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A b s t r a c t .  We show that inductive logic programming(ILP) is a power- 
ful tool for spatial data mining. We further develop the direction started 
(or symbolised) by GeoMiner [9] and argue that the technique devel- 
oped for database schema design in deductive object-oriented databases 
is fully usable for spatial mining and overcome, in expressive power, some 
other mining methods. An inductive query language, with richer seman- 
tics, is proposed and three kinds of inductive queries are described. Two 
of them are improved versions of D B M i n e r  [8] rules. The third kind 
of rules, dependency rules, allow to compare two or more subsets. Then 
a description of G W i M  mining system as well as results reached by 
the system are given. We conclude with discussion of weaknesses Of the 
method. 1 

1 Knowledge Discovery in Spatial Data 

Knowledge discovery in geographic data  is, no doubts, challenging and very 
important .  However, the classical KDD, either statistical or based on machine 
learning, are not convenient for the task. The spatial data  have to be managed by 
means that  respect(and exploit) their structural nature. Moreover, non-spatial  
da ta  need to be used, too, e.g. to find a region with some non-spatial charac- 
teristics. Main tasks when mining geographic data  [13] are, among others, un- 
derstanding data,  discovering relationship as well as (re)organising geographic 
databases.  This paper  addresses those three tasks. We show that  inductive logic 
programming(ILP)  is a powerful tool for spatial da ta  mining. 

2 Mining Knowledge by Means of ILP 

Inductive Logic Programming (ILP) [14] is a research area in the intersection of 
machine learning and computat ional  logic. The main goal is development of a 

1 The initial portion of this work was done during author's stay in LI~I Universit4 
Paris-Sud thanks to French government scholarship. This work has been partially 
supported by Esprit LTR 20237 Inductive Logic Programming II ILP 2. 
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theory and algorithms for inductive reasoning in first-order logic. ILP aims to 
construct a theory covering given facts. Given a set of positive examples E +, a 
set of negative examples E - ,  we construct a logic program P such that  P F E + 
and P V E - .  In case of noisy data  we aim at a first-order logic formula that  de- 
scribes a significant majority of positive examples and may be a non-significant 
part of negative examples. 

Since early 90'th there are at tempts to exploit ILP in knowledge discovery in 
databases [4]. C L A U D I N E  [2] can learn both data dependencies and integrity 
constraints in relational databases. A problem of mining association rules in mul- 
tiple relations has been solved in [3]. Interactive system that  provides support 
for inductive database design is presented in [1]. 

In [15] we addressed the possibilities of inductive logic programming (ILP) in 
restructuring object-oriented database schema. In deductive object-oriented da- 
tabases, both classes and attributes as well as methods may be defined by rules. 
We showed that inductive logic programming can help in synthesis of those rules 
to support the database schema design and modification. 

Exploiting that  method we further develop the direction started(or symbolised) 
by GeoMiner [9]. We argue that the technique developed for database schema 
design in deductive object-oriented databases is fully usable for spatial min- 
ing. G W i M  system is presented that outperforms in some aspects GeoMiner. 
Namely G W i M  can mine a richer class of knowledge, Horn clauses. Background 
knowledge used in GeoMiner may be expressed only in the form of hierarchies. 
G W i M  accepts any background knowledge that is expressible in a subset of 
object-oriented F-logic [12]. 

In the Section 3. we demonstrate the method on the simple mining task. Then 
an inductive query language is described. A description of G W i M  mining sys- 
tem is given in Section 5. We conclude with discussion of results and mainly 
the weaknesses of the method. We propose solutions how to improve the mining 
method. 

3 E x a m p l e  

We will demonstrate a data mining task on the database in Pic.1.  The B R I D G E  
class consists of all road bridges over rivers. Each bridge has two attributes 
- 0 b j e c t l  (a road) and 0 b j e c t 2  (a river). Each river (as well as roads and 
railways) inherits an at tr ibute Geometry (a sequence of (x,y) coordinates) from 
the class L I N E A R .  Objects of a class R I V E R  has no more attributes but 
Named of the river. In a class ROAD, the at tr ibute S t a t e  says whether the road 
is under construction (state=0) or not. The Impor tance  defines a kind of the 
road: i stands for highways, 2 for other traffic roads, and 3 for the rest(e.g. 
private ones). 

Our goal is to find a description of the class HIGHWAY_BRIDGE in terms 
of other classes in the given database. 
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Pic. 1: Object-oriented database schema 

That task is expressed in inductive query language (for a full description see 
Section 4) as 

extract characteristic rule 
[for highway_bridge. 

Let us have 2 rivers with object identifiers r i v e r l ,  r iver2,  named S v r a t k a  and 
Svitava, and two roads (with object identifiers road1 ,  road2) a highway D1 and 
a state road E7 that cross those rivers. E.g. an object br idge1  can be expressed 
in first order logic(FOL) 2 as 

bridge(bridge1) :- objectl(bridgel,roadl), 
object2(bridgel,riverl). 

road(roadl)  :- named(roadl , 'Dl ' ) ,  
geometry(roadl , [ (375 ,500) , (385 ,350) ,  
s t a t e ( r oad l , 1 ) , impor tance (road l , 1 ) .  

... ]), 

river(riverl) :- named(riverl, 'Svratka'), 

geometry(riverl,[(0,40),(40,60),(77,76), ... ]). 

All instances of the class HIGHWAY_BRIDGE are as positive examples. The 

rest of members of the class BRIDGE serves as negative examples. Then the 
expected results is as 

highway_bridge (X) : -object i (X, Y), importance (Y, i). 

GWiM starts with a minimal language which consists of objectl, object2 at- 

tributes of the class HIGHWAY_BRIDGE itself. The best clause being found 

2 Actually, GWiM works with object-oriented F-logic. Here we prefer to use FOL 
what is an interns/ representation of GWiM system. More on translation from/to 
F-logic, see [15]. 
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highway_bridge (X) : -bridge (X), object i (X, Y), obj ect2 (X, Z). 

is over-general as it covers all negative examples. In that case when no solu- 
tion is found, the language is extended by adding attributes from neighbour- 
ing classes(either super/subclasses or referenced classes). If there is a refer- 
enced class, the most general superclass is added first. In our case, an at tr ibute 
geomet ry  of the class L I N E A R  (both for RIVER and ROAD) has been added. 
As it does not help, the language has been further enriched by attributes of 
classes RIVER,  ROAD, i.e. S t a t e ,  Impor tance  and Named. For this language, 
GWiM has eventually found a logic formula that successfully discriminates be- 
tween positive and negative examples. 

4 L a n g u a g e  f o r  S p a t i a l  D a t a  M i n i n g  

In this section we present three kinds of inductive queries. Two of them, that ask 
for characteristic and discriminate rules, are adaptation of DBMiner [8] rules. 
The dependency rules add a new quality to the inductive query language. The 
general syntactic form, adapted from DBMiner of the language is as follows. 

e x t r a c t  < KindOfRule > ru le  for  < NameOf-Farget > 
[ f r o m  < ListOfClasses >] [< Constraints >] 
[ f r o m  p o i n t  o f  v i ew < Explicit Domain Knowledge >] . 

Semantics of those rule differs from that of DBMiner. Namely < Explicit Do- 
main Knowledge > is a list of predicates and/or  hierarchy of predicates. At least 
one of them has to appear in the answer to the query. Actually a clause f r o m  
p o i n t  o f  v i ew enables to specify a criterion of interestingness [5]. The answer 
to those inductive queries is a first-order logic formula which characterises the 
subset of the database which is specified by the rule. 

C h a r a c t e r i s t i c  R u l e .  Characteristic rules serve for a description of a class 
which exists in the database or for a description of a subset of a database. The 
example of that kind of rule has been shown in Section 3 . See 6.1, too. 

D i s c r i m i n a t e  R u l e .  Discriminate rules find a difference between two classes 
which exist in the database, or between two subsets of the database. They allow 
to find a quantitative description of a class in contrast to another one. 

e x t r a c t  d i s c r i m i n a t e  r u l e  
for  < NameOfClass > 
[ w h e r e  < ConstraintOnClass >] 
in c o n t r a s t  to  < ClassOfCounterExamples > 
[ w h e r e  < ConstraintOnCounterExamples >] 
[ f r o m  p o i n t  o f  v iew < DomainKnowledge >] . 

Positive examples of the concept < NameOfTarget > are described by 

for  < NameOfClass > 
w h e r e  < ConstraintOfListOfClasses > 
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negative examples are described by 

f r o m  < ListOfClasses > 
in c o n t r a s t  to  < ClassOfCounterExamples > 
w h e r e  < Constraint On Counterexamples > 

E.g. forests have an area greater than 100 hectares. Woods serve as counterex- 
amples there. For an example, see 6.2. 

D e p e n d e n c y  Rule .  Dependency rules aim to find a dependency between dif- 
ferent classes. In opposite to discriminate rules, dependency rules look for a 
qualitative characterisation of a difference between two classes. 

e x t r a c t  d e p e n d e n c y  ru le  
for  < NameOfClass > 
f r o m  < ListOfClasses > 
[ w h e r e  < ConstraintOnClasses >] 
[ f r o m  p o i n t  o f  v iew < DomainKnowledge >] . 

The objects are defined by the f r o m  ... w h e r e  ... f r o m  p o i n t  o f  v iew ... 
formula. The target predicate < NameOfTarget > is of arity equal to a number 
of classes in < ListOfClasses >. E.g. for forests and woods, an area of a forest 
is always greater than an area of a wood. See 6.3 for an example. 

5 Descr ipt ion  of  G W i M  

inductive query 
object descriptions in F-logic 

ITRANSLATEI 

Example set Background knowledge 

~ ype definitions 

1 
the new class/attribute definition in FOL 

ITRANSLATEI 
1 

the new class/attribute definition in F-logic 

Pic .  2: G W i M  s c h e m a  
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G W i M  is built upon the W i M  ILP system. W i M  [6, 11], a program for syn- 
thesis of closed Horn clauses further elaborates the approach of M I S  [17] and 
Markus [7]. It  works in top-down manner and uses shift of language bias. More- 
over, a second-order schema, as a part  of W i M  t ruth maintenance system, can 
be defined which the learned program has to much. This schema definition can 
significantly increase an efficiency of the learning process because only the syn- 
thesised programs which match the schema are verified on the learning set. 

6 R e s u l t s  

In this section we will demonstrate  (in)capabilities of GWiM.  The geographic 
da ta  set contains descriptions of 31 roads, 4 rails, 7 forest/woods,  and 59 build- 
ings 3. Geographic da ta  are on the Pic.3. The thick lines are rivers. Learning 
sets that  has been generated from those raw data  by G W i M  are in the following 
table. 

P i e .  3: R a w  d a t a  

3 See http://www.gmd.de/ml_archive/frames/datasets/ilprev/ilprev-frames.html for 
more information 
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positive ~ negative 
bridge 2 1 
forest 3 4 
forestOrWood 7 7 

Tab . l :  S u m m a r y  of  r esu l t s  

In following paragraph, particular mining tasks are described. 

6.1 Br idge  w i t h  A d d i t i o n a l  D o m a i n  K n o w l e d g e  

Find a description of bridge in terms of attributes of classes road, river, using 
a predicate common(X, Y). That predicate succeeds if geometries X and Y has 
a common point. 

e x t r a c t  cha rac t e r i s t i c  ru le  ] 
for bridge [ 
f r o m  road, river [ 
f r o m  po in t  o f  v iew common.] 

bridge(X,Y):- 
objectl(X,Z),geometry(Z,Gl), 
object2(Y,U),geometry(U,G2), 
common(G1,G2). 

6.2 D i s c r i m i n a t i o n  of  Fores t s  a n d  W o o d s  

Find a difference between forests and woods from the point of view of area. area 
is the name of set of predicates like area(Geometry, Area). 

e x t r a c t  d i s c r i m i n a t e  rule} f o r e s t  (F) : -  
for forest I geometry (F, GFores t ) ,  
in  c o n t r a s t  to  wood I a r ea (GFores t ,  Area) ,  
f r o m  po in t  o f  v iew area. ] 100 < Area. 

6.3 R e l a t i o n  b e t w e e n  Fores t s  a n d  W o o d s  

Find a relation between forests and woods from the point of view of area. area 
is the name of set of predicates like area(Geometry, Area). 

e x t r a c t  d e p e n d e n c y  rule] forest0rWood(F,W) :-  
for forestOrWood I geometry (F, GF), area(GF, FA), 
from forest, wood I geometry(W,GW), area(GW,WA), 
f r o m  po in t  of  v iew area. ] WA<GA. 

7 T o w a r d s  D i s c o v e r y  i n  R e a l  D a t a b a s e s  

The query language is quite powerful. It means that  even quite complex queries 
can be formulated. However, the price that user has to pay for is sometimes too 
big. Namely an explicit domain knowledge has to be declared almost exactly 
(see examples above). To avoid that  drawback, more meta-knowledge is needed, 
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both on the particular database and on the spatial relations. We point out that 
the meta-knowledge can be easily expressed in F-logic and exploited in G W i M  
t ruth maintenance system. 

Another fault concerns G W i M ' s  incapability to process large amount of data. 
However, even there is a way out. The general-to-specific learning method of 
G W i M  consists of 2 phases. In the first step a promising clause is generated 
which is, in the second step, tested on the example set. Complexity of the gen- 
eration step does not practicaly depend on cardinality of the example set. More- 
over, in the testing step, it seems be straightforward to employ the database 
management system(DBMS) itself. Actually, we only need to know how many 
examples (both positive and negative) is (un)covered by the promising clause. 
It remains to implement a communication channel connecting an ILP system, 
with the DBMS. W i M  can work in interactive mode [16]. There are oracles that  
allow to ask for examples an external device and even evaluate a given hypoth- 
esis on external data. A hypothesis is first translated into a (sequence of) SQL 
queries. The answers are then evaluate and the hypothesis is either specialised(if 
some positive examples are newly covered by the hypothesis and some negative 
examples are covered, too) or accepted as an answer to the particular inductive 
query. 

We will demonstrate it again on the same example as in Section 3. Let us have 2 
positive examples and 1 negative example and let the minimal success rate for a 
hypothesis to be accepted be set to 1 - all positive examples need to be covered 
and none of negative ones does. An initial portion of examples is randomly cho- 
sen from the database employing random oracle. Let we ask for just 1 positive 
example. The learned hypothesis 

highway_bridge(X) :- bridge(X),objectl(X,Y),object2(X,Z) 

has to be verified using the full database. A success rate oracle is called that  
returns the percentage of correctly covered positive examples and correctly un- 
covered negative examples. The result is 2/3 as there is 1 negative example 
covered. Thus the hypothesis is over-general and need to be further specialised. 
The process continues until the limit for a minimal success rate is reached. 

8 C o n c l u s i o n  

We have presented G W i M  system for mining spatial data. The system outper- 
forms in some aspects GeoMiner ,  namely it can mine a richer class of knowledge, 
Horn clauses. G W i M ,  too, accepts any background knowledge that  is express- 
ible in a subset of object-oriented F-logic i.e. richer than those one exploited by 
GeoMiner .  It seems not to be hopeless to apply that approach in a warehouse 
technology [10]. The most serious problem is the computational complexity of 
the current implementation. A way how to solve it as been proposed in the 
previous section. 
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