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Errata

My thanks to Nazih Nahlus, Walter Ferrer Santos, and especially Michel
Brion for the errata listed below.

page 8, line −7: “T (G(x))x” should be T (G · x)x.

page 13, line −7: “we adapt” should be “we adopt”.

page 15, line 15: “(ω, α)”. The notation ( , ) refers to a Q-valued inner
product on X(T ) which is invariant under the Weyl group of G.

page 20, statement of Theorem 4.2: “k[ X́ ] = k[X] if and only if codim(X−
X́ ) ≥ 2”. This would be better stated as “k[X́] = k[X] if and only if each
irreducible component of X − X́ has codimension ≥ 2 in X”.

page 27, line −2: “dimensions of the irreducible components of the fibers”
should be “dimensions of the irreducible components of the non-empty fibers”.

page 28, Theorem 5.3: the assumption that X be affine is not necessary.

page 29, line −4: The sentence, “Embeddings of G/U, where U is maximal
unipotent in a semi-simple group G, were completely described in [112] in case
char k = 0”, should be replaced by the following. “The affine embeddings of
G/U , where U is maximal unipotent in a semi-simple group G, were com-
pletely described in [112] in case char k = 0. A general theory of embeddings
of homogeneous spaces was developed by Luna and Vust in [70]. An exposition
of the Luna-Vust theory may be found in [60].”

page 39, line 18: the bibliographic citation should be [Ferrer Santos, Walter
Ricardo, A note on affine quotients. J. London Math. Soc. (2) 31 (1985), no. 2,
292–294].

page 44, line−1: “there is non-negative” should be “there is a non-negative”.



e-2 Errata

page 49, line 5: “Lemma 3 is, in fact” should be “Lemma 8.5 is, in fact”.

page 50, line −6: “Then Φ(a) �= 0” should be “If a �= 0, then Φ(a) �= 0”.

page 59, line −13: “a subgroup H” should be “an observable subgroup H”.

page 63, line 1: “SL(n, C)” should be “SL(n, C), n ≥ 2”.

page 66, line 7: “the group acts on Sn” should be “the group G acts on Sn”.

page 73, line 10. The sentence beginning “Since soω ≤ χ ≤ ω” should
be replaced by the following. “Since ω ≥ χ and χ +

∑
eαα = soω, we have∑

eαα = soω − χ ≥ soω − ω. Hence, soω − ω ≤
∑

eαα ≤ 0.”

page 93, proof of Theorem 15.14. Michel Brion has shown me an easy
way to prove that D is a free k[x]-module. Since free modules are flat,
this eliminates the need to use Lemma 15.9. The proof is as follows. For
each n ≥ 0, choose a subspace Vn of An so that as vector spaces over
k, An = Vn ⊕ An−1; choose a basis for Vn over k say, {vn1, vn2, . . .}. Let
F = {v01, . . . , v11, . . .}. Note that any a ∈ An can be written as a k-linear
combination of the vij . We now show that D is a free k[x]-module with F
as a basis. First, we prove by induction on degree that any f ∈ D is a k[x]-
linear combination of elements in F . When f ∈ A0, this is immediate since

A−1 = {0}. In general, let f =
N∑

n=0
anxn where aN is a non-zero element in

AN . Choose (finitely many) scalars cij ∈ k so that aN =
∑

cijvij . Then,

f −
∑

cijvijx
N ∈

N−1⊕

n=0
Anxn and we may apply the induction hypothesis. Sec-

ond, suppose that
∑

cij(x) vij = 0 where each cij(x) is a polynomial in k[x].
We equate the coefficient of each power of x to 0 to obtain equations of the
form

∑
dij vij = 0 where each dij ∈ k. Since the vij are linearly independent

over k, each dij = 0. Then, each cij(x) = 0.

page 105, line 3: “D(m,n, r)”should be “k[D(m,n, r)]”.

page 107, line −5. The following comment should be placed right after the
definition. “This definition makes sense when G = B. Lemmas 19.7, 19.8, and
Theorem 20.2 also are valid in case G = B and are used in that way in the
Example on p. 116.”

page 108, Lemma 19.8: the lemma holds without the assumption that X
be quasi-affine [Knop, Friedrich: On the set of orbits for a Borel subgroup.
Comment. Math. Helv. 70 (1995), no. 2, 285–309].

page 117, line 13: “commutator” should be “centralizer”.

page 121, line −19: “fourteen different” should be “thirteen different”.


