PROBLEMS ON DISTORTION UNDER CONFORMAL MAPPINGS

José L. FERNANDEZ, College Park, USA

(1) W. Hayman and J. M. Wu have shown that if Ω is a simply connected domain in the plane and f is a conformal mapping from Ω onto the unit disk Δ then for every circle L one has that $f(\Omega \cap L)$ has finite length and moreover is a regular curve in Ahlfors' sense.

When L is contained in Ω , O. Martio has shown that f(L) is a quasicircle. In the general case, is it true that each component of f($\Omega \cap L$) is a quasiline ? .

(2) The Hayman-Wu theorem shows that $f' \in L^{1}(\Omega \cap L)$; it is natural to conjecture that $f' \in L^{p}$ for each p < 2, or even further that $length(f(E)) \leq c \ length(E)^{1/2}$

if $E \subset L$. (This is a conjecture of A. Baernstein.) It is true at least when E is an interval.

(3) The following is a stronger version of the so-called Brennan's conjecture : if A(Ω then

$$\operatorname{area}(f(A)) \leq c \operatorname{area}(A)^{1/2}$$

This is the case when A is any disk.

(4) A domain G in the plane has uniformly perfect boundary if the following capacitary condition is satisfied :

$$\operatorname{cap}(\{z : |z - a| < r\} \cap G) \ge c \cdot r$$

for any $a \in \partial G$, 0 < r < diam(G). Is the Hayman-Wu theorem valid for this domain when f^{-1} is replaced by the universal covering map ? .