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Abst rac t .  We introduce a framework to study the parallel complexity 
of parameterized problems, and we propose some analogs of NC. 

1 I n t r o d u c t i o n  

The theory of NP-completeness [8] is a theoretical framework to explain the ap- 
parent asymptotical intractability of many problems. Yet, while many natural  
problems are intractable in the limit, the way by which they arrive at the in- 
tractable behaviour can vary considerably. For instance, deciding if the nodes of 
a graph can be properly colored by k colors is NP-complete even for a constant 
k > 3 [8], while there exists an algorithm deciding if the edges of a n nodes graph 
can be covered by k nodes in time O(n) for any fixed value of k. The param- 
eterized complexity setting [6, 7] has been introduced in order to overcome the 
intrinsic inability of the standard NP-completeness model to give insight into 
this variety of behaviours. 

In this paper we investigate the issue of which problems do admit  efficient 
fixed parameter parallel algorithms. A first a t tempt  to formalize the concept 
of efficiently fixed parameter parallelizable problems has been pursued by Bod- 
laender, Downey and Fellows: in a one-page abstract [3] they suggested the 
introduction of the class PNC as the parameterized analogue of NC. However, 
neither theoretical results nor applications to concrete natural problems were 
presented. We now want to give a deeper insight to such concept. According to 
the degree of efficiency we are interested in, several kinds of efficient paralleliza- 
tion for parameterized problems can be considered. In section 2, after reviewing 
some basic concepts of the parameterized complexity theory, we define the two 
classes of efficiently parallelizable parameterized problems, PNC and FPP,  and 
we study their relationship with the class of sequentially tractable parameterized 
problems (FPT).  We also present a non trivial tool for proving FPP-membership  
of parameterized graph problems based on the concept of treewidth and on the 
results in [1, 4, 2]. In section 3 we study the relationship between NC, PNC, and 
FPP.  In section 4 we give two alternative characterizations of both F P P  and 
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PNC, and we use them to prove the PNC-completeness of two parameterized 
structural problems. 

2 T h e  C l a s s e s  P N C  a n d  F P P  

Let Z be a finite alphabet. A parameterized problem is a set L _C Z* • Z*.  
Tipically, the second component represents a parameter k C IN. The kth slice 
of the problem is defined as Lk = { x C Z* : (x, k) E L }. The class F P T  of fixed 
parameter tractable problems contains all parameterized problems that  have a 
solving algorithm with running time bounded by f(k)Ixl ~, where (x, k} is the 
instance of the problem, k is the parameter,  f is an arbitrary function and a is 
a constant independent of x and k. 

From now on, with the term "parallel algorithm" we always refer to a PRAM 
algorithm. The first class of efficiently parallelizable parameterized problems, 
PNC, has been defined in [3]. PNC (parameterized analog of NC) contains 
all parameterized problems which have a parallel solving algorithm with at 
most g(k)Ixl ~ processors and running time bounded by f(k)( log IxD h(k), where 
(x, k) is the instance of the problem, k is the parameter,  f ,  g and h are arbi trary 
functions, and/3 is a constant independent of x and k. The definition of PNC is 
coherent with the definition of FPT;  indeed we can prove that  PNC is a subset 
of FPT.  

A drawback with the definition of PNC is the exponent in the logari thm 
which bounds the running time. We thus introduce the class of fixed-parameter 
parallelizable problems FPP that contains all parameterized problems having a 
parallel solving algorithm with at most g(k)Ixl ~ processors and running t ime 
bounded by f(k)( log [xl) ~, where (x, k) is the instance of the problem, k is 
the parameter,  f and g are arbitrary functions, and a and /3 are constants 
independent of x and k. Observe that,  by definition, FPP  C_ PNC. 

Several parameterized parallel problems can be proved to be included in F P P  
by directly showing a PRAM algorithm for them. Among them we recall param- 
eterized VERTEX COVER and MAX LEAF SPANNING TREE. However, we can 
now present a different way for proving FPP-membership,  based on the con- 
cept of treewidth. Treewidth was introduced by Robertson and Seymour [9], and 
it has proved to be a useful tool in the design of graph algorithms. Bodlaen- 
der and Hagerup [4] showed that  there exists an optimal parallel algorithm on a 
EREW PRAM using C9((log n) 2) time and O(n) space which is able to construct 
a minimum-width tree decomposition of G or correctly decide that  tw (G) > k. 
Therefore parameterized TREEWIDTH belongs to FPP.  

The concept of treewidth turns out to be an useful tool for proving FPP-  
membership. In [1] it is shown that  many problems that  are (likely) intractable 
for general graphs are in NC when restricted to graphs of bounded treewidth. In 
particular, the authors prove that  some graph properties (MS and EMS prop- 
erties) are verifiable in NC for graphs of bounded treewidth. A careful study 
of the proofs in [1] reveals that such properties are also verifiable in F P P  un- 
der the same hypothesis, since any optimal tree decomposition of width k can 
be transformed in O(logn) time and O(n) operations on a EREW PRAM into 
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a binary tree decomposition of depth O(logn)  and width at most 3k + 2 [4]. 
Therefore: all problems involving MS or EMS properties are in F P P  when re- 
stricted to graphs of parameterized treewidth. Thus, for any (E)MS property P, 
the following BOUNDED TREEWIDTH GRAPHS VERIFYING P problem belongs 
to FPP:  given a graph G, is G satisfying P and such that  tw(G) < k (k being 
the parameter)? Lists of graph problems defined over (E)MS properties can be 
found in [2]. 

In a few cases it is possible to prove FPP-membership  even without restric- 
tions on the treewidth since some properties directly imply a bound on the 
treewidth. Therefore several natural problems (like FEEDBACK VERTEX SET) 
are in FPP,  because (i) yes-instances have bounded treewidth, and (ii) the cor- 
responding property is (E)MS. 

3 R e l a t i o n s h i p  B e t w e e n  F P P ,  P N C ,  a n d  N C  

Trivially, the slices of every parameterized problem belonging to FPP  or PNC are 
included in NC. It is now worthwhile to verify whether the converse is true, tha t  
is, whether the parameterized versions of all problems whose slices belong to NC 
are included in FPP  or PNC. Consider the CLIQUE problem. Each slice CLIQUEk 
is trivially in NC. Indeed, CLIQUEk can be easily decided by a parallel algorithm 
that  uses O(n k) processors and requires constant time. Since CLIQUE is likely 
not in F P T  [7], it is also likely not in PNC. Thus, slice-membership to NC is not a 
sufficient condition for membership to PNC. Therefore, the classes FPP  and PNC 
are somewhat "orthogonal" to NC, as much as the definition of F P T  is orthogonal 
to the one of P. Nevertheless, there is a strong relation between P-completeness 
and FPT-completeness, where the completeness for F P T  is defined with respect 
to parameterized reductions preserving membership to FPP  or PNC. Indeed, 
consider the WEIGHTED CIRCUIT VALUE problem WCV:  its instance consists 
of the description of a logical decision circuit C and of an input word w; the 
parameter  k is the Hamming weight of w, and the question is whether C accepts 
w. We have proved the following. 

L e m m a  1. WCV is in FPT,  while each slice WCVk is P-complete. 

Previous lemma has an important  consequence. Let L, L t be parameter-  
ized problems. We say that L FPP-reduces (PNC-reduces) to L ~ if there are an 
FPP-algori thm (PNC-algorithm) ~ and a function f such that  O(x, k) computes 
(x', k' = f(k)} and (x, k} C L if and only if (x', k'} C L'. It is not hard to prove 
the following. 

C o r o l l a r y  1. Let <_~ be either the FPP-reduction or the PNC-reduction. I f  
there exists an FPT-hard problem L with respect to <_~ such that all its Slices 
Lk are included in NC, then P - N C .  

Corollary 1 implies that every FPT-hard  parameterized problem must have 
at least one slice which is not in NC unless P = NC. Thus, the notion of FPT-  
completeness does not add anything to the classical notion of P-completeness 
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to characterize hardly parallelizable parameterized problems. In particular, to 
distinguish between parallel intractability in the two contexts, we must find an 
hardly parallelizable parameterized problem with slices in NC. This is the aim 
of next section. However, we can hope to characterize "FPP 's  intractability" 
by proving the PNC-completeness of some problem (in the hypothesis F P P  
PNC), but we have no way to characterize "PNC's intractability". 

4 A l t e r n a t i v e  C h a r a c t e r i z a t i o n s  o f  F P P  a n d  P N C  

NC is primarly defined as the class of problems that  can be decided by uniform 
families of polynomial size, polylogarithmic depth circuits. Successively, it has 
been proved that  uniform families of circuits and PRAM algorithms are poly- 
nomiMly related. In this paper, we have taken the inverse approach, by initially 
defining the classes FPP  and PNC in terms of PRAM algorithms. In this sec- 
tion, we extend the relation between PRAM algorithms and uniform families 
of circuits to the parameterized setting. In this case, uniform means that  the 
circuit C~, able to decide instances of size n when the value of the parameter  
is k, can be derived in space f(k)(log n) ~, for some function f and constant ~. 
It is possible to prove the following theorem by essentially using the same proof 
technique in [10]. 

T h e o r e m  1. A uniform circuit family of size s(n, k) and depth d(n, k) can be 
simulated by a PRAM-PRIORITY algorithm using O(s(n, k ) ) active processors 
and running in time O(d(n, k)). 

Conversely, there are a constant c and a polynomial p such that, for any 
FPP (PNC) algorithm �9 operating in time T(n, k) with processor bound P(n, k), 
there exist a constant d~ and, for any pair (n, k), a circuit C k of size at most 
dvp(T(n, k), P(n, k), n) and depth cT(n, k) realizing the same input-output be- 
haviour ore  on inputs of size n. Furthermore, the family {C~} is uniform. 

The previous theorem allows us to show the first PNC-complete problem. 
It is denoted as BOUNDED SIZE-BOUNDED DEPTH-CIRCUIT VALUE PROBLEM 
(in short, B S - B D - C V P )  and is defined as follows: given a constant ~, three 
functions f ,  g and h, a boolean circuit C with n input lines, an input vector x 
and an integral parameter k, decide if the circuit C (having size g(k)n ~ and 
depth h(k)(logn) ](k)) accepts x. We have proved the following. 

C o r o l l a r y  2. B S - B D - C V P  is PNC-complete with respect to FPP-reduetions. 

A second characterization of the classes of parameterized parallel complex- 
ity is based on random access alternating Turing machines. There is a strong 
relation between the time required by a random access alternating Turing ma- 
chine and the depth of a simulating circuit, and between the space required by 
a random access alternating Turing machine and the size of a simulating cir- 
cuit [5]. Such relation also holds in the parameterized setting. For the sake of 
brevity, we do not state the corresponding theorem. We only want to remark 
that  such a characterization allows us to define another PNC-complete problem, 
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RANDOM ACCESS ALTERNATING TURING MACHINE COMPUTATION (in short, 
R A - A T M C ) :  given a random access alternating Turing machine AT,  an input 
word x and an integral parameter k, does AT(x)  halts within O(f(k)( log Ixl) k) 
steps with SPACE*(n) E O(g(k) log n)? 

C o r o l l a r y  3. R A - A T M C  is PNC-complete with respect to FPP-reductions. 
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