Lecture Notes in Mathematics Vol. 934

ISBN 978-3-540-11562-5 © Springer-Verlag Berlin Heidelberg 2008

Makoto Sakai

Quadrature Domains

Errata

I. In the definition of piecewise smooth arcs on page 8, we have merely assumed that it can be expressed as the union of a finite number of smooth arcs each of which is the image of the closed interval $[0,1]$ under a function of class C^{1}.

However, to prove Lemma 2.4, which discusses the growth rate of the normal derivative of the Green function at a corner, we need the continuity of the derivative on each of smooth arcs as stated on page 14. Hence our smooth arcs should satisfy a stronger condition so that the normal derivative of the Green function is continuous on each of them.

It is enough to replace "under a function of class C^{1} " in the definition of a smooth arc with "under a function of class C^{2} ". A weaker condition is "under a Lyapunov-Dini smooth function". A function γ of class C^{1} on $[0,1]$ is called a Lyapunov-Dini smooth function if the modulus of continuity

$$
\omega(t)=\sup \left\{\left|\gamma^{\prime}\left(t_{2}\right)-\gamma^{\prime}\left(t_{1}\right)\right|: t_{j} \in[0,1],\left|t_{2}-t_{1}\right| \leq t\right\}
$$

of the derivative γ^{\prime} of γ satisfies

$$
\int_{0}^{1} \omega(t) \frac{d t}{t}<+\infty
$$

II. We have mainly discussed quadrature domains of positive measures as stated in Introduction. However, we have treated quadrature domains of real measures and quadrature domains of complex measures without their explicit definitions. For examples, Proposition 8.1 and its corollary are for real measures and Proposition 9.4 is for complex measures. The definitions are the same as in Introduction. The definition of a quadrature domain of a complex measure ν for class $A L^{1}$ is the following: A nonempty domain Ω is called a quadrature domain of ν for class $A L^{1}$ if
(1) ν is concentrated in Ω, namely, $\nu \mid \Omega^{c}=0$;
(2) $\int_{\Omega \Omega}|f| d|\nu|<+\infty \quad$ and $\quad \int_{\Omega 2} f d \nu=\int_{\Omega 2} f d m \quad$ for every $f \in A L^{1}(\Omega)$.
III. When we use the argument as in the proof of Theorem 3.5, for example, in the proofs of Lemma 3.6, Theorem 3.7 and Proposition 3.10, we treat not only a finite positive measure ν stated as in Theorem 3.4, but also a measure of form $\nu+\xi$ for some finite positive measure ξ. In the proof of Theorem 3.5, we depart from $\bar{W} \subset \Omega$ and arrive $W^{(n)} \subset \Omega$. We modify the measure ν to $\nu^{(n)}$ in this process. We apply our argument to a measure $\nu+\xi$ for a finite positive measure ξ on Ω such that every $s \in S L^{1}(\Omega)$ has an integral on Ω and modify $\nu+\xi$ to $\nu^{(n)}+\xi$.
page line
$\uparrow 9$ angle $V_{1}<2 \Pi \longrightarrow$ angle $V_{1}<3 \pi / 2$
$13 \operatorname{disc}\{\Omega(t)\}=\left[\bigcup_{t \geq 0} \Omega(t) \backslash \Omega(0)\right] \backslash \bigcup_{t \geq 0} \partial \Omega(t)$
$\longrightarrow \operatorname{disc}\{\Omega(t)\}=\left(\bigcup_{t \geq 0} \Omega(t) \backslash \Omega(0)\right) \backslash \bigcup_{t \geq 0} \partial \Omega(t)$
$1 \operatorname{stag}\{[W(t)]\} \longrightarrow \operatorname{stag}\{[\tilde{W}(t)]\}$
$\uparrow 10 \quad Q\left(\left\{\chi_{\Omega} m+\nu(t)-\nu(0)\right\}, F\right) \longrightarrow Q\left(\left\{\chi_{\Omega(0)} m+\nu(t)-\nu(0)\right\}, F\right)$
$\uparrow 9 \quad Q(0) \in Q\left(\nu(0), H L^{1}\right) \longrightarrow \Omega(0) \in Q\left(\nu(0), H L^{1}\right)$

```
    \(84 \uparrow 1\) contradict \(\longrightarrow\) contradicts
    9510 Lemma 6.8 \(\longrightarrow\) Lemma 7.1,
    \(1058 \quad Q\left(\nu, A L^{\prime}\right) \longrightarrow Q\left(\nu, A L^{1}\right)\)
    \(105 \uparrow 7-6 \quad\left|a_{1}\right| \leq \sqrt{2 / \pi}\left(a_{0} / 3\right)^{3 / 2} \longrightarrow a_{1}=\pi b_{1}^{2} \overline{b_{2}}\)
    \(106 \uparrow 10 \quad \overline{u_{j}}\left(x_{1}, x_{2}\right)=\longrightarrow \overline{u_{j}}\left(x_{1}, x_{2}, t\right)=\)
    \(106 \uparrow 9 \quad(1 / d) \int_{0}^{d} u_{j}\left(x_{1}, x_{2}, x_{3}\right) d x_{3} \longrightarrow(1 / d) \int_{0}^{d} u_{j}\left(x_{1}, x_{2}, x_{3}, t\right) d x_{3}\)
    1083 For every \(z \in C_{1}(t)\) with angle \(V_{1}<\pi\), \(\longrightarrow\) For every \(z \in C_{j}(t)\),
\(1085 U \cap \partial \Omega(s)\) is connected \(\longrightarrow U \cap \partial \Omega(s)\) consists of \(j\) connected
        components
    \(109 \uparrow 8\) every harmonic function on \(\overline{\Omega(\tau)} \longrightarrow\) every harmonic function \(h\)
        on \(\overline{\Omega(\tau)}\)
    \(110 \quad 8 \quad \operatorname{stat}\{\Omega(t)\} \subset\left\{z \in C_{1}(0) \mid\right.\) angle \(\left.V_{1} \leq \pi / 2\right\} \subset C_{1}(0)\)
    \(\longrightarrow \operatorname{stat}\{\Omega(t)\} \subset\left\{z \in C_{1}(0) \mid\right.\) angle \(\left.V_{1} \leq \pi / 2\right\} \cup\left\{z \in C_{2}(0) \mid\right.\) angle \(\left.V_{j} \leq \pi / 2, j=1,2\right\}\)
    \(110 \uparrow 8\) onto \(\longrightarrow\) into
1155 minimum open set in \(Q\left(\nu, S L^{1}\right) \longrightarrow\) minimum open set \(\Omega\) in
        \(Q\left(\nu, S L^{1}\right)\)
\(116 \uparrow 12 \quad[G] \longrightarrow G^{c}\)
\(116 \quad \uparrow 4 \quad \hat{\chi}_{\tilde{G}\left(t_{1}\right)}(\zeta) \longrightarrow \hat{\chi}_{\left[\tilde{G}\left(t_{1}\right)\right]}(\zeta)\)
\(1174 \quad \varphi^{\prime}\left(\zeta_{0}\right)>0 \longrightarrow \varphi^{\prime}(\zeta)>0\)
1225 Let \(G\) be connected component \(\longrightarrow\) Let \(G\) be a connected
component
\(122 \quad 12 \quad \theta(x, G) \longrightarrow \theta\left(x_{i}, G\right)\)
\(\left.\left.1242,3-(-1)^{n+1} i\right\} \longrightarrow-(-1)^{n+1}(-1+i)\right\}\)
```

