Lecture Notes in Mathematics Vol. 1673

ISBN 978-3-540-63628-1 \odot Springer-Verlag Berlin Heidelberg 2008

Frank D. Grosshans

Algebraic Homogeneous Spaces and Invariant Theory

Errata

My thanks to Nazih Nahlus, Walter Ferrer Santos, and especially Michel Brion for the errata listed below.

```
page 8, line -7: "T(G(x))_x" should be T(G \cdot x)_x.
```

page 13, line -7: "we adapt" should be "we adopt".

page 15, line 15: " (ω, α) ". The notation (,) refers to a \mathbb{Q} -valued inner product on X(T) which is invariant under the Weyl group of G.

page 20, statement of Theorem 4.2: "k[X'] = k[X] if and only if $\operatorname{codim}(X - X') \geq 2$ ". This would be better stated as "k[X] = k[X] if and only if each irreducible component of X - X' has codimension ≥ 2 in X".

page 27, line -2: "dimensions of the irreducible components of the fibers" should be "dimensions of the irreducible components of the non-empty fibers".

page 28, Theorem 5.3: the assumption that X be affine is not necessary.

page 29, line -4: The sentence, "Embeddings of G/U, where U is maximal unipotent in a semi-simple group G, were completely described in [112] in case char k=0", should be replaced by the following. "The affine embeddings of G/U, where U is maximal unipotent in a semi-simple group G, were completely described in [112] in case char k=0. A general theory of embeddings of homogeneous spaces was developed by Luna and Vust in [70]. An exposition of the Luna-Vust theory may be found in [60]."

page 39, line 18: the bibliographic citation should be [Ferrer Santos, Walter Ricardo, A note on affine quotients. J. London Math. Soc. (2) 31 (1985), no. 2, 292–294].

page 44, line -1: "there is non-negative" should be "there is a non-negative".

page 49, line 5: "Lemma 3 is, in fact" should be "Lemma 8.5 is, in fact".

page 50, line -6: "Then $\Phi(a) \neq 0$ " should be "If $a \neq 0$, then $\Phi(a) \neq 0$ ".

page 59, line -13: "a subgroup H" should be "an observable subgroup H".

page 63, line 1: " $SL(n,\mathbb{C})$ " should be " $SL(n,\mathbb{C})$, $n \geq 2$ ".

page 66, line 7: "the group acts on S_n " should be "the group G acts on S_n ".

page 73, line 10. The sentence beginning "Since $s_o\omega \leq \chi \leq \omega$ " should be replaced by the following. "Since $\omega \geq \chi$ and $\chi + \sum e_\alpha \alpha = s_o \omega$, we have $\sum e_\alpha \alpha = s_o \omega - \chi \geq s_o \omega - \omega$. Hence, $s_o \omega - \omega \leq \sum e_\alpha \alpha \leq 0$."

page 93, proof of Theorem 15.14. Michel Brion has shown me an easy way to prove that D is a free k[x]-module. Since free modules are flat, this eliminates the need to use Lemma 15.9. The proof is as follows. For each $n \geq 0$, choose a subspace V_n of A_n so that as vector spaces over $k, A_n = V_n \oplus A_{n-1}$; choose a basis for V_n over k say, $\{v_{n1}, v_{n2}, \ldots\}$. Let $F = \{v_{01}, \ldots, v_{11}, \ldots\}$. Note that any $a \in A_n$ can be written as a k-linear combination of the v_{ij} . We now show that D is a free k[x]-module with F as a basis. First, we prove by induction on degree that any $f \in D$ is a k[x]-linear combination of elements in F. When $f \in A_0$, this is immediate since $A_{-1} = \{0\}$. In general, let $f = \sum_{n=0}^{N} a_n x^n$ where a_N is a non-zero element in A_N . Choose (finitely many) scalars $c_{ij} \in k$ so that $a_N = \sum c_{ij} v_{ij}$. Then, $f - \sum c_{ij} v_{ij} x^N \in \bigoplus_{n=0}^{N-1} A_n x^n$ and we may apply the induction hypothesis. Second, suppose that $\sum c_{ij}(x) v_{ij} = 0$ where each $c_{ij}(x)$ is a polynomial in k[x]. We equate the coefficient of each power of x to 0 to obtain equations of the form $\sum d_{ij} v_{ij} = 0$ where each $d_{ij} \in k$. Since the v_{ij} are linearly independent over k, each $d_{ij} = 0$. Then, each $c_{ij}(x) = 0$.

page 105, line 3: "D(m, n, r)" should be "k[D(m, n, r)]".

page 107, line -5. The following comment should be placed right after the definition. "This definition makes sense when G = B. Lemmas 19.7, 19.8, and Theorem 20.2 also are valid in case G = B and are used in that way in the Example on p. 116."

page 108, Lemma 19.8: the lemma holds without the assumption that X be quasi-affine [Knop, Friedrich: On the set of orbits for a Borel subgroup. Comment. Math. Helv. 70 (1995), no. 2, 285–309].

page 117, line 13: "commutator" should be "centralizer".

page 121, line -19: "fourteen different" should be "thirteen different".