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1 Introduction

General relativity and quantum mechanics together imply that space-time structure at the
Planck scale is described by noncommutative geometry [1]. There have been various at-
tempts to study gravity theories within the noncommutative framework [2, 3]. This has led
to a Hopf algebraic description of noncommutative black holes [4, 5] and FRW cosmolo-
gies [6]. A large class of such black hole solutions, including the noncommutative BTZ [7, 8]
and Kerr black holes, exhibits an universal feature where the Hopf algebra is described by
a noncommutative cylinder [9], which belongs to the general class of the k-Minkowski al-
gebras [10-13]. For the purpose of this paper, we shall take the noncommutative cylinder
and the associated algebra as a prototype for noncommutative black holes.

The study of quantum field theories in the background of black holes has led to the dis-
covery of interesting features associated with the underlying geometry, such as the Hawking
radiation and black hole entropy. In the noncommutative case, the black hole geometry is
replaced with the algebra defined by the noncommutative cylinder. In order to probe the
features of a noncommutative black hole, it is useful to analyze the behaviour of a quantum



field coupled to the noncommutative cylinder algebra. Scalar field theories have been ex-
tensively studied on xk-Minkowski spaces [14-17, 19], which has led to twisted statistics and
deformed oscillator algebra for the quantum field [16-18]. Theories on the noncommutative
cylinder lead to quantization of the time operator [20, 21]

The quantum field theories defined on noncommutative spaces are highly nonlocal and
in order to gain further insight into their behaviour, it is essential to simulate their be-
haviour through numerical analysis. To this end, it is necessary to approximate the infinite
dimensional noncommutative cylinder algebra with a suitable truncated finite dimensional
matrix algebra, belonging to the general class of fuzzy spaces [22-24].

Field theories on noncommutative geometries are inherently as mentioned earlier non-
local leading to mixing of infrared and ultraviolet scales. This, in turn, is responsible
for new ground states with spatially varying condensates. Many non-perturbative studies
have established that noncommutative spaces, such as the Groenewold-Moyal plane and
fuzzy spheres, allow for the formation of stable non-uniform condensates as ground states.
Exploring the implications of the non-local nature of field theories is very important in
many areas of quantum physics [25-27].

Since different phases are intimately connected with spontaneous symmetry breaking
(SSB), the role of symmetries in noncommutative geometries themselves is subtle. This
issue is important in 2D because the Coleman-Mermin-Wagner (CMW) theorem states
that there can be no SSB of continuous symmetry on 2-dimensional commutative spaces.
There is no obvious generalization of the CMW theorem for non-commutative spaces, since
the theorem relies strongly on the locality of interactions. Noncommutative spaces admit
non-uniform solutions (in the mean field) and one can ask the question what happens to
the stability of these configurations. Non-uniform condensates naturally have a infra-red
cut-off for the fluctuations. This cut-off softens the otherwise divergent contributions of
the Goldstone modes [28-39].

This paper is organized as follows. In section 2 we give a brief introduction to
fuzzy black holes motivated by an earlier analysis of the noncommutative deformation of
Banados-Teitelboim-Zanelli (BTZ) black holes. In section 3 we set up the algebra describ-
ing the noncommutative cylinder which is suitable for numerical simulations. In sections
4 and 5, we provide the action for the scalar field and the spectrum of the Laplacian on
the noncommutative cylinder respectively. Section 6 exhibits the phase structure and the
novel stripe phases which are generic to fuzzy spaces. We exhibit the crucial differences of
these different phases and analyze our results in section 7.

2 Fuzzy black holes

We briefly summarize the essential features of a noncommutative black hole which is useful
for our analysis. In the commutative case, a non-extremal BTZ black hole is described in
terms of the coordinates (r, ¢,t) and is given by the metric [7, §]

2 g2 2 g2\ J \?
ds? = (M — 2—2 — 47“2> dt? + (—M + % + 47‘2> dr? +r? <d¢ - Wdt) ) (2.1)



where 0 <r <oo, —co<t<oo, 0<¢ < 2r, M and J are respectively the mass and
spin of the black hole, and A = —1/¢? is the cosmological constant. In the non-extremal
case, the two distinct horizons r. are given by

-l ()T -

An alternative way to obtain the geometry of the BTZ black hole is to quotient the
manifold AdSs or SL(2,R) by a discrete subgroup of its isometry. The noncommutative
BTZ black hole is then obtained by a deformation of AdSs or SL(2,R) which respects the
quotienting [4]. In the noncommutative theory, the coordinates r, ¢ and t are replaced by
the corresponding operators 7, gZS and Z respectively, that satisfy the algebra

7,6 = ae® |74 = [f,e?] =0, (2.3)
where the constant « is proportional to £3/(r% —r%). We shall henceforth refer to (2.3) as
the noncommutative cylinder algebra. Furthermore, £ denoting the operator corresponding
the the axis of the cylinder, it will be therefore identified as the operator Z also in the
following sections.

It may be noted that the operator 7 is in the center of the algebra (2.3). In addition,
—2mit/a

it can be shown easily that e belongs to the center of (2.3) as well. Hence, in any

irreducible representation of (2.3), the element e=2mit/a g proportional to the identity,

e~ 2mit/a _ e, (2.4)

where v € R mod (27). Eq. (2.4) implies that in any irreducible representation of (2.3),
the spectrum of the time operator ¢, or Z, is quantized [9, 20, 21] and is given by

. Yo
t= - — € 7. 2.5
spec no— 5, N (2.5)

In what follows we shall set v = 0 without loss of generality.
The noncommutative cylinder algebra (2.3) belongs to a special class of the
r-Minkowski algebra and it appears in the description of noncommutative Kerr black
holes [5] and FRW cosmologies [6]. We shall henceforth consider (2.3) as a prototype

of the noncommutative black hole.

3 Noncommutative cylinder algebra
The NC cylinder is defined by the relation
[Z, ew} = e’ (3.1)

where Z is hermitian and e'® is unitary. As mentioned earlier, the operator Z corresponds
to the axis of the cylinder, and therefore to the time operator ¢ of the black hole. Since we
are interested in simulations, we have to discretize the above NC cylinder.



In the rest of this paper, we will work with v = 1 without loss of generality, since the
simple scaling Z — Z/a can scale a away in the commutation relation (3.1).
For this purpose consider the spin J irreducible representation (IRR) of the SU(2) Lie
algebra, given by
(X1, X_] = 2X3, [X4,X3] = FX4. (3.2)

Since the operator Z generates rotations around the axis of the cylinder, it can be identified
with X3. But when we use the finite dimensional representations of SU(2) we cannot
implement (3.1) with unitarity for ', For this purpose, we decompose X as product of
a unitary and a Hermitian operator as given by

X, = ¢“R. (3.3)

In (3.3), € is unitary, and R is a positive Hermitian, necessarily singular, matrix which
commutes with Z (and is thus diagonal). Using (3.2) and the fact that R commutes with

Z, we have
[Z,X.] = [Z,°] R = ¢“ R. (3.4)

Since R~ is singular, it can not be inverted. However a partial inverse R can be found such
that RR = P, the projector such that 1 — P projects on the kernel of R. Thus we get
[Z,e%] P= € P. (3.5)
To find a representation for R and €'?, we can look at
R?=X_X, =1IL%—Ly(Ls +1), (3.6)

which commutes with Z = L3. Remember that in the usual representation of angular
momentum, L3|l, m >= mll,m > with |m| < [. Shifting the indices from 0 to 2/ +1 = 2.J,
we have j = m + [+ 1, leading to

X X |l,m>=[1(1+1)—m@m+D]|l,m>=[1+1/2)*— (m+1/2)3|l,m >
XXyl j> = [ = (=PIl d >= 5] =) j >

There is only one hermitian positive solution to this equation which takes the form

Rij = \i(2J —1) 6, (3.7)

which is diagonal as expected, and whose null space is along the top state |J,2J >. As a
result, P =1—|J,2J >< J,2J|, and

2J-1
R= Y li(2] - i) 2|0 >< T,
i=1
where the sum stops at ¢ = 2J —1 so that there is a zero in the last position on the diagonal.
It is now possible to deduce the first 2J — 1 lines of the unitary matrix e from (3.3):

Xeldog>=+i@I=lhj+1> = (g >= |+ 1>, j<2J
X, > = €% RIJ,j >= \/JRT=)e |J,j > | Sl s



Eq. (3.3) yields no equation for the last column which is instead determined from its
unitarity. The columns 1,---,2J — 1 of €', given by |J,j + 1 >, form an orthonormal set,
as expected for a unitary matrix. Then the last column will be a vector orthogonal to all
these vectors and thus can only be proportional to |J,1 >. After normalization that still
leaves a U(1) freedom so that

(€9)ij = Sijr1 + €7 61807, (3.8)

where 3 can be any real number. For § = 0, €'? is just a circular permutation of length 2.J.

4 The action on the fuzzy cylinder

We will first construct an action for a hermitian scalar field ®. Define TrO = Tr(POP).
This trace Tr is equivalent to integrating over the whole cylinder in the continuum limit.
We also need the derivatives d, and dz. They are:

0p® = [Z,9] (4.1)
070 = e_i¢[€i¢, D].
Then, apart from J-dependent normalization factors, a naive form of the action can be

chosen as:
$ = T (1120 2 + |e[,0] F + V(D)) (4.3)

where V(@) is the potential which can be taken to be of the form,
V(®) = u®? + cd* (4.4)

for a hermitian field ®.

This action has a problem of instability. The source of this comes from /Tvr(<1>4) =
Tr((P®)®?(®P)) which cannot contain any quartic (nor cubic) term for the variable ®5 2.
This makes the theory unstable with respect to this variable. The simplest cure is to insist
that this term is not a degree of freedom of the theory and constrain it to zero. To keep
the set of fields an algebra, we choose to also set to zero the last row ®5;5; and column ®; 4
of the field. As a result the hermitian field ® now only has (2J — 1)? degrees of freedom,
and & = PoP.

4.1 Dimensional reduction

With this new choice of the field the action becomes
S =Tr ( P|[Z,POP] PP + P |e [, POP] |2 P + V(<I>)) (4.5)
—Tr (| [PZP,®] |> +| [Pe“P, ] |2 + V(<I>)) , (4.6)

which can be rewritten simply as the action for a hermitian matrix in a (2J —1) x (2J —1)
matrix algebra of reduced dimension:

S = Try (\ 1Z,8] |> +] [¢%,®] >+ V(<I>)> , (4.7)



where J' = J — 1/2 is the reduced angular momentum, while ¢i® and Z: are the matrices
obtained from €' and Z by removing the last line and column. For ei®, it is equivalent
to setting e’ — 0 in its 2J'-dimensional expression (3.8). As for Z, it is therefore the
2J" x 2J" diagonal matrix obtained from Z by removing its top eigenvalue J — 1/2:

7 = Diag(—J+1/2,—J+3/2,--- ,J—3/2) = Diag(—J', —J'+1,--- ,J — 1) (4.8)
= Zij = (—Jl -1+ Z')(sm‘ .
Note that Z and Z are defined by their commutation relation (3.1) and only appear in the
action through 9, as a commutator. As a result, they are only defined up to a translation by
a matrix proportional to the unit, and thus Z = Diag(1,---,2J') is another possible choice.
Although €i? is not unitary, the equation
< m’][Z,;‘E]\m > = (m' — m)om mt1 = Om/ i1 =< m'\gﬂm > ifm < 2J

= 0=<m|[Z,e]|2] > if m=2J]
shows that Z and e do satisfy the commutation relation (3.1) for a =1

4.2 Expressing the kinetic term

Using the reduced action (4.7), the kinetic term K (®) then takes the general form

2.J’

K((I)) =Tr (HZ, (I)] |2 + |[ei¢,(I)] ’2) = Z [(Z _j)2|q>ij’2 + ‘(I)iflj - (I)ij+1|2] 5 (410)
ij=1

where we have introduced new entries ®g; = ®;2541 = 0 set to zero to simplify the

expressions.
The kinetic term can be further reordered as

2J" i—1 2J
K(®) =) ) [2(i = 5)° +4 = 6in — 0,]|®i [P+ Y (2= 6iv — 6:1)|®ail* — (4.11)
i=1 j=1 i=1
2J'—1i—1 2J'—1
13 N RG] —2 Y Piiigriga -
i=1 j=1 i=1

Note in this expression that the last two sums are not over all possible indices, but omitting
the highest one. Furthermore, in the last two terms, ®;; is coupled to both ®;yq ;41
and (I)ifl j—1-

The expression of the potential (4.4) is already known, being the same expression as
for the fuzzy sphere (see e.g. [28]).

4.3 The action on a fuzzy cylinder of radius r

The cylinder is also parametrized by its radius r. According to (2.3), 7 commutes with
both Z and €. It can therefore be considered as a pure number in the non-commutative
cylinder algebra.



The radius will appear as a simple scaling in the action. The volume of the cylinder
Tr(1) depends linearly on 7, so the action should have an overall scale of r. The derivative
along the axis 07 does not scale with r, whereas the angular derivative d, scales like 1/7.

As a result, the action on a fuzzy cylinder of radius r is given by:
/1 o
S=r T (L1201 + [P0l + V@) (112)

= r Try (:2\ 1Z,8] |> +] [¢%,®] >+ V(<I>)> : (4.13)

5 Spectrum of the Laplacian on the fuzzy cylinder

The Laplacian comes from the kinetic term (4.10) of the action. After integrating by parts,’

we get
K(®) = Te(~(2, 0[Z,8] — [0, @][c%, &]) = Tr(®[Z, [Z, &) + Blei®, 610, B])
so that naively
£20 = [Z,[2,0])| + |69 [0, 8]) = L0+ £_L, O,

—~ —~
where Lz, resp.L, , resp. L_, is the adjoint action of Z, resp. €', resp. €!® . Note however

that this Laplacian is not hermitian due to e not being actually unitary in the second
term. To make it hermitian, the latter term must be symmetrize. The Laplacian now is:

£20 = [2,(2,9]] + (16, [0, 9] + [, [, @]}
= L2D + %(5_5@ +L,L ®) (5.1)

1.~ —f 1
=LP+L L, D+ 5[[6“15,6“75 @] =L3®+L L, O+ 5[Diag(—1,o,--- ,0,1),®].

The Laplacian derived above in (5.1) is for a cylinder of radius one. The action (4.13)
on a cylinder of radius r shows how the Laplacian scales with the radius r, yielding

1
L0 = 50+ (L LOTL L D) (5.2)

Since we will be interested in the entropy of the free field, let us now look for the
eigenvalues of the Laplacian.

'Since commutators work as derivations and the trace as integration, there is a direct equivalent to
integration by part given as

Te(P[L, W) = Tr((L, $W]) - Tr([L, )W) = ~Tr([L, ])



5.1 Symmetries of the Laplacian

Because the Laplacian is expected to be invariant with respect to Z-axis rotations, it must
commute with £z. This is quite obvious on the expression of the Laplacian since:

e ¢® has axial momentum +1 and will therefore raise total axial momentum by one
whether multiplied on the left or on the right

e conversely e/? has axial momentum —1 and will therefore lower total axial momen-
tum by one whether multiplied on the left or on the right

and therefore overall the axial angular momentum is conserved by £ L, or £L_L . Taking
into account that we have hermitian eigenmatrices, we can deduce that they must be a mix
of +m and —m axial momentum matrices. This means that we can take the ansatz
2J'—m
O = Dy (d) + @I, (d), with @p(d) = Y dili><i+m|, 0<m<2)/—1  (53)
i=1

for the eigenmatrices, where the vector d= (di)1<i<2J—m is the unknown to be determined
by the eigenmatrix equations.

Using this ansatz (5.3) and the hermiticity of ® and the Laplacian, the eigenmatrix
equation for the Laplacian reads simply

L2®,,(d) = AD,,(d) = Py (M) & Myd = M,

— —

where the matrix M, translates the (linear) action of the Laplacian on ®,,(d) to d:
L£2®,,(d) = ®,,(M,,d). This 2.J' —m square matrix is now evaluated.

Note that the Laplacian has another less obvious symmetry, it is invariant under the
replacement [ >— [2J" — i >. We will not need to use it in the following calculation, but
the eigenvector equations in the following should be (and we checked that they actually
are) invariant under that symmetry.

5.2 The matrix M,,

Piece of M,, coming from EZZ' In this case, since by construction, ®,, is an eigenma-

trix of Lz with axial angular momentum m,

LL®(d) = m2 Py, (d) = Dy (m?d).
Piece of M, coming from L{ L ;.

L L y@p(d) = Zd@-.chcf}(u ><i+ml)

=Y di({wy,a Yi><it+m|+|i ><i+ml{zy,2 }-
i

ryli ><i+mlr- —x_|i ><i+m|ry)
=3 di (1=6i1/2— 0i20/24 1= Sijm1/2 = G20 /2)]i >< i +m|—
i

(1 — 5@2{]/)(1 — 5i+m,2j’)|i +1><i+m+ 1| —
(1 — (51',1)(1 — 5i+m,1)|i —1><i4+m— 1|)



T

1
where x_ = ¢ lowers the index of the ket, whereas x; = x' raises it. At this point in

the calculation, it is necessary to distinguish the cases m = 0, for which all the Kronecker
can be 0, and m # 0 where only half of them can.
For m =0, we find

£{+£7}<1>m(cf) = Zdz ((2 — 52',1 — (5i72J/)|Z. >< Z| — (1 — (51-72J/)|i +1><1+ 1‘—

(1 — (5@71)“ —1><i— 1|)
1 -1 0
-1 2 -1 (0)

S N )

For m # 0, on the other hand,
L L yPp(d) = Zdi ((2=0:1/2 = Siymor /2)|i >< i+ m|-

(1= Gixmos))i+1><i+m+1—(1—-61)|i—1><i+m—1])

3/2 -1 0
12 -1 (0

= By d)
0 .2 -1

—13/2

Expression of M,,. Putting together the results from the last two paragraph, and using
the Laplacian (5.2) on a cylinder of radius r, we get

1 =10 3/2-10
~12 -1 (0 -1 2 -1 (0
2
0 .2 -1 ) .2 -1
-1 1 —13/2

These matrices are similar to the ones obtained for the Laplacian on a one-dimensional
lattice and can actually be diagonalized without much difficulty, taking good care to re-
member that M,, is a matrix of dimension 2.J' — m.

5.3 Spectrum of M,

The way to evaluate the spectrum is to write explicitly the eigenvector equation. Then, let
d = (d;) be an eigenvector for the eigenvalue A, the eigenvector equation takes the form

dn+1 = (2 — )\)dn — dn71,2 <n< 2J —m (5.5)



plus boundary equations at each end n = 1,2J" — m, which are different for m = 0
and m # 0.

The sequence defined by this linear induction formula with constant coefficients can be
determined by looking at its characteristic equation? ¢ — (2—\)g+1 = 0. Reparametrizing
the eigenvalues as

A =2 —2cos(f) = 4sin(6/2), (5.6)

this equation has the simple solutions ¢ = exp(=£if#l). Therefore, the sequence has the
general form
dp = R(Be™), (5.7)

where 3 is a complex constant to be determined by the first two terms of the sequence.
To simplify the algebra, it is convenient to extrapolate dy and doj_,,4+1 and rewrite
the boundary equations between them, d;, and doj_,,. Furthermore, since the eigenvector
is defined up to an overall constant, let us choose dy = 1.
Now we must look at the two cases separately.

Spectrum of Mjy. In this case, the boundary equations can be seen to take the form

{dg = (1-\Nd

= dj = dp.
dy = (2= Ndy —do "

Similarly, at the other boundary,
day—1 = da. (5.8)

In particular, dy = d; = 1. Plugging those initial values in the general form (5.7) of
the sequence, we get

R(B) =1 _ ., . _ e
{ . ﬁﬁ—l—ztan(Q/Q)—m,

and therefore 1
dp, = cos(072) cos((n —1/2)6). (5.9)

To get the eigenvalues, it only remains to enforce the last constraint equation (5.8):
cos((2J' —1/2)0) = cos((2J'+1/2)0) < sin(2J'0)sin(0/2) = 0= 0 = kn/2J', 0 < k < 2J,
which, according to (5.6) gives eigenvalues:

A = dsin?(kn/4J"), 0 < k < 2J'. (5.10)
A corresponding eigenvector is then given in (5.9) up to an overall constant as:

d = (cos((n —1/2)kr/2J")) (5.11)

1<n<2J" "

2The linear space of sequences satisfying the induction formula (5.5) is of dimension 2, parametrized by
the two initial values of the sequence. The idea is to find a basis of this linear space in the form of two
geometric sequences of the form (¢™). ¢ must then satisfy a (quadratic) characteristic equation, and the
sequence we want to express is a linear combination of these two geometric sequences.

,10,



Spectrum of M,,, m # 0. In this case, the boundary equations can be seen to take

dy = (3/2 - N)ds
dy = 2dy .
{d2:(2—>\)d1—d0:> Lo

the form

And similarly, at the other boundary,

2oy 41—m = dogi_m. (5.12)

In particular, dy = 1 and d; = 2. Plugging those initial values in the general form (5.7) of
the sequence, we get

R(pB) =1 B cos(f) — 2
{R(ﬁeif’) _ o OIS E
and therefore
1 im0 i(n—1)0y _ 2sin(nd) B sin((n — 1)6)
= G T2 e )] sin(6) (5.13)

To get the eigenvalues, it only remains to enforce the last constraint equation in (5.12).
Denoting N = 2J' — m, and using the trigonometric relation

sin(a) — sin(b) = 2 cos((a + b)/2) sin((a — b)/2),
we get:

2(sin((N +1)0) —sin(N6)) = sin(NO) — sin((INV — 1)0)
< 2cos((N +1/2)8) = cos((N —1/2)0) < 3tan(NO) tan(0/2) =1
< tan(N@) = tan((r — 6)/2)/3. (5.14)

which can be seen graphically to have N solutions, one in each interval [k7/N; (k+1)7/N],
0 < k < N. These solutions must be determined numerically though. The eigenvalues are
then deduced from eq. (5.6). The corresponding eigenvector is then given by (5.13).

For large matrices N > 1, it is possible to find approximate solutions since tan(z) can
be well approximated near 0 and 7/2. This yields:

e For 0 < m, or k < N, tan((m — 0)/2) ~ 2/0 > 1. Therefore, N0 = kr + 7/2 — py,
with pr < 1. The equation then becomes:

1 2N 37
o S Bz T ok 12)

e For 0 ~ 7, or k ~ N, tan((m — 0)/2) ~ (7 — 0)/2 < 1, and therefore, N0 = k7 + pi
with pr < 1. The equation then becomes:

NNT['—,ICW—pk<:> Nk

Ple = 6N Pk="6N

™,

which is a small number, as expected, since k ~ N.

— 11 —



6 Numerical simulations and results

6.1 The numerical scheme

The model defined by the action egs. (4.13), (4.4) which we want to simulate has three
parameters (u,c,r) plus the matrix size J. The goal is to explore the parameter space
for various phases of ®. The simulations are carried out using the “pseudo-heat bath”
Monte-Carlo (MC) algorithm [36, 37] to reduce the auto-correlation along the MC history.

The field should also be allowed to explore the whole phase space and not remain
trapped in local minima. To this end, an over-relaxation method, first suggested in [35],
is also used. Let us introduce S¢(®;;) the dependence of the action on the field entry ®;
when the field takes the value ®. It is a fourth degree polynomial. Therefore the equation
So(®ij) = So(P;; = a), which has an obvious solution ®;; = a, can be factorized into a
degree three polynomial which always admits at least one real solution. The overrelaxation
method consists in replacing the field entry ®;; = a by one of these real solutions, thereby
moving the field in a different region of the phase space.

A crosscheck is also used to verify that the field probability distribution of our Monte-
Carlo runs are consistent. Let us split the terms in the action according to their scalings

S(¢) = Sa() + S4(¢) with S;(Ap) = X'S;(9)).

Then one can define a modified partition function

Z(\) = / [dple50) = / [dgp]e " 52(#)-N'51(0) (6.1)
= A [lawleS0, 6 =, (62)
where N is the number of degrees of freedom in the field ¢ which appear in the integration.
Evaluating
In(Z
9In(2) =-2< 85 >-4<8;> from (6.1)
2N P

= —N from ( 6.2)
yields the check originally due to Denjoe O’Connor [40].

< Sy >+42< 8y >=N/2. (6.3)
In all simulations, this identity (6.3) is always satisfied to better than 1% relative error.
6.2 The phase structure

The temperature (7') is regulated by varying the parameter pu.

e ;1 < 1 corresponds to low temperatures when the fluctuations are small. In this case,
the minimum of S gives the most probable configuration of the phase. In eq. (4.13), it
is possible to minimize the action by minimizing separately the kinetic term, so that
® o 1, and the potential term so that ® = \/—pu/2c1, and this phase is therefore
known as the uniform phase.
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e At high temperatures, ;1 > 1, the thermal fluctuations lead the system to the disorder
phase & ~ 0.

e At intermediate temperatures, the competition between the action and the fluctu-
ations give rise to new phases called the non-uniform or stripe phases. These new
phases are specific to non-commutative spaces. Various numerical studies have con-
firmed the existence of these phases [28-39] on the fuzzy sphere. A non-commutative
cylinder will also exhibit the non-uniform phases. However, due to the non-trivial
topology of the cylinder (the first homotopy group being non-trivial), one can have
a more complex phase structure described below.

For example there can be stripes going around the cylinder, or parallel to its axis.
These two phases can be distinguished by their overlap with the operators Z, ', and e"‘isT
respectively. Stripes going around the cylinder will have non-zero overlap with the operator
Z. While a configuration of stripes along the axis will have overlap with e** and el We
present our results in the following subsection.

6.3 Example numerical runs

For a given choice of N = 7, ¢ = 0.36, and r = 1 the simulations are done for various
values of p. The various phases discussed above can be characterized by the observables
my, = Tr(®), m, = Tr(®Z), m, = Tr(Pe®). A finite m,, with (m., m;) ~ 0 characterizes
the uniform phase. On the other hand, (m,,, m;) ~ 0 with non-zero m, characterizes stripes
going around the cylinder. Stripes along the cylinder characterized by (m,,m.) ~ 0 with
NON-Zero 1y,

For = —35.1, the data of a run are shown on figure 1, and, as expected, we observe
the uniform phase.

For = —20.0, we observed the phase with stripes going around the cylinder. This
is verified on the histogram of the observed values of m,,m, plotted in figure 2. It is
clear from the figure that the average value of m, is finite while the average value of m,, is
vanishingly small.

Figure 3 shows the system in the disorder phase where m,,m,, m, all fluctuate
around zero.

We did not observe the phase with stripes going along the cylinder as a ground state
for any choice of p for r ~ 1. One can expect to observe this state for very small » when
the second term of the kinetic term in the action (4.13), which suppresses this state, is
made subdominant. For a very small radius r = 0.01, ¢ = 36. and p = —3.6 x 103, this
phase appears as meta-stable in figure 4. This phase is stable w.r.t. small fluctuations.
Only large fluctuations, which occur less frequently, can destroy such a state.

7 Conclusions

In this paper, we have considered a finite dimensional representation of the noncommutative
cylinder algebra, which makes it fuzzy. We study scalar field theory in the background of
this algebra both analytically and using numerical simulations.
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Figure 1. m,,m,, m; vs Monte Carlo history for N =7, uy = —35.1, ¢ = 0.36, and r = 1.
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Figure 2. Histogram of H(m,,) and H(m,) N =7, p = —20.0, ¢ = 0.36, and r = 1.

The action of the scalar field on the fuzzy cylinder contains a kinetic as well as a po-
tential term. The kinetic term leads to the Laplacian (5.2) on the fuzzy cylinder. We
have analyzed the symmetries of the Laplacian and have obtained an algebraic equa-
tion (5.10), (5.14) describing the corresponding spectrum.

In the numerical simulations of the scalar field with a generic potential we find, as
expected in noncommutative theories, novel stripe phases breaking rotational symmetry.
But they have some differences with the usual stripes on Moyal spacetimes. These are also
stable due to topological features arising in this fuzzy geometry. A similar stability has
been seen in the O(3) model on fuzzy spheres [41].
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Figure 3. Histogram of H(m,,) and H(m,) N =7, ¢=0.36, and r = 1.
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Figure 4. m,,m., m, vs Monte Carlo history for N =7, u = —3.6 x 103, ¢ = 36., r = 0.01.

The fuzzy cylinder algebra considered in this paper is valid for non-extremal BTZ black
holes, without any further assumptions. In addition, different forms of the BTZ metric
related by coordinate transformations are equivalent classically, which at the algebraic
level are expected to be related by automorphisms.

While the noncommutative cylinder algebra first arose in the context of the BTZ black
hole, subsequently it has been shown to be of more general relevance, appearing in diverse
backgrounds such as for Kerr black hole [5] and FRW cosmologies [6]. In addition, the
near-horizon geometry of a large class of black holes contains an AdSs3 factor [42].
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Thus, a large class of noncommutative black holes are described by a noncommutative
cylinder algebra. The fuzzy cylinder algebra derived from it can therefore be used to define
a fuzzy black hole. From general considerations [1], we know that such black holes can
arise at the Planck scale. Our results provide a first glimpse about the phase structure of
a quantum scalar field theory in the background of a fuzzy black hole at the Planck scale.
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