Hans G. Kellerer: Extension of stationary processes

Let a_t , $0 \le t \le t_o$, be a relatively stationary stochastic process, i.e. the distributions of a_{t_1}, \ldots, a_{t_n} and $a_{t_1+h}, \ldots, a_{t_n+h}$ are identical if $0 \le t_i, t_i+h \le t_o$ for $1 \le i \le n$ (n arbitrary). Then under the additional assumption

- (*) a_t weakly continuous for $0 \le t \le t_0$, by a simple passage to the limit a stationary extension a_t , $t \ge 0$, can be constructed from solutions of the analogous discrete time problem. Giving up the condition (*) the existence of such a process can be proved using the following general theorems:
- 1. If Υ is the class of all finite subsets T of $[0,\infty)$ with $\max T \min T \leq t_0$, then to every family of consistent distributions p_T over R^T , $T \in \Upsilon$, there exists a stochastic process a_t , $t \geq 0$, such that the random variables a_t , $t \in T$, have the distribution p_T ($T \in \Upsilon$ arbitrary).
- 2. If a_t , $t \ge 0$, is any stochastic process, then under a boundedness condition (which for instance is fulfilled in the case of identically distributed a_t) there exists a stochastic process \widetilde{a}_t , $t \ge 0$, such that the expectation of a bounded continuous function $f(a_t; t \ge 0)$ is always confined by the lower and upper limit of $E(f(a_{t+h}; t \ge 0))$ for $h \to \infty$.