in a manner similar to eq. (3.8) and

write the amplitude squared as,

Mn
XijMm∗

Xīj̄ =
∑
abc

CabcXXijīj̄L
abc
XXnm (4.6)

where again a, b, c = (+,−) in the order X,Y, Z and

C±±±
XXijīj̄

= (DY iDZjD
∗
Y īD

∗
Zj̄)

−1

(giXRg
j
XRg

ī
XRg

j̄
XR ± g

i
XLg

j
XLg

ī
XLg

j̄
XL)

· (giY RgīY R ± giY LgīY L)(gjZRg
j̄
ZR ± g

j
ZLg

j̄
ZL)

L±±±
XXnm = (gµσT

σσ̄
Y±gµ̄σ̄)(gνγT

γγ̄
Z±gν̄γ̄)T νµµ̄νXnm±.

(4.7)

The T σσ̄Y,Z± are the Dirac traces found in eq. (3.7) while the T νµµ̄νXnm± are those found in (4.5).

Again ± indicates whether the trace ends with a γ5 (−) or not (+). We note that unlike

in the signal case, when organized in this way (essentially by powers of γ5) the gauge

structure completely factors from the Lorentz structure. This allows us to sum over all

possible intermediate vector bosons at this stage to write,

Mn
XMm∗

X =
∑
ijīj̄

Mn
XijMm∗

Xīj̄

=
∑
ijīj̄

∑
abc

CabcXXijīj̄L
abc
XXnm

=
∑
abc

(
∑
ijīj̄

CabcXXijīj̄)L
abc
XXnm =

∑
abc

CabcXXL
abc
XXnm .

(4.8)

This simplifies things greatly and in particular the objects CabcXX now contain all of the

information regarding the intermediate vector bosons including the interference effects
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between the different processes. These will serve as overall coefficients for the various

Lorentz structure pieces.

We are now in a position to examine the interference terms. Let us take the product

of any two diagrams not in the same row. One can show explicitly,

Mn
XijMm∗

Y īj̄ = (DY iDZjD
∗
ZīD

∗
Xj̄)

−1

(gµσT νµγ̄Xijj̄n
gν̄γ̄)(gνγT µ̄ν̄σY īij̄m

gµ̄σ̄)T γσ̄
Zjī

(4.9)

where the T γσ̄
Zīi

are as before and the new Dirac strings are given by,

T νµγ̄
Xijj̄n

= (giXRg
j
XRg

j̄
XR + giXLg

j
XLg

j̄
XL)

· Tr( 6 pXγν 6 kXnγµ 6 pX̄γγ̄) +

(giXRg
j
XRg

j̄
XR − g

i
XLg

j
XLg

j̄
XL)

· Tr( 6 pXγν 6 kXnγµ 6 pX̄γγ̄γ5) .

(4.10)

The distinct Lorentz structure found here as compared to that found in eq. (4.4) is due to

the different path taken when tracing over the fermonic strings.

Again we expand out the terms in eq. (4.9) to obtain,

Mn
XijMm∗

Y īj̄ =
∑
abc

CabcXY ijīj̄L
abc
XY nm (4.11)

where,

C±±±
XY ijīj̄

= (DY iDZjD
∗
ZīD

∗
Xj̄)

−1(gjZRg
ī
ZR ± g

j
ZLg

ī
ZL)

· (giXRg
j
XRg

j̄
XR ± g

i
XLg

j
XLg

j̄
XL)(giY Rg

ī
Y Rg

j̄
Y R ± g

i
Y Lg

ī
Y Lg

j̄
Y L)

L±±±
XY nm = (gµσT

νµγ̄
Xn gν̄γ̄)(gνγT

µ̄ν̄σ
Y m gµ̄σ̄)T γσ̄Z .

(4.12)

and the T νµγ̄Xn are the traces found in eq. (4.10). As mentioned above, since the gauge and

Lorentz structure factor completely we are free to perform the sum over the intermediate

vector bosons at this stage once again to obtain the various Lorentz structure coefficients,

Mn
XMm∗

Y =
∑
ijīj̄

Mn
XijMm∗

Y īj̄ =

=
∑
abc

(
∑
ijīj̄

CabcXY ijīj̄)L
abc
XY nm =

∑
abc

CabcXY L
abc
XY nm .

(4.13)

Thus again all of the information concerning the intermediate vector bosons is contained

in CabcXY . We now have all of the pieces5 necessary to build the total amplitude squared of

the diagrams in figure 5 including all contributions from the intermediate vector bosons.

Explicitly we have,

|Mq +M1 +M2|2

=
∑
abc

∑
nm

((
Cabcqq L

abc
qqnm + Cabc11 L

abc
11nm + Cabc22 L

abc
22nm

)
+ 2Re

(
Cabcq1 L

abc
q1nm + Cabc12 L

abc
12nm + Cabc2q L

abc
2qnm

)) (4.14)

5Expressions for the various coefficients and Lorentz structure can be obtained by emailing the corre-

sponding author.
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where the sum over intermediate vector bosons has been already implicitly performed

and the sum over n,m which includes the t and u channel contributions is shown explicitly

(note that this also factors from the vector boson sum). The CabcXY coefficients are in general

complex due to the factor of i multiplying the decay width in the massive vector boson

propogators. The Lorentz structure is either purely real or purely imaginary depending on

whether the term contains an even or odd number of traces ending in γ5. These traces give

an overall factor of i (and an epsilon tensor). Thus if LabcXY nm contains an even number of

these traces, then it is purely real and if it contains an odd number it is purely imaginary.

The squared Lorentz structure LabcXXnm however is strictly real as are the squared coefficients

CabcXX . Taking this into account, we can write for eq. (4.14) the final amplitude squared as,

|M4`|2 = |Mq +M1 +M2|2

=
1

2

even∑
abc

(
CabcqqRL

abc
qqR + Cabc11RL

abc
11R + Cabc22RL

abc
22R

)
+

even∑
abc

(
Cabcq1RL

abc
q1R + Cabc12RL

abc
12R + Cabc2qRL

abc
2qR

)
−

odd∑
abc

(
Cabcq1IL

abc
q1I + Cabc12IL

abc
12I + Cabc2qIL

abc
2qI

)
(4.15)

where we have now performed the sum over t and u channel diagrams and CabcXY R,I =

CabcXY ± C∗abcXY respectively. We have also implicitly included a factor of 1/4 from averaging

over initial state quark spins and a color factor of 1/3. The sums labeled even ≡ (+ +

+,+ − −,− + −,− − +) indicate terms with even powers of γ5 and those with odd ≡
(− + +,+ − +,+ +−,− −−) indicate terms with odd powers of γ5. Note that since the

photon has vector like couplings where gL = gR all coefficients CabcXY with a, b, or c ≡ −
are zero for the γγ intermediate state. Thus γγ only contributes to the C+++

XY coefficients

(including of course when X ≡ Y ).

Previous calculations of the golden channel background, which include only the di-

boson production process, are contained within the first term Cabcqq L
abc
qq of eq. (4.15). All

the other terms arise from the resonant four lepton production process and the interference

between it and the di-boson production process. Note that eq. (4.15) is also more general

than for just the golden channel. In principal this expression holds for any process with

the same topology and ‘Z-like’ couplings to fermions. Since we have built the expression

out of a generalized Lorentz structure with coefficients, it can easily be adapted to consider

new physics contributions which may enter with the same topology and alter some of the

coefficients by an observable amount. Thus one can imagine performing stringent tests of

the SM using this parametrization to extract the various Lorentz structure coefficients. We

leave an investigation of this to future work.

The final fully differential cross section6 is again obtained by combining the amplitude

squared with the invariant four body phase space (see eq. (3.12)),

dσ4`

dM2
1dM

2
2dΩ

= Π4`|M4`|2 . (4.16)

6This expression has been validated with the Madgraph matrix element squared.
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The differential mass spectrum7 is obtained again via,

dσ4`

dM2
1dM

2
2

= Π4`

∫
dΩ|M4`|2 . (4.17)

We now examine how the various components of the background contribute to the differ-

ential mass spectrum.

4.2 The differential spectra

In this section we examine how the individual components of the background contribute

to the invariant mass spectrum of the four lepton system. In addition we also study how

including parton distribution functions (pdfs) and NLO corrections change the differential

spectra by comparing normalized projections obtained from our analytic expression to

Monte Carlo generated by POWHEG [34–37] and Madgraph [17].

We first separate the background into its various components which we define as the

following,

A. s-channel 2e2µ process

B. t+ u-channel γγ

C. t+ u-channel ZZ

D. t+ u-channel Zγ

E. t+ u-channel ZZ/Zγ/γγ interference only

F. ZZ + Zγ + γγ s/t-channel interference only

where now s, t, and u are used in the usual sense and the resonant s-channel 2e2µ process

can proceed through any combination of Z and γ. We first consider the relative fractions of

these components as a function of the invariant mass of the four lepton system for the range

100−600 GeV in figure 6. The dotted lines indicate when a contribution is negative, which

of course only occurs for interference terms in certain energy ranges when the interference is

destructive. The solid black line at constant value of 1 is the total partonic level qq̄ → 2e2µ

(q = u, d) background including all interference and all intermediate vector bosons. From

figure 6 one can see how the relative contributions coming from the different components

change as a function of energy.

Component C (the ZZ t+u channel) is the only piece of the background to have been

previously calculated analytically [5, 21]. This makes up the dominant contribution above

the ZZ threshold, but is negligible from 110 GeV <
√
s < 140 GeV and in fact is even

smaller than the interference terms. We also plot the spectrum if one requires a window

around the Z boson mass in the bottom plot of figure 6. The dominant component near

the resonance mass of 125 GeV is D regardless of the window on the Z mass. Except for

7An analytic expression for the dominant component to the background is given in eq. (A.3) of the

appendix.
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Figure 6. The four lepton system invariant mass spectrum (without pdfs) for the various com-

ponents defined in the text. The dotted lines indicate when the interference between compo-

nents is destructive, thus giving a negative contribution. In the top plot we take the ranges

4 GeV< M1,2 < 120 GeV while in the bottom plot we take the range 40 GeV< M1 < 120 GeV

and 10 GeV< M2 < 120 GeV while taking M1 > M2.

component F , one can see that the relative fractions are fairly insensitive to the Z window

requirement except in the range ∼ 100− 110 GeV.

The flexibility of the analytic expressions also allow us to easily isolate the contribution

coming from interference terms. Component E for example is due to the interference

between the intermediate gauge bosons in the t+u channel and is destructive over the entire

range regardless of the Z window. The interference between the resonant s-channel and

the t-channel pair production processes is shown in F and switches between constructive

and destructive if one requires a window around the Z, but otherwise is constructive.

Though these components are small it is possible for them to have subtle effects on the

angular distributions such as in the modulation of the azimuthal angle Φ (See figure 13)

and may be particularly interesting to study in the range 100 GeV .
√
s . 110 GeV. The

expressions for most of the components themselves are too cumbersome to write here, but

in the appendix we give the expression for the doubly differential (M1,M2) mass spectrum

of the full t+ u (the sum of B-E) component which as we can see in figure 6 and figure 7

provides a very good approximation above
√
s ∼ 110 GeV.

To examine the effects of NLO contributions and pdfs we compare our parton level

result for qq̄ → 2e2µ (q = u, d) to Monte Carlo data generated by the NLO POWEG and

LO Madgraph codes which include pdfs [38]. For this we define our phase space as 40 GeV

< M1 < 120 GeV and 10 GeV < M2 < 120 GeV for the energy range 110 GeV<
√
s <

140 GeV. We also plot the t+ u component only (defined as the sum of B-E) to examine

what affects neglecting the resonant 2e2µ process has.

In figure 7–9 we show the kinematic distributions where it can be seen that NLO

and pdf contributions affect the normalized spectra negligibly. In addition we can see

that neglecting the resonant process also has little effect on all the kinematic variables

except Φ, where it affects the modulation and in the forward regions of cos θ1. As we

will see in the appendix, the modulation is due almost entirely to the resonant process.

These distributions simply reflect the fact that the various kinematic distributions are not
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Figure 7. Comparing the LO and NLO results for the M1 and M2 invariant mass spectra for the

ranges 40 GeV < M1 < 120 GeV and 10 GeV < M2 < 120 GeV. We take the range of the four

lepton system invariant mass to be 110 <
√
s < 140 GeV.

highly correlated with
√
s allowing us to take

√
ŝ essentially as an input from the pdfs. To

build a complete hadronic differential cross section one could convolve the
√
s spectrum

obtained from Madgraph or POWHEG with the partonic differential cross section obtained

analytically. This of course is what would be done for an LHC analysis, but we do not do

that here and instead simply integrate our partonic differential cross section over
√
ŝ.

From figures 6 and 7 we expect the doubly differential spectrum obtained from the t+u

component only to be a good approximation which could be useful for a simplified analysis.

We give an explicit expression for this component in eq. (A.3) of the appendix. Though it

does not use all of the kinematic variables, it should still have strong discriminating power

and can be used with the methods proposed in [7] to form a powerful simplified study.

5 Conclusions and outlook

We have calculated and presented analytic fully general differential cross sections for the

golden channel signal and background in the 2e2µ final state including all intermediate

vector bosons and interference effects. We have presented various singly and doubly differ-

ential spectra and examined how the different interference effects manifest themselves in

these distributions and in correlations between the different kinematic variables. We have

also emphasized the need to push the ‘off-shell’ invariant mass (M2) reach as low as possi-

ble as well as relaxing the ‘Z-window’ to maximize the discriminating power when testing

different signal hypothesis. We have shown that the expressions can aid in distinguishing

between different signal hypotheses and because signal and background are provided, both

can be included into one likelihood, as should be done when performing simple hypothesis

tests of different signals. These expressions can be implemented into an MEM analysis to

perform detailed studies of the spin and CP properties of any scalar resonance which has

been or may be discovered at the LHC.
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Figure 8. Comparing the LO and NLO results for the polar angles cos Θ, cos θ1, cos θ2 for the

ranges 40 GeV < M1 < 120 GeV and 10 GeV < M2 < 120 GeV. We take the range of the four

lepton system invariant mass to be 110 <
√
s < 140 GeV.
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A 1D/2D distributions

The general scalar and background differential spectra are too cumbersome to write in one

page8 for most of the different components. We give a couple of the simplest ones here,

but that are not found in literature. We also examine how the different signal hypotheses

and background components contribute to the various kinematic distributions. We show a

multitude of singly and doubly differential distributions for both signal and background. Of

course none of these plots can show the discriminating power of the fully differential cross

section, but one can visually get a sense for the discriminating power of these kinematic

variables. Detector effects will also shape these distributions and deserve careful study, but

it is clear that the golden channel is a powerful probe of the underlying physics.

A.1 Analytic expressions

We give here a pair of analytic expressions for the differential mass spectra for one of

the signal and one of the background components which are simple enough to fit on one

page. Although not as powerful as using the fully differential cross section, with just these

two relatively simple expressions one can perform robust analyses of the newly discovered

scalar and its coupling to neutral gauge bosons as suggested in [7]. For the signal we give

the ϕ → ZZ + Zγ → 2e2µ differential mass spectrum including interference. For the ZZ

coupling we take only the ‘SM-like’ coupling A1ZZ to be non-zero. For the Zγ coupling

we allow for both A2Zγ and A3Zγ to be non-zero, thus allowing for CP violation. Using

eq. (3.13) we obtain,

dΓSM+Zγ

dM2
1dM

2
2

=

(√
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1 +(M2
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(A.1)

where we define,

β1,2 =

√√√√1− 4M2
1(

1± (M2
1 −M2

2 )/s
)2
s
. (A.2)

This expression is frame invariant and can accommodate a Higgs-like particle with SM

couplings to ZZ, but with perhaps new physics contributions through its couplings to Zγ.

The el are the photon couplings to charged leptons while gL,R are the leptonic Z couplings.

M1 and M2 are the final state lepton pair invariant masses while mZ is the mass of the

8The distributions will be made public in the near future, but can be obtained from the corresponding

author in the meantime.
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Z boson and
√
s is the four lepton system invariant mass. The doubly differential mass

spectrum for the full t+u component of the background (sum of components B-E) can be

obtained analytically via eq. (4.17) to give,

dσBGt+u
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This expression includes the ZZ, Zγ and γγ contributions including all interference and

can be combined with pdfs or be used for a leptonic initial state. The eq are the photon

couplings to the initial state fermions while the gqR/L are the initial state fermion couplings

to Z bosons. Note that these expressions have not been normalized and should be thought

of as at fixed s.

A.2 Singly differential angular distributions

In figure 10–14 we show the angular distributions for the 5 angles (cos Θ, cos θ1, cos θ2,Φ1,Φ)

found in the four lepton system and defined in section 2. We plot the angular distributions

for signal hypotheses 1-5 defined in section 3.2 and also show the various background com-

ponents defined in section 4.2. For all distributions the phase space is defined as 4 GeV

< M1 < 120 GeV and 4 GeV < M2 < 120 GeV with
√
ŝ = 125 GeV for signal and 110 GeV

<
√
ŝ < 140 GeV for background.

Since we are considering a spin-0 scalar as our signal, the cos Θ and Φ1 are of course

flat, but are still useful for discriminating between signal and background. A particularly

interesting variable is the azimuthal angle between the lepton decay planes, Φ. This is

especially sensitive to the various interference effects as well as the CP properties of the

decaying scalar, as was pointed out in [22]. One can see that the different signal hypothesis

affect the modulation of Φ while an extreme case like the CP violating hypothesis 5 can

lead to a striking signal in the form of an asymmetric modulation and phase shift relative

to the SM prediction.

For the background we can see how the various components contribute to the different

kinematic variables. It is clear that the Zγ t + u component (D) is the dominant contri-

bution for our defined phase space. Note however, that the s-channel component (A) also

contributes and in particular is the dominant contribution to the modulation of Φ. We

can also see that the resonant process affects cos θ1 and cos θ2, especially in the forward

regions. It is also interesting to comment that the γγ contribution (B) is featureless in all

of the distributions except for a small upward slope in the extreme forward directions of

cos Θ. Note that for the Φ1 azimuthal angle, the modulation is due entirely to the Zγ t+u
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Figure 10. On the left hand side we have plotted the cos Θ angular distributions for hypotheses

1-5 (hypothesis 1 ≡ SM) defined in section 3.2. On the right hand side we plot the components

A-F of the background defined in section 4.2.
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Figure 11. On the left hand side we have plotted the cos θ1 angular distributions for hypotheses

1-5 (hypothesis 1 ≡ SM) defined in section 3.2. On the right hand side we plot the components

A-F of the background defined in section 4.2.
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Figure 12. On the left hand side we have plotted the cos θ2 angular distributions for hypotheses

1-5 (hypothesis 1 ≡ SM) defined in section 3.2. On the right hand side we plot the components

A-F of the background defined in section 4.2.

component (D). Whether these different effects can still be seen once detector effects are

included requires careful study which we leave for future work.
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Figure 13. On the left hand side we have plotted the Φ angular distributions for hypotheses 1-5

(hypothesis 1 ≡ SM) defined in section 3.2. On the right hand side we plot the components A-F of

the background defined in section 4.2.

1Φ

-3 -2 -1 0 1 2 3

1
Φ

d
 σ
d

 
σ1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1

2

3

4

5

1Φ

-3 -2 -1 0 1 2 3

1
Φ

d
 σ
d

 
σ1

0

0.05

0.1

0.15

0.2

0.25

Total

  

A

B

C

D

E

F

Figure 14. On the left hand side we have plotted the Φ1 angular distributions for hypotheses 1-5

(hypothesis 1 ≡ SM) defined in section 3.2. On the right hand side we plot the components A-F of

the background defined in section 4.2.

A.3 Doubly differential spectra

In figure 15–21 we show various combinations of the doubly differential spectra for the

five signal hypotheses as well as the full background. These are primarily for illustration

purposes, but from these one can get an idea of the correlations between the different

kinematic variables.9 For these plots only the five signal hypotheses and the full result

for the background are shown. For all distributions the phase space is defined as 4 GeV

< M1 < 120 GeV and 4 GeV < M2 < 120 GeV with
√
ŝ = 125 GeV for signal and 110 GeV

<
√
ŝ < 140 GeV for background.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.

9We do not show all possible combinations, but any not shown here can be obtained by emailing the

corresponding author
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Figure 15. The (M2, cos Θ) doubly differential spectrum. The first five distributions are for signal

hypotheses 1-5 (hypothesis 1 ≡ SM in top left) defined in section 3.2 while the bottom right plot is

for the full background.
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Figure 16. The (M2, cos θ1) doubly differential spectrum. The first five distributions are for signal

hypotheses 1-5 (hypothesis 1 ≡ SM in top left) defined in section 3.2 while the bottom right plot is

for the full background.
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Figure 17. The (M2,Φ) doubly differential spectrum. The first five distributions are for signal

hypotheses 1-5 (hypothesis 1 ≡ SM in top left) defined in section 3.2 while the bottom right plot is

for the full background.
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Figure 18. The (cos θ2,Φ1) doubly differential spectrum. The first five distributions are for signal

hypotheses 1-5 (hypothesis 1 ≡ SM in top left) defined in section 3.2 while the bottom right plot is

for the full background.
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Figure 19. The (cos θ1, cos θ2) doubly differential spectrum. The first five distributions are for

signal hypotheses 1-5 (hypothesis 1 ≡ SM in top left) defined in section 3.2 while the bottom right

plot is for the full background.
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Figure 20. The (Φ, cos θ1) doubly differential spectrum. The first five distributions are for signal

hypotheses 1-5 (hypothesis 1 ≡ SM in top left) defined in section 3.2 while the bottom right plot is

for the full background.
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Figure 21. The (Φ,Φ1) doubly differential spectrum. The first five distributions are for signal

hypotheses 1-5 (hypothesis 1 ≡ SM in top left) defined in section 3.2 while the bottom right plot is

for the full background.
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