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Abs t rac t .  Unbalanced Feistel networks Fk which are used to construct 
invertible pseudo-random permutations from kn bits to kn bits using d 
pseudo-random functions from n bits to (k - 1)n bits, k > 2 are studied. 
We show a new generalized birthday attack on Fh with d < 3k - 3. With 
2 (h-1)n chosen plaintexts an adversary can distinguish Fk (with d = 3 k -  
3) from a random permutation with high probability. If d < (3k - 3) then 
fewer plalntexts are required. We also show that for any Fk (with d = 2k), 
any adversary with m chosen plaintext oracle queries, has probability 
O(rah/2 (h-1)n) of distinguishing Fk from a random permutation. 

K e y w o r d s :  Block ciphers, Feistel networks, pseudo-random permutations,  sec- 
ond moment  method, birthday attacks. 

1 In t roduc t i on  

We study the security of unbalanced Feistel networks [12]. In particular, we 
demonstrate a new class of attacks based on generalizations of the birthday 
paradox. Feistel networks are used to construct pseudo-random permutations 
(2n bits to 2n bits) from pseudo-random functions (n bits to n bits). Unbalanced 
Feistel networks are also used to construct pseudo-random permutations, but 
from pseudo-random functions in which the range and domain of the functions 
may not be of the same size. 

Unbalanced Feistel networks in which the size of the domain of the pseudo- 
random functions is larger than that  of the range will be called contracting 
unbalanced Feistel networks. The pseudo-random functions used in the construc- 
tion will be called contracting substitution bozes. Similarly, networks in which 
the size of the domain of the pseudo-random functions is smaller than that  of the 
range will be called ezpanding unbalanced Feistel networks. The pseudo-random 
functions used in the construction will be called ezpandin# substitution bozes. 
Such Feistel networks are also called complete tar#et heavy unbalanced Feistel 
networks [12]. BEAR and LION [11] are two block ciphers which employ both 
expanding and contracting unbalanced Feistel networks. 

In this paper we will be concerned with expanding unbalanced Feistel net- 
works. From a practical point of view, expanding unbalanced Feistel networks 
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are easier to devise. For if the substitution boxes were to be given explicitly 
(i.e. by giving the value of the function explicitly for each input) the expanding 
boxes require much less memory. More precisely, a function from n hits to kn 
bits requires 2nkn bits of memory, whereas a function from kn bits to n bits 
requires 2~nn bits of memory. A similar information-theoretic argument can he 
made if the substitution boxes were not given explicitly, but were themselves 
constructed using smaller boxes or functions. 

Naor and Reingold [13] have studied the security of contracting unbalanced 
Feistel networks. They show much better security (lower) bounds for such net- 
works compared to the bounds proved for usual Feistel networks. Proving com- 
parable bounds for usual Feistel networks is much more difficult. This disparity 
is apparently due to the information-theoretic distinction mentioned in the pre- 
vious paragraph. Proving security (lower) bounds for expanding Feistel networks 
turns out to be even more difficult. 

If L and R are bit strings, then let LI[R denote their concatenation. For 
k _> 2, an expanding Feistel network is a permutation F~ : {0, i} kn --* {0, 1} ~n, 
given by composition of several subrounds of the following transformation: 

(LIIIL II...IIn )-K(LIII(/(Zl) �9 <<< n). 
Here, Li is a n bit string, and f a random function from n bits to (k - 1)n 
bits. The functions used in different subrounds may be independent. X <<< n 
denotes X rotated left by n bits. An F~ (r >_ i) expanding Feistel network has 
r subrounds. For example, DES [3] is a F~ 6 Feistel network. 

We show that for any F~ t expanding Feistel network F, with independent 
random functions for different subrounds, any adversary with m chosen plain- 
text oracle queries (i.e. values of F(z) for m chosen values of z), has probabil- 
ity O(m~/2 (~-i)n) of distinguishing F from a random permutation {0, l}kn--~ 
{0, I} t'~. For, /c = 2 (i.e. for the usual Feistel networks) the result was already 
known [9]. In fact, the bound in [9] held for just 3 sub-rounds. Recently, Patarin 
[10] has shown that for F~, the adversary has distinguishing probability at most 
0(m4/2 sn + rn2/22n). 

We also show that  as k increases more and more subrounds of F~ can be 
broken by chosen plaintext attacks. We show that  F~ ~-3 can be distinguished 
from a random permutation with about 2 (~-I)n chosen plaintexts. For example~ 
F 9 can he distinguished from a random permutat ion with 2 ~ chosen plaintexts. 
Various other such attacks can be obtained; the number of plalntexts required 
increasing with the number of subrounds. Some attacks lead to complete recovery 
of the key (or the substitution boxes, in case the substitution boxes were key 
dependent). 

These attacks are based on a new technique employing certain generalizations 
of the birthday paradox. Usual birthday-like attacks (see e.g. [1],[8],[4],[6]) are 
based on requiring two random variables involved to be same. Usually, two such 
"coincidence" events are pairwise independent. Generali~.ations to more than one 
coincidence have been studied in [6],[5],[7]. In this paper we study coincidences 
which are much more dependent than previously considered. We employ the 
second moment  method for our analysis. 
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We also note that  if the exclusive-or operation above in the subround defi- 
nition is replaced by an addition (modulo 2 n) operation, then these attacks do 
not work. However, if only some of the subrounds use the addition operation, 
the attacks are still possible. 

2 Definit ions 

Let {0, 1} n denote all n bit strings. If  z E {0, 1} n then let zi denote the ith bit 
of ~. Let x < < <  t denote the string obtained by rotating z left by t bits. If z 
and y are two bit strings then ~[[y will denote their concatenation. Thus, if z 
and y are n bit strings, then (zllY) < < <  n is (yllz). 

Let ym-* denote the class of all functions F : {0, 1 ) ' ~ { 0 ,  1} TM. A random 
function F '~,~ is a function chosen uniformly from ~,~,m. If the function is one- 
to-one and n = m, then we call such a function a permutation. When n, m are 
dear  from context we drop the superscripts. 

An adversary S is a function from bit strings to bit strings. Note that  we are 
not defining complexity theoretic adversaries, as we wiU not concern ourselves to 
pseudo-randomness due to lack of space. Whenever the results can be generalized 
to pseudo-random functions, we will mention so. 

An oracle adversary is a function S E ~.,.,t which takes as parameter another 
adversary A E ~ i , n ~  (A is called the oracle). However, S may not have full 
access to A, and may only be allowed certain invocations of A (called oracle 
queries). Thus, if the oracle adversary is allowed to make m oracle queries, then 
S(z) depends on (Pi, A(Pi),  ..., P~, A(P~), ..., P,n, A(Pm)). Here P~ E {0, 1} ni and 
A(Pi) E {0, 1} '~2. -Pl is determined by z, and Pi+l is determined by -Pi, A(Pi),..., 
A(Pi). Also, when A is the oracle, we will refer to the oracle adversary as S "4. 

For (k > 2), we define the operator ~ (or just 7 / i f  k is understood) applied 
to a function f l  E ~ , (~- i ) ,~  to be a permutation 7fk[fi] E .~n,~,~ as follows: 
For all z - zi[[...[[zh zi E {0, 1} n, 

7 / , [ f l ] ( ~ )  = ( ~ l l l ( f l ( ~ , )  �9 (~211...llz,))) < < <  n 

Sometimes it is convenient to view f l  as (k - 1) functions f l l ,  fl2, . . .fl(~-l), 
where f l l (z )  is defined as the restriction of f l (z)  to the first n bits a n d  so on  (see 
Fig 1). Then, the above definition of 7"/k[fl] (in the case k=4) can be rewritten 
a s :  

7-/4[fl](z) - (fxl(zi) �9 z21lf19.(zi) @ z3[lfla(zi) @ z4llzi) 

The above transformation 7-/k[fl] is called one subround of the eztmndin# 
unbalanced Feistel network. The function f i  is called the ezpandin# substitution 
boz. In a block cipher, this function can either be a fixed function xored with a 
secret key (as is the case in DES), or a function generated from a secret key. 

It is not difficult to see that  7-l~[fi] is a permutation. For d > 2, the d- 
subround transformation is defined recursively: 

n [ f l ,  f~, ...fa](z) = 7-/[fa](7/[fi, ..fd-1](z)). 
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A typical permutation 71~ [f~, ...fd] will be denoted F~. Figure i shows a nine 
subround Feistel permutation F~. 

M 0 1 .  . ~ ~ ,- ....... M61 .M91 

, ~ ....... ' }  ~ ~ 

M 0 4 . _ . . _ _ ( ~  1"14  ~ / t v / t ....... ./ ~ �9 / t ~ / t �9 / IM94  

Fig. I. An unbalanced Feistel network F~ 

Let S be an oracle adversary which outputs one bit and makes at most m 
oracle queries. The distinguishing probability/of S for the operator 7~h composed 
d times is 
IPrj,,j~,.../, [s ~tI1'l~''j'] = i] - Pr~[s ~ = I]I, 
where fl, f~, ...fd are uniformly chosen from ~-~,(~-i),~, and F is uniformly chosen 
from all permutations in ~rt,~,~n. 

Probability Theory Basics 

For a random variable X its variance is defined as 
~,a,'[~] = ~ [ ( ~  - J Z [ 4 ) " ]  

If X = Xz + ... + X~ + ... + X~,  where each X~ is a indicator random variable 
for certain event Ai (i.e. X~ = 1 if event A~ holds and Xi = 0 otherwise), then 
~ar[Z] < E[X] + ~,~#co~[X~, Xj], where co~[r, z] = E [ r Z ]  - E[r ]E[Z] .  

For indices i , j ,  write i -.~ j if i ~ j and the events Ai, Aj are not independent. 
Denote by A the following sum 

i~ j  

Using Chebyschev's inequality the following lemma can be proved (see e.g. [2]) 
L e m m a  1: If E[X]---,oo and vat[X] = o(E[X]2), then X > 0 almost always. It 
follows that  if E[X]---,oo and A : o(E[X]2), then X > 0 almost always. 

This is also called the second momenl melhod. 

The birthday paradoz refers to the fact that  if r objects are selected with 
replacement from a set of N objects, then two of the objects chosen will be same 
with probability tending to 1 - ezp(-r2/(2N)) .  



190 

3 G e n e r a l i z e d  B i r t h d a y  A t t a c k s  

Let F~ be a d subround unbalanced Feistel network employing random subround 
functions f t ,  .../d (i.e. F~ = 7/[ft, ...fdD. We show that for d = 3 k -  3 subrounds, 
with about 2 (k-1)'~ chosen plaintexts one can distinguish F~ from a random 
permutation in ~'~,~'~ with probability close to one. 

The total time required is O(n2(k-t)~), and memory required is O(2(~-t)~). 

For simplicity, we demonstrate the attack for F 9 (see Fig 1). From now on 
we will refer to the Feistel permutation as F. 

For input M = (M0t[[Mo2HMoa[[Mo4), we use the following notation to de- 
note intermediate values after each subround of F.  After round j the interme- 
diate value will be denoted (M~t [[Mj2[[M~s[[M~4). Recall that 

(M(~+t)tl[M(j+x)211M(j+t)a]lM(~+t)4) = (f(j+t)l(Mjt)  �9 Mj2[[ fO+l):(Mjt) (~ 

Of particular interest are the intermediate values Mjt, as it is to this value 
that the next subround function is applied. 

We start with a pack of s chosen plaintexts with the same first n bits, i.e. 
keeping Mot constant. We will have a total of t different such packs (i.e. each 
pack having its distinguishing Mot value). Let M t and M 3 be two plaintexts in 
two different packs (wlog pack1 and pack2 respectively) such that 

M h  = M~t (1) 
If M 2 and M 4 are plaintexts in pack1 and pack2 respectively such that 

M~ ~ M~2 = M2~ �9 M~ (~) 
then it follows that 

M5 = M~t (3) 
If we also require that 

Mo18 @ Mo2a = MoSs @ M~a , and Mo14 @ M~4 = M~4 @ Mo44 (4) 
then more good properties will follow. If, 

M~t = M~t (5) 
then using the earlier equations it follows that 

M~t = M~t (6) 

To see (6), note that M~t = / 2 t ( M t t )  @/t2(Mot) �9 M0s. If we take the xor- 
sum of four of these equations (corresponding to the four texts involved), we get 

M~I ~ M~t ~ M2at $ M~t = 0 (7) 
The RHS sums to zero because of (1), (3), (4), and Mo~t = Mo ~ .  M0~t = Mo~t. 
Then, (6) follows from (5) and (7). 

Since the underlying subround functions are random, equation (1) holds with 
probability 2 -'~. Similarly, equation (5) holds with probability 2 -'~. It is not dif- 
ficult to prove that (5) is independent of (1) and hence the combined probability 
of (1),(3),(5) and (6) is 2-~'L 

Figure 2 illustrates these and many more equalities which the adversary 
would require. The columns represent a particular plaintext. The rows represent 
the intermediate values. Two points are joined by an edge if the two values are 
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pack1  

1 2 
M M 

p a c k 2  

3 

. . . . . . . .  �9 . . . . . . . . . . . . . . . .  �9 . . . . . . . . .  ( 1 )  . . . . . . . . . . . .  ~" . . . . . . . . . . . . . .  �9 . . . . . .  

q ~ - - - - ' ~ . . . . . .  ~ . . . . . .  �9 

' ' ' ' ' ' ' " *  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . .  . . o = - " ~  

( 3 )  

._ (5) : o ..... .(6)....., 

M 0 1  

M l l  

M 2 1  

e - - " - "  o- �9 ....o M 31 
~176176176  . . . . .  �9 . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . .  .~176176176176176176 

;, : �9 . . . . . . . . . . . . . . .  �9 M 4 1  

o- .... �9 .... e M 51 
" " ~  . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . - - - ' ~ 1 7 6  

; : 0 ............... �9 M 61 

; : �9 .............. 4 M 71 

; : �9 . . . . . . . . . . . . . . .  �9 M 81 

�9 . . . . . . . . . . . . . . .  4 o. . . . . . . . . . . . . . . .  .o M 92  

e . . . . . . . . . . . . . . .  4 o- . . . . . . . . . . . . . . .  �9 M 93  

o- . . . . . . . . . . . . . .  4 �9 . . . . . . . . . . . . . . .  �9 M 94  

Fig. 2. Attack on F~ 

equal. It is a solid edge if the equality happens with probability 2 - " .  It  is a 
dotted edge if it follows conditionally with probability one (or if it is required 
by the adversary as part of the plaintext conditions). Edges between different 
packs like the ones between Mzzl and M31 will be called eT"oss edges. 

Let us restrict our attention to just the plaintexts M 1 and M 2. The combined 
probability required by the equations in Figure 2 is 2 -5'~ (it is not difficult to see 
that  the events are independent, as the subround functions are independent). 
Let X~ be the indicator random variable of such an event. Let X be the sum 
of all ~(82~) such random variables, as there ~ e  ~ packs, and each pack has s 
texts. The expected number of such events (E[X]) is 8(s2~2-5").  We next show 
that va,[X] = o(E[X]2). We just show that A = o(E[X]2). 



192 

1 2 
M M 

. . . . . . . . . � 9  

S 

�9 e 

r r 

@ 0 

r ." 

I C 

t~ 1 t~ 2 

. . . . . . . . . . . . . .  �9 . . . . . . . . . . . . . .  ~ .... M 01 

�9 s M l l  

= -" M 21 

�9 �9 M31 

: -_ M41 

s e M51 

: _- M 6 1  

e -" M 7 1  

-" -= M 81 

Fig. 3. Two events 

Let Xi and Xj be the indicator variables of two such events. Let us denote 
the plaintexts involved in the event (X~ = 1) by M 1 and M 2, and the plaintexts 
involved in the event (Xj = 1) by ~ 1  and/~T/2. The subevents in the two events 
are shown in Figure 3 by solid edges. Here, the two packs could be the same pack 
or different packs. If there are no cross edges then the combined probability of 
the two events is clearly 2 -l~ Also, if {M 1, M~} N {/~z,/~2} ~ ~, then the 
combined probability of the two events remains 2-z0n. It can be shown that some 
of the solid edges can be made dotted edges by requiring two edges in each of 
the previous few subrounds (as in fig 2). For example, the edge between M~I and 
/~s21 can be made a dotted edge (i.e. conditional probability one) if there are two 
edges in each of the rows M~z, Msz, and M51, and M411 @ M421 @/~411 @/~421 -- 0. 
Moreover, this is the only way to make the edges dependent on other edges. 

Thus the probability of the event depicted in Figure 3 may be higher if 
conditions as in Figure 2 hold (i.e. cross edges in the rows M51, Msz, Mlz, and 
additional requirements on the plaintexts; or some such similar set of conditions). 
With additional requirements on the plaintexts, the combined probability can 
indeed be higher. There are a few cases: 

1. M1 @/~2 = M1 ~ M2: For O(s3t 2) such pair of events, the combined proba- 
bility is at most 3 �9 2 -sn. This follows because by requiring a solid cross edge 
in each of the rows Mlz, M31 and M51, five solid edges among the columns 
/~-1 and / ~  can be made dotted edges. The factor three comes from the 
different ways in which the cross-edges are organised. 

2. Mo~ ~ M0~ -- ~o~ ~ ~o~, and a similar relation for Mo,: For O(s32~t ~) such 
pair of events, the combined probabilty remains 2 -1~ It may seem that by 
requiring a solid cross edge in each of the rows Mll,  M3z and Msz, four solid 
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edges among the columns 1~ 1 and M2 can be made dotted edges (in the 
rows M4i, Msl, Mvl, Mst). But under such conditions, /~ll ~t /17111 since 

3. As in the previous case, with relations only among Mo2 and Mo3, the two 
events remain independent. 

Thus, as long as s ~ 2 s~, it follows that & - o(E[X]2). Thus, if a - 2 an, 
X > 0 with high probability (see Lemma 1). 

We now turn our attention to the whole event in Figure 2. Again, let Xi be 
the indicator variable of such an event. Let X be the sum of all e(sS,  2) such 
random variables. Note that we only have as* 2 and not s4* 4, as (2) and (4) have 
completely determined M 4. Once again, E[X] = e(ss*22-s'~). Once again we 
have to show that • = o(E[X]2). This is proved in a fashion similar to one 
mentioned in the previous two paragraphs. Thus, if s = 2 s'~, such an event will 
happen with high probability. 

How does the adversary detect such an event? The four ciphertexts satisfy 
seven equations. Six of these are depicted by dotted edges in rows corresponding 
to M92, Mo3, M94. Further, the following relation holds 

M~i ~ M~i �9 M~I �9 M~I = 0 (8) 

Thus the expected number of such events (noise) occurring in a random 
permutation over the plaintexts as supplied by the adversary is ~(83,22-7'~). 
Thus, there is more noise than signal. However, this situation can be improved 
by adding more packs to Figure 2 (see Figure 4). Note that addition of each pack 
adds a factor of 8(8~2 -s")  to the expected number of events the adversary is 
interested in (essentially the cross edges are the only edges which will appear as 
additional solid edges). Thus, w i t h ,  = 23'~ the probability of occurrence of such 
an event remains close to one. The factor added in the expected value of the 
noise is 0(8t2 -4'~) (2 -3'~ for the three edges in M92, M93, and M94, and another 
2 -'~ for the relation among M91 similar to (8)). Thus, if there are a total of 
five packs involved, as shown in figure 4, the expected value of noise becomes 
O(,6ts2-19' 0. If the adversary keeps s close to 2 s'~ and * a small constant, noise 
becomes insignificant. Hence the adversary will be able to distinguish F 9 from 
a random permutation with high probability. 

Note that the adversary is also able to infer many relations involving the sub- 
round functions, the plaintexts and ciphertexts. If the number of subrounds are 
decreased further, the adversary can actually obtain almost all of the subround 
functions. 

We next look at the computational efficiency of the attack. By sorting each 
pack by its ciphertext values M92, M93, M94 one can determine in each pack 
about 23'~ pairs with the same M92, Mgs, M94 values. For each such pair i, j ,  
compute M~I * M~I , M~2 * MoJ2, M~s * M~3 , M~4* MoJ4, and again sort them by 
these values. Next we look for equality of these values across five different packs 
out of f. The total time required is O(n2s'~), and memory required is O(2a'~). 

Of course, these attacks become much more effective in terms of time, mere- 
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pack 1 pack2 pack3 pack4 pack5 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  M 21 

�9 � 9 1 7 6  . . . . . . . . . . . . .  � 9 1 7 6 1 7 6 1 7 6 1 4 9 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 4 9  

~ 1 4 9  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

@ o o m o g o e  

. . . .  . . ~  

~ 1 7 6  . . . . .  

. . . . .  �9 ~  

. . . . .  o . .  

. . . . .  �9 . .  

� 9 1 7 6 1 7 6 1 4 9 1 7 6  

. . . . .  �9 ~ 1 7 6  

. . . . .  �9 o .  

~ 1 4 9 1 4 9  . . . .  

~ 1 7 6 1 4 9 1 7 6  

�9 . ~  . . . .  

~ 1 7 6 1 7 6 1 4 9 1 7 6 1 7 6  

. + ~  . . . .  

Fig. 4. A five pack attack on F~ 

M31 

M41 

M51 

M 61 

M71 
M81 
M92 
M93 
M94 

ory and number of plalntexts required when the number of subrounds axe fewer. 

It should be noted that if the subround functions axe permutations (i.e. f l l  
etc. are permutations) then the equality in Ms1 is not possible. However, the 
adversary could achieve the same result by requiring in Figure 2 that the cross 
edges be in row M41 instead of row M3x (call this the modified attack)�9 It should 
also be noted that if the xors are replaced by addition modulo 2 n this attack does 
not seem to work, as it depended on obtaining equations like (7). However e.g., if 
Me1 = fel(M51)@(f52(M41)@(f43(M31)+M21)) and all other operations remain 
xor, the modified attack still works�9 To see this, note that f43(M~l ) + Mll  = 
f43(M~l ) + M~I , and hence one still obtains 

�9 �9 �9 = 0 

As a general rule in the case of F~ ~-~ (with 2(~-1) n plalntexts), we note 
that the birthday paradox allows for 2(/0 -- 1) edges among intermediate values 
of ~ 1  and ~ 2 .  However, because of the Feistel structure, the second moment 
method only allows for 2(/0 - 1) - 1 edges. The generalization presented here 
~llows for additional (to - 1) cross edges. Also, the initial conditions take care of 
one subround, yielding an attack on (310 - 3) subrounds. 

4 L o w e r  b o u n d  o n  s e c u r i t y  o f  F ~  k 

T h e o r e m :  Let f l ,  f2, ..., f2h be functions chosen randomly and uniformly from 
~,~,(k-1),~, k _~ 2. Let F~ ~ = 7/~ [fl, ...f2~] be the unbalanced Feistel permutation. 
Then any oracle adversary S which makes m oracle queries has probability at 
most O(rn~/2(~-1)'~) of distinguishing F~ ~ from a permutation randomly and 
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uniformly chosen from ~'~'~,~'~ (distinguishing probability is defined in section 
2). 

When k = 2, this theorem is related to the well known Luby-RackoffTheorem 
[9]; both give s distinguishing probability bound of O(m2/2"), but we require 
four rounds whereas Luby-Rackoff requires three. 

We give a sketch of the proof for Fs e, which is a generalization of the Luby- 
Rackoff proof (see [8]). Note that an obvious generalization of Luby-Rackoff 
would only yield a bound of O(m~/T~). 
Proof: We will write F for the permutation F~. It suffices to show the result 
assuming that fez is a constant function (say, Vi : fs~ (i) = 0). 

Let M~I , M~,  M~3 represent the random variables corresponding to the out- 
put of F on oracle query i, i.e. 

(M&IIM&IIM&) = F(M&IIM&IIM&) 

M 01 M 11 M 21 M 31 M 41 M 51 _.r M 61 

M 0 M12 , . f4 M 62  

M 03 M 63 

Fig. 5. An unbalanced Feistel network F~ 

We describe two algorithms, B and C, for computing the answers to the 
oracle queries of S, both taking f l ,  f~, fs, f4, fb, fs as input. We will denote 
f l ,  f2, fs, f4, fb, fs by f. Recall that f is a sequence of functions chosen ran- 
domly from ~ , (~ - l )n ,  and these functions are used in different rounds of F 
by the operator 7~. The algorithm B will define new random functions, namely 
r r r r r r and use them instead of fs2, ..., fsl  respectively. We 
will show that these new functions are themselves uniformly and independently 
distributed. 

The answer of B on the i ~h oracle call will be denoted B ~ (f) (similarly for 
C). The description of the algorithm B is given in Figure 6. The algorithm C ~ (f) 
behaves exactly like B~(f) except that its output is (f61(i)llf41(i)llAl(i)). 
Thus, 

Prp[S F = i] = Prf[S c(f) = 1] 

where F is uniformly chosen from all permutations in jr~,~,k,. 
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Oracle computat ion B i (f) on input  (M~, [[M~ I IM~a) 
Let ai(f)  = min{j _< i :  Mg, = M~I} 

M~x(f ) = Mg2(f ) (9 fl l(ai(f)) , .  
Let bi(f) = min{j <_ i: M~, = M~} 

M~,(f)  = M ~ ( f )  (9 f~,(bi(f)),. 

M~2(f) = M~a(f) (9 fn(a~(f ) )  

M~2(f) = M~l(f  ) (9 f22(bi(f)) 
Let ci(f) = min{j <_ i: M~, = M~I } 

M~l(f) = M~2(f) (9 fal(ci(f)) 

Let aU(f) = min{j <_ i: M~al = MJal} 
Mil(f)  �9 fa,(i) 

ea2(f)(i) = M~l(f) (9 fs2(d/) �9 .f4,(a u) (9 f41(i) 
M~(f )  = M~,(f) �9 r 

{ M~2(f) �9 h*(i)  if (d i = i) 
r = M~2(f) (9.fs2(i) otherwise 
M~l(f ) = M~2(f ) (9 r 

Let e'(f) = min{j < i: M~I = MJ4,} 
{ M~l(f) (9 f42(i) 

r = M~l(f) (9 h2(e i) (9 h l ( e  i) (9 h i ( i )  
M~2(f ) = M~l(f ) (9 r 

{ M~2(f) (9 f51(i) if (e ~ = i) 
r = M~2(f) (9 h2(i)  otherwise 
M~l(f ) = M~2(f ) (9 r 

Let r  = , m , , { / <  i :  Mh = M~I} 
f Mh(f) (9/~(i) 

r = [ M~,(f) (9 fs2(g') (9 f6,(g i) (9 fsl(i)' 
M~2(f ) = M~,(f) (9 r 

[ M~(f )  (9 h i ( i )  if (gi - i) 
ee,(f)(i)  = ~ M~2(f) (9 fs2(i) otherwise 
M~l(f ) -- M~(f )  (9 r 
M~2(f ) - M~l(f ) - since we assumed re2 = 0 

Output of B~(f): (M~(f)llM~2(f)llM~(f)) 

if (a u = i) 
otherwise 

if (e i ---- i) 
otherwise 

if (g~ = i) 
otherwise 

Fig. 6. Definition of algorithm B 

Proposition 1: 

Prf[S ~[f] = I] = Prf[S s(f) = i] 

Proof: We first show that f n ,  f12, ..., fsl,  es2(f), ..., eel(f)  are uniformly and in- 
dependently distributed, as far as the first m inputs are concerned. By induction 
it can be shown that  (e.g.) in the definition of ee,(f)( i) ,  the random variable 
f61(i) (random variable f52(i)) has never been used before in the definition of 
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any r if gi = i (resp. gi ~ i). Even though Csl(f)(i) is never used by B (while 
computing M61) if gi # i, it is important to define it so that  r  turns out to be 
uniformly and independently distributed. 

Then the above claim follows as the role of these new functions in B is the 
same as that  of the old functions in 7/. [3 

We next show that 

P'l"f[,.,q B(f) ~ S c(f)] ~ m3/2  2" 

from which the theorem follows. 

We say that f is preserving if with adversary using C as oracle, for all i G 
[i..m] the following three conditions hold (from now on we will drop f whenever 
it is clear from context) 

1. (g' = 0 or ((e ~ = 0 and ( e r  = g~)) 
2. (e ~ = 0 or ( ( ~  = 0 and (d'" = e~)) 
3. ( ~  = 0 or ((c ~ = 0 and (cd" = ~)) 

Proposition ~: If s is preserving then S B(f) = S c(f). 

Proof: If f is preserving, we show that M~I -- fsl(i) .  

If gi = i, then M~el = fel(i) .  Otherwise, M~I = M~2 ~ r Now, since 
gg" : gi, ~bsl(gi) : Mg; (~ fsz(gi). Moreover e ~ = i, and e g' -- g~ because f is 
preserving. Thus, 

i 

M~2 (~ M~2 = (M~I (~ (~52(i)) ~ (M3gl ~ ~s2(gi)) 

= (fs2(g ~) ~ fs l (g i) ~ fr ~ (f52(gi)) 

= fs~(O r f~l(g ~) 

It follows that M ~  = f s d O .  

Similarly, it can be shown that M~i -= f51(i), and M~I - f41(i). 

The proposition then follows by a simple induction, as the internal computations 
of B and C are the same. n 

It remains to bound the probability of f not being preserving. Since the 
output  of C is independent of f l l ,  f12, f21, f22, fsl ,  f32, under the use of ora- 
cle C, all query-inputs used by S are also independent of f l l ,  f12, f21, f~2, fs l ,  
f32. (4) 

We first bound the probability (pl) of 3i ~ [i...~] not ((d ~ = 0 or ((c i = 0 
and (c d" = d~))). Without  loss of generality, assume that no two oracle query- 
inputs are same. 

We calculate the probability of 
( i ) ( d / = j ) a n d ( c ' - k ) , i > j , i > k ,  
(ii) (d ~ = j)  and (e/ = k), i > j > k. 
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Now, c ~ - k implies M~I = M~I , which is same as M~s @ f12(a ~) ~ f~l(b ~) - 
Mo~s ~ f12(a k) fl~ f21(b~). If a ~ = a ~, and b ~ = b k then M~s = M0~s is not possible, 
and hence c i # k. If either a ~ # a ~, or b ~ r b k, then by (4) the equality holds 
with probability 2 -" .  

Similarly, a~ : j implies M~t ~ f22(b i) ~ f S l ( C  i )  --  MJol @ f22(b i) ~ fs~(cJ). 
Again, if either b ~ r b/, or c ~ r cJ, then by (4) the equality holds with probability 
2 -" .  By (4) this event is also independent of c ~ = k. 

Thus the probability of (i) is at most 2 -2". Similarly, the probability of (ii) 
is at most 2 -2". Thus, pl = 0(m3/22"). 

Next we bound the probability (p2) of 3i e [1..m] not ((e ~ : i) or ((d ~ : i) 
and (d e" = ei))). 

Again, we calculate the probability of 
(i) (e i = j )  and (d ~ = k ) ,  i > j ,  i > k, 
(ii) (e ~ = j)  and (d j = k), i > j > k. 

We first assume that  for all i E [1..m] condition (3) holds. Then, just as in the 
proof of proposition 2, it can be shown that  M~l = f41(i). Thus, the probability 
of e ~ = j is 2-% We already know the bound on probability of d ~ - k, from 
the previous step. Moreover, e ~ = j is also independent of d ~ = k. Thus, given 
condition (3) for all i, p2 is bounded by O(mS/22"). 

The probability (p3) of 3i e [1..m] not ((g~ = i) or ((e ~ = i) and (e g" = gi))) 
(given that  (2) and (3) hold for all i) is again bounded by (O(mS/22"). D 

5 C o n c l u s i o n  

In this paper we have initiated the study of expanding unbalanced Feistel net- 
works. However, further research is required to better our understanding of these 
and other such networks. 

In particular, there seems to be scope for further improvement in the security 
lower bounds for the expanding Feistel networks. We conjecture that  any adver- 
sary which distinguishes F 2k from a random permutation using chosen plaintext 
attacks requires ~'2(2 (k-1)"/2) chosen plaintexts. Since the attacks shown on un- 
balanced Feistel networks F~ work only for 3k - 3 and fewer subrounds, the 
natural question arises as to the applicability of these or similar approaches to 
more subrounds. 

Another interesting problem is to use differential characteristics in these at- 
tacks, especially if the characteristics are uniform in nature. In a similar vein, 
networks in which the xor operations are replaced by modular addition, or other 
invertible operations (e.g. data  dependent rotation) need to be studied. 
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