NOTATION

$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} have their usual meaning, denoting the sets of natural numbers, integers, rational numbers, real numbers and complex numbers, respectively. The symbol \mathbb{R}^{*} denotes the set of extended real numbers, that is \mathbb{R} together with ∞ and $-\infty$, while \mathbb{R}^{+}and \mathbb{R}_{+}^{*} denote the non-negative members of \mathbb{R} and \mathbb{R}^{*}, respectively. ":=" means "is defined by". For instance, $p:=x^{2}$ defines p as the square of x.

Let S and T be non-empty sets, and let $f: S \rightarrow T$ be a function. For any subset B of T the inverse image of B under f is written as $f^{*}(B):=\{s \in S \mid f(s) \in B\}$. If f is an injection (that is, if f is one-to-one), then the inverse function of f, which is defined on the range of f, is also denoted by f^{\star}.

Let S and T be sets. If for each $s \in S$ there is in some way given an $f(s) \in T$, then this defines a function $f: S \rightarrow T$. We write $f:=Y_{s \in S} f(s)$, which is read as: f is defined to be that function that takes at S the value $f(s)$. (Note that the range space T need not be mentioned explicitly.) For instance, we may write $s:=Y_{x \in \mathbb{R}^{2}} x^{2}$, which defines s on \mathbb{R} as the squaring function, or $\cos :=Y_{x \in \mathbb{R}} \sum_{n=0}^{\infty}(-1)^{n} x^{2 n} /(2 n)!$, which defines the cosine function on \mathbb{R}.

Composition of functions is denoted by means of 0 . Thus $f o g:=Y_{s \in S} f(g(s))$, if S, is the domain of g and g maps S into the domain of f.

