NOTATION

IN, ZZ, Q, R and C have their usual meaning, denoting the sets of natural numbers, integers, rational numbers, real numbers and complex numbers, respectively. The symbol \mathbb{R}^* denotes the set of extended real numbers, that is R together with ∞ and $-\infty$, while \mathbb{R}^+ and \mathbb{R}^*_{\pm} denote the non-negative members of R and \mathbb{R}^* , respectively.

":=" means "is defined by". For instance, $p := x^2$ defines p as the square of x.

Let S and T be non-empty sets, and let $f : S \rightarrow T$ be a function. For any subset B of T the inverse image of B under f is written as $f^{\leftarrow}(B) := \{s \in S \mid f(s) \in B\}$. If f is an injection (that is, if f is one-to-one), then the inverse function of f, which is defined on the range of f, is also denoted by f^{\leftarrow} .

Let S and T be sets. If for each s ϵ S there is in some way given an f(s) ϵ T, then this defines a function f : S \rightarrow T. We write f := $\bigvee_{s \in S} f(s)$, which is read as: f is defined to be that function that takes at S the value f(s). (Note that the range space T need not be mentioned explicitly.) For instance, we may write s := $\bigvee_{x \in \mathbb{R}^2} x^2$, which defines s on \mathbb{R} as the squaring function, or cos := $\bigvee_{x \in \mathbb{R}} \sum_{n=0}^{\infty} (-1)^n x^{2n}/(2n)!$, which defines the cosine function on \mathbb{R} .

Composition of functions is denoted by means of \circ . Thus $f \circ g := \bigcup_{s \in S} f(g(s))$, if S is the domain of g and g maps S into the domain of f.