
A Smoothing Filter for CONDENSATION 

Michael Isard and Andrew Blake 

Department of Engineering Science, 
University of Oxford, Oxford OX1 3P J, UK, 

misard, ab@robot s. ox. ac. uk, 
WWW home page: h t tp  : / / robo t s .  ox. ac.uk/~ab 

Abs t rac t .  CONDENSATION, recently introduced in the computer vision 
literature, is a particle filtering algorithm which represents a tracked ob- 
ject's state using an entire probability distribution. Clutter can cause the 
distribution to split temporarily into multiple peaks, each representing 
a different hypothesis about the object configuration. When measure- 
ments become unambiguous again, all but one peak, corresponding to 
the true object position, die out. While several peaks persist estimating 
the object position is problematic. "Smoothing" in this context is the 
statistical technique of conditioning the state distribution on both past 
and future measurements once tracking is complete. After smoothing, 
peaks corresponding to clutter are reduced, since their trajectories even- 
tually die out. The result can be a much improved state-estimate during 
ambiguous time-steps. This paper implements two algorithms to smooth 
the output of a CONDENSATION filter. The techniques axe derived from 
the work of Kitagawa, reinterpreted in the CONDENSATION framework, 
and considerably simplified. 

1 I n t r o d u c t i o n  

The CONDENSATION algorithm was recently introduced in the context of com- 
puter  vision, originally to allow contour-tracking through heavy clutter [5], and 
more recently as the engine for exploring more complex non-linear dynamical  
models than  have been traditionally used in vision [6, 4]. The algorithm is at- 
tractive because it is both simple and very general, and thus has potential  ap- 
plication to a wide range of estimation problems beyond those contour-based 
tracking applications for which is has so far been used in computer  vision. In 
fact, the CONDENSATION algorithm is functionally identical to algorithms devel- 
oped in the target- tracking [2] and statistical l i terature [7]. In his formulation of 
the algorithm, Kitagawa [7] also presented two smoothing algorithms which al- 
low the state at t ime t to be est imated in the light of all of the measurement  da ta  
in a sequence, rather  than just the da ta  up until t ime t. Note tha t  in this paper  
"smoothing" refers to the statistical technique of conditioning the state density 
on both  past  and future measurements.  It  has nothing to do with the s tandard 
computer  vision definition involving convolution with a smoothing kernel, either 
spatially or temporally. 
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This paper implements Kitagawa's smoothing algorithms in the CONDENSA- 
TION framework, and in doing so incorporates a significant simplification of one 
of them which extends its use to a wider class of dynamical model. Smoothing 
highlights an aspect of CONDENSATION which has not so far been much studied. 
One of the distinguishing characteristics of the CONDENSATION algorithm is that  
it represents multiple hypotheses about object state in the form of a multi-modal 
state density. All of the known information about the object is contained in the 
state density, and this information must be processed in some way if a single es- 
t imated object position is required at each time-step. Existing implementations 
calculate simple moments of the state density, for example the mean, for dis- 
play purposes. This approach breaks down when the density has several peaks, 
and one advantage of a smoothing filter is that  it tends to eliminate hypotheses 
which become unlikely with hindsight. The result is that  the smoothed density 
better approximates a uni-modal density, and simple mean-estimation produces 
a more accurate representation of the density. The next section briefly describes 
the CONDENSATION algorithm, and smoothing extensions are presented in fol- 
lowing sections. 

2 The  CONDENSATION algori thm 

The CONDENSATION algorithm [5, 6] was developed to address the problem of 
tracking contour outlines through heavy image clutter. The filter's output at a 
given time-step, rather than being a single estimate of position and covariance 
as in a Kalman filter, is an approximation of an entire probability distribution 
of likely object positions. This allows the filter to maintain multiple hypotheses 
and thus be robust to distracting clutter. 

The object's position, shape and velocity are encoded in a state vector 
X E I~ Nx (which may, for example, represent the outline of a curve using a 
low-dimensional parameterisation), and the observed image at time t is denoted 
Z~, with measurement history Z~ = ( Z l , . . .  , Z~). The representation used for 
probability distributions is derived from factored sampling [3, 9], where it was 
applied to static images. Factored sampling is a Bayesian technique to approx- 
imate a distribution p(XlZ ) which applies when p(XlZ ) is too complicated to 
sample directly, but when the prior p(X) can be sampled, and the measurement 
density p(ZIX ) can be evaluated. The algorithm proceeds by generating a set 
of N samples {s (n)} from the prior p(X) and then assigning to each sample a 
weight ~(n) = p(ZI X = s(n)) corresponding to the measurement density. The 
~(n) are normalised to sum to 1 and then the weighted set {(s(~),~(~))} is an 
approximation 15(XlZ ) to the desired posterior p(XlZ), where a sample is drawn 
from IS(XlZ ) by choosing one of the s (~) with probability ~(n). As N -+ co 
samples from 15(XIZ ) arbitrarily closely approximate fair samples from p(XIZ ). 
Moments of the posterior can also be estimated as 

N 
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The CONDENSATION algorithm is a generalisation of factored sampling to 
temporal sequences, where the conditional state density p(XtlZt)  at time t is 

approximated by a weighted, time-stamped sample set { (s~ n) , 7r~ n)) }. Each itera- 
tion of the algorithm is a self-contained application of factored sampling in which 
the prior p(Xt)  is replaced by a prediction density p(Xt I Z t -  1). This density is ap- 

r ,  (n) (~),~ proximated by taking the sample set i(St_l, zrt_l) ~ from the previous time-step 
and applying a prediction from a dynamical model. The iterative process applied 
to the sample-sets is depicted in figure 1. At the top of the diagram, the output 

Fig. 1. One t ime-step in the CONDENSATION algorithm. Blob centres represent 
sample values and sizes depict sample weights. 

from time-step t -  1 is the weighted sample-set {(s~ ~-), 71"(n) "~t--1/, n = 1 , . . .  , N}. 
The aim is to maintain, at successive time-steps, sample sets of fixed size N, 
so that  the algorithm can be guaranteed to run within a given computational 
resource. 

The procedure for a single time-step consists of N iterations to generate 
the N elements of the new sample set. The first operation of iteration n is to 
choose a "base sample" s~01 from the sample-set at time t - 1. This is done 

by sampling (with replacement), choosing a given element s~01 with probability 

~r~ 1. Some elements, especially those with high weights, may be chosen several 
times as n goes from 1 to N, while others with relatively low weights may 
not be chosen at all. The second step is to subject the chosen element to a 
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prediction corresponding to the dynamical model. This is a stochastic model, 
and the prediction of a new sample s~ n) from a base sample s~/_) 1 corresponds 

= s (i) to sampling from the process density p(XtlXt_l t - l  J, so the predictions 
from identical base samples will in general be different. Any dynamical model 
can be used efficiently within the algorithm provided that  it is straightforward 
to sample from this process density. At this point the s~ n) are approximately 
a fair sample from the distribution p(XtlZt_l). Finally, the observation step is 
applied, calculating a weight 7r} n) for s~ n) by evaluating the observation density 

p(ZtlXt = sln)). After iterating over n the 7r} ~) are normalised and the sample- 

set representation { (s~ '~) , 7r} ~)) } of the state-density for time t, an approximation 
to p(XtlZt), has been obtained. As with factored sampling, at any time-step it 
i s  possible to "report" on the current state, for example by evaluating some 
moment of the state density as 

N x--- (~)~[ (~)~ 
E[O(Xt)IZt ] ~ 2_,~t  % s t  ] ,  (1) 

n = l  

where typically r = X is used to estimate the mean of the distribution. 

3 S m o o t h i n g  t h e  o u t p u t  o f  CONDENSATION 

The conditional state density p(XtlZt) encodes all of the known information 
about the object state given the current measurement history Zt - (Z1,. �9 �9 , Zt). 
Once tracking has completed it may be desirable to return, in batch-mode, to 
calculate p(XtlZT), the state density for each time-step given the entire measure- 
ment history. This is particularly valuable in the case of temporary distraction, 
when the state density splits for a few time-steps into several distinct trajecto- 
ries. During real-time I tracking, it is impossible to reliably determine which of 
these competing hypotheses corresponds to the true object trajectory, however 
all but one of the trajectories will "die out" eventually when it becomes apparent 
that  they correspond to clutter, distractions or mis-estimation. 

Kitagawa [7] presents two algorithms to smooth a time-series of sample- 
set state estimates, which we reproduce here in the CONDENSATION frame- 
work. The first is very straightforward. Rather than storing the set { (s~ '~) , rr} n)) } 

at each time t, the sample position s~ ~) is replaced by an entire trajectory 
St(n) = (s~'~'l),... ,s~ ' t)) .  The history ( s~ ' l ) , . . .  ,s~ '~'t-1)) is taken to be the 
trajectory of the base sample which is chosen in the first step of the CONDEN- 
SATION algorithm, and the moments of the smoothed density p(X,  IZt ) can be 

1 Real time is used here to distinguish the standard CONDENSATION tracking algorithm 
from any batch-mode post-processing. It does not imply the standard computer vi- 
sion meaning, that tracking is effected in the time between acquisition of consecutive 
images. 
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e s t i m a t e d  for 1 < T < t by  compu t ing  the  e x p e c t a t i o n  

N 

n ~ l  

The  sequence-based  smoo th ing  a lgo r i thm is shown in figure 2. Note  t h a t  i t  is 
remin iscen t  of the  Vi te rb i  dynamic  p r o g r a m m i n g  a lgo r i t hm used,  for example ,  
to  e s t i m a t e  the  mos t  l ikely p a t h  t h rough  a Hidden  Markov  Mode l  (HMM) [8]. 
This  a lgo r i t hm has  the  d i s advan tage  t h a t  in prac t ice ,  the  var iance  of the  samples  

I t era te  

r/~(~) (~) ~ . . .  , N} t ime-step From the "old" sample-sequence set t[Ot_l,Trt_l),  n = 1, at 

t - 1, construct a "new" sample-sequence set t~tlt~(~), ~(~)~,,t j, n = 1, . . .  , N} for 
t ime t, where S (n) = (s~ '~ ' l ) , . . . ,  s~'~'t)). 

Construct the n TM of N new samples as follows: 

1. Se lec t  a base sequence S (0 , (~,1) (i,t-1), t-1 = t s t - t  , . . -  , s t -1  ) by sampling with proba- 

bility 7r~01. This can be done efficiently, for example using cumulative prob- 
abilities. 

(i,t--1)x (n,t) 2. P r e d i c t  by sampling from p(Xt{Xt-1 = st_ 1 ) to choose s t . 
3. M e a s u r e  and weight the new position in terms of the image da ta  Z~, setting 

(,~) (n,t) (n) (0 (,~,t) 
~t = p ( Z t l X t  = s  t ) , then set St = S t _  1 U s  t . 

Finally normalise so that  v '  7r (~) _= 1 to find the new sample-sequence set Z-~n t 
(S('~),lr~n)). Moments r of the smoothed density p(Xr for 1 ~ ~- _< t can 
be found from 

N 

S[r ~ E - - ( n ) ~ t ' f - ( n ' T ) ~  

Fig .  2. T h e  s e q u e n c e - b a s e d  s m o o t h i n g  a l g o r i t h m  for CONDENSATION. The al- 
gorithm is identical to standard CONDENSATION filtering, except that entire trajectories 
S~ n) are stored instead of sample positions s~ n). 

{s~ n'~) } for ~- << t is very  small .  In fact ,  for large  t - T  it is t yp ica l  to  f ind t h a t  all  

of the  {sl '~'r), 1 . . .  N }  are  ident ical ,  mean ing  t h a t  all of the  sample -sequences  
share  a c o m m o n  ances to r  t r a j ec to ry .  (In l a te r  resul ts  this  is t yp ica l ly  t rue  for 
t - ~- > 10.) This  m a y  be accep tab le  if the  only requ i red  o u t p u t  is a single 
e s t i m a t e d  pos i t ion  for each t ime-s tep ,  bu t  in some c i rcumstances  i t  is p re fe rab le  
to  m a i n t a i n  more  de ta i l ed  in fo rmat ion  as long as possible ,  and  so a more  complex  

a lgo r i t hm follows. Note  t h a t  the  col lapse  of the  t r a j ec to r i e s  St('~) in to  c o m m o n  
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histories permits pruning, thus allowing a significant economy of storage, which 
is otherwise O(Nt). 

The second smoothing algorithm presented in [7] is a forward-backward al- 
gorithm, analogous to the smoothing algorithm for Gaussians [1] which is a two- 
pass extension of the Kalman filter, and also related to the Baum-Welch forward- 
backward algorithm for HMMs [8]. The forward pass consists of a standard ap- 
plication of the CONDENSATION tracker, during which all the sets {(s~ '~), 7r}n))} 
for t = 1 . . . T  are stored. Now smoothing is done purely by reweighting the 
~n) __ all of the s~ ~) remain fixed. The algorithm presented in [7] contains a 
backward filtering step which requires access to the measurements Zt during 
the second pass, and also means that  the density p(Xt_llXt) must be available 
for sampling, a condition which is not true for the standard CONDENSATION 
algorithm. We believe this backward filtering step is unnecessary and so do not 
include it, however the mathematical treatment and the basic structure of our 
algorithm are both derived from [7]. Note that  our algorithm, like that  in [7], 
does require the evaluation of p(Xt I Xt-1) which imposes some restriction on the 
form of dynamical model used. 

Defining g T = (Zt, . . .  , ZT) we have ZT = Zt-1 U Z T. Therefore, 

p(X, IZT) = N(X, IZ~_I, z~) 
p(x~, Z [ l & - l )  

= p(ZTtXt)p(XtlZt_l) by the independence of the Zt. 

It is this rearrangement which allows the sample positions s~ n) to remain fixed 

after the smoothing step. Recall that  the set {s~ n) } is approximately a fair sample 

from p(XtlZt_l), so by replacing the original 7r} n) by smoothing weights 

the set {(s~ ~), ~ ) ) } ,  when normalised, will approximate p(XtIZT) as required. 

It is therefore the weights ~b~ n) which the backward smoothing pass will calculate. 
A recursive algorithm to calculate the densities p(zTIxt)  can be specified 

mathematically as follows: 

p(z~ lxT)  = p(ZTiXT) 

p(Zt~  1 IXt) ---- f p (Zt~  1 I X t + l ) p ( X t + l  lXt) dXt+l  

p(z[Ix~) = ~(z, ix,)p(z~Ixd 

A concrete implementation requires the derivation of an approximation 5~n) to 

p(Zt~ ~ IXt = s~n)). The integral is approximated as a sum: 

N _ ("9 _ (~) 
= ( m ) , l p ( X t + l  --  St+ l iS t  -- S t ) p ( z S ,  Lx, = s~ ~)) ~ ~ )  -- ~ p(z~ , lx ,+~  = o~+,, - : - . . - -  - : c ~ , ~ ; ~  

m=l Pl,'Ztt+l -= ~t+l Ix'at 
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where the correction 

N 

P(Xt+ l  tin) ,.y}m) (k) = ----- E 7rt p (X t+ l  : ~(ra)IV st+lJZt  ) = s~k)). a t + l  I A t  : 

k = l  

It  is in t roduced because the ~(m) ot+ 1 are not  dis t r ibuted uniformly bu t  are a sam- 

At this stage a forward pass of standard CONDENSATION has been performed, 
storing a weighted sample-set {(s~ ~), 7r}'~))} for each t = 1 . . .  T. 

1. Ini t ia l ise  smoothing weights r 

r n) ---- 7r(T '~) for n = 1 . . .  N. 

2. I t e r a t e  backwards over the sequence for t = T - 1 . . .  1: 
(a) Ca lcu la t e  prediction probabilities: 

('~,,~) ~(-~)tv  
at = p(Xt+l = s~ '~)) for m, n -- 1 N. ~ t + l  } ~'~Lt ~ " " " 

(b) Ca lcu la t e  correction factors: 

N 

-7} m) ~ ~r(k) atm, k) =/__~ t t for m =  1 . . . N .  
k = l  

(c) A p p r o x i m a t e  backward variables: 

N (m,n) 
t~} n )  E d, (m)OQ 

= m = l  "/~t-]-I 7}m) for n = 1 . . .  N. 

(d) E v a l u a t e  smoothing weights 

r _(n)~(n) for n = 1. N t z l i  t cJt " " 

then normalise multiplicatively so Y]r = 1, and store with sample 
positions as 

{(s} n),r n = 1 . . . N }  

Fig.  3. T h e  b a c k w a r d  s tage  o f  t he  two-pass  s m o o t h i n g  a l g o r i t h m  for  CON- 
DENSATION. 

ple f rom p ( X t + l  IZt), and without  the correction this could bias the sum. This 
me thod  of correct ing the est imate of an integral over sample-sets is borrowed 
from the technique of impor tance  sampling [9]. The  backward  pass of  the two- 
pass smooth ing  a lgor i thm is shown in figure 3. Note tha t  the complexi ty of the 



774 

48 

32 

16 

0 
o l's ~o is do 

t (fields) 

Y 

5 0 0  " 

4 0 0  - 

3 0 0  - 

2 0 0  
{s ~o Js ~o 

t (fields) 

Fig. 4. T h e  u n s m o o t h e d  ou t pu t  of  a mixed- s t a t e  CONDENSATION a lgor i thm 
contains  e s t ima t ion  errors .  The mean of the y coordinate of the distribution is shown 
in pixels, along with the mean-square variance around the curve in pixels ~. Vertical bars 
correspond to time-steps which are estimated to contain bounce events. The variance is 
high when several hypotheses have high probabilities (see figure 5). 

algorithm is O ( T N  2) and tha t  O ( T N )  storage is required for the sample-sets, 
(,~,n) and O ( N  ~) for the c h . This latter storage requirement can be avoided by 

(m,,~) from the algorithm and instead calculating each of the eliminating the a t 

p (Xt+ l  ~(m)jv = s~ ~)) twice. Since this calculation is typically the most ~ t + l  I " e ~ t  

computat ionally expensive step of the algorithm, this tradeoff must be carefully 
considered. 

4 A p p l y i n g  t h e  s m o o t h i n g  a l g o r i t h m s  

First, the sequence-based smoothing algorithm was applied to a test sequence 
from [6] which shows a ball bouncing against a backdrop of heavy clutter. The 
ball moves under the action of a two-mode motion model, where the first mode 
is constant acceleration due to gravity and the second mode corresponds to an 
instantaneous bounce event during which the ball 's vertical velocity is reversed. 
The state vector Xt  now includes a discrete variable labelling which of the two 
transit ion modes the model has just executed. The unsmoothed output  of a 
mixed-state CONDENSATION tracker is depicted in figure 4. At each time-step, 
an MAP estimate is computed to determine which of the two modes the tracker 
has executed, and the mean and variance of the y translation coordinate within 
tha t  mode are shown, along with an indication of which time-steps were esti- 
mated  to contain bounce events. The unsmoothed output  is ra ther  j i t tery due 
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Fig. 5. Smoothing eliminates false hypotheses .  Before smoothing, multiple hy- 
potheses can increase the variance of the distribution (top left) and shift the mean 
away from the object position (top right). After running the sequence-based smoothing 
algorithm the estimated variance has dropped to zero (see tezt) but the mean is now 
correctly positioned (bottom). Detail from field 26 of the sequence is shown (see fig- 
ures ~ and 6). The solid black line is the distribution mean, and the dotted white lines 
are high-scoring samples~ where the width of the sample outline is proportional to its 
sample weight. A ball is being tracked against heavy clutter, and it is difficult to dis- 
tinguish in a single still image. The ball is located under the contour in the right-hand 
image. 

to the clutter, and the bounce events are not always accurately found. Figure 5 
demonstrates the mis-estimation problem; the distribution has split into several 
peaks, and although one peak is present at the true ball position, the other 
peaks pull the distribution mean away from the desired value. After running 
the sequence-based smoothing algorithm (figure 6) most of the j i t ter has been 
eliminated and the trajectory shows smooth parabolas between bounces. One 
field has still been incorrectly estimated to contain a bounce. As discussed in 
the previous section, the variance is estimated to be zero except over the last few 
time-steps, since all the samples in the final distribution share the same history 
until t -- 60 fields. Of course, this must be an under-estimate. Figure 5 shows 
detail from field 26 of the sequence before and after smoothing. 

The two-pass algorithm also successfully smooths the raw tracked output  
(figure 7), and now correctly determines the bounce events. Variance information 
is also preserved by the two-pass filter, and a small spread of samples in the 
distribution can be seen in figure 8. Note that  neither smoothing algorithm 
incorporates any separate machinery to estimate the mixed-state transitions. 
These transition labels, forming part  of the state-vector X~, are automatically 
estimated along with the continuous state variables. Of course, the values of the 
transition labels of s~ n) and ~-l~(m) play a large part in determining the density 

r IX ~ _- s~m)) for the two-pass algorithm. p(X~+l = ~t+l 
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Fig. 6. The sequence-based algorithm smooths  away jitter. The mean of the y 

coordinate of the distribution is shown in pixels, along with the mean-square variance 
around the curve in pixels 2, Vertical bars correspond to time-steps which are estimated 
to contain bounce events, and a bounce is incorrectly estimated at field 4. The sequence- 
based smoothing algorithm collapses the variance to zero for all but the last few time- 
steps (see text). 
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Fig. 7. T h e  t w o - p a s s  algorithm preserves sample variance while smoothing.  
The mean of the y coordinate of the distribution is shown in pixels, along with the mean- 
square variance around the curve in pixels 2. Vertical bars correspond to modes which 
are estimated to contain bounce events. The bounce events are correctly identified. 
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Fig. 8. Smooth ing  eliminates false hypotheses .  The two-pass smoothing algorithm 
collapses the distribution down to a single peak (bottom), since the other peaks in the 
raw data (top left) which cause a mis-estimation of the object position (top right), die 
out in subsequent time-steps due to lack of support. Within the peak, however, variance 
information is preserved, and so a small spread of samples is present around the mean 
(figure 7 indicates that the estimated mean-square variance around the curve is only a 
few pixels). Detail from field 26 of the sequence is shown. The solid black line is the 
distribution mean, and the dotted white lines are high-scoring samples, where the width 
of the sample outline is proportional to its sample weight. A ball is being tracked against 
heavy clutter, and it is difficult to distinguish in a single still image. The ball is located 
under the contour in the right-hand image. 

Finally, the algorithms were applied to another test sequence showing a 
hand moving over a cluttered desk. The hand translates and deforms in a 12- 
dimensional linear shape-space. After approximately 30 fields, the distribution 
splits into two peaks (figure 9), one of which is caused by clutter. The clut- 
ter peak dominates for 10 fields, causing a serious error in the estimated state, 
although the true position is maintained as a smaller peak in the distribution 
throughout,  and the tracker recovers eventually. Figure 10 shows a graphs of the 
y coordinate of the estimated mean of the distribution along with the variance 
of the sample-set. The hand moves up smoothly from field 20 to field 40, but  the 
unsmoothed estimate is distracted between fields 30-40, before rapidly regain- 
ing the correct position at field 42. Note the very high variances, especially just 
before the tracker recovers. 

Figure 11 shows the result of applying the two-pass smoothing algorithm 
to the hand sequence (the sequence-based algorithm provides similar state es- 
timates and lower variance as before). When the entire sequence is taken into 
account, it is apparent tha t  the lower peak in figure 9 corresponds to clutter, and 
so only the t rajectory corresponding to the actual hand position survives. Fig- 
ure 12 graphs the estimated y coordinate and the mean-square curve variances 
for the output  of the two-pass smoother. As in the case of the ball, the j i t ter 
on the state estimates is reduced, and the hand position is significantly more 
accurately determined compared with the raw CONDENSATION algorithm. The 
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Fig. 9. Clu t te r  causes t e m p o r a r y  mis-est imation from unsmoo thed  data.  The 
unsmoothed state distribution has begun to diverge in field 32, and by field 34 the clutter 
peak dominates. The multi-modality persists until field 38, after which the clutter peak 
rapidly dies away, leaving a single peak around the object again by field 42. The solid 
line is the distribution mean, and the dotted lines are high-scoring samples, where the 
width o] the sample outline is proportional to its sample weight. 

variance of the sample-sets is also much reduced, although clearly towards the 
end of the sequence the variance must increase to match that  of the raw data. 

5 C o n c l u s i o n s  a n d  f u t u r e  w o r k  

Both of the smoothing algorithms presented here significantly aid the interpre- 
tation of the output  of a CONDENSATION tracker. One of the major benefits of 
the CONDENSATION algorithm is that  it allows the state density to split into 
several peaks to transiently represent multiple hypotheses about object configu- 
ration. This facility enables the tracker to follow the object while measurements 
are ambiguous, keeping track of several possible trajectories until the true ob- 
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Fig. 10. T h e  u n s m o o t h e d  h a n d  d a t a  l e a d s  t o  e s t i m a t i o n  errors .  The mean 
of the y coordinate of the distribution is shown in pixels, along with the mean-square 
variance around the curve in pixels 2. Figure 9 shows the distribution splitting into two 
peaks between fields 32-34, and this is apparent from the variances. The clutter peak is 
stronger, and causes the position to be mis-estimated by shifting the distribution mean. 
Although the hand moves up steadily during fields 30-40, the estimated position moves 
down before suddenly recovering at field 42. 

ject position can once more be confidently established. During the period that  
the distribution contains multiple peaks, however, existing implementations of 
CONDENSATION may report grossly misleading state estimates even though they 
ultimately recover. This is because the state estimates are based on the mean 
of the distribution, and thus implicitly assume a single peak. The application 
of a smoothing algorithm concentrates the distribution into those areas which 
are most likely given the entire tracking sequence, and the result is that  peaks 
caused by temporary clutter distractions tend to be greatly reduced in size. The 
distribution is then more approximately uni-modal, and its mean is a good esti- 
mator  for the object configuration. The forward-backward algorithm may also 
prove very useful for learning mixed-state motion models. The algorithm can be 
used as the basis of an E-M procedure analagous to the Baum-Welch algorithm 
for learning Hidden Markov Model coefficients, and this is the subject of current 
research. 

The two algorithms were tested on sequences where the state distribution pe- 
riodically diverges to form several hypotheses and all but  one of these competing 
hypotheses ultimately dies out. Both algorithms successfully smoothed the test 
sequences, with slightly improved accuracy from the two-pass algorithm, and 
this suggests that  for tasks of this kind the sequence-based algorithm should be 
used, given its greater conceptual and computational simplicity. It is anticipated 
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Fig. 11. The  smoothing algori thm correctly follows the hand.  Compare with 
figure 9; after smoothing using the two-pass algorithm, all of the visible distribution is 
concentrated on the correct peak. The solid line is the distribution mean after smoothing, 
and the dotted lines are high-scoring samples, where the width of the sample outline is 
proportional to its weight. 

that  the two-pass algorithm will come into its own as more complex distribu- 
tions come to be used while tracking, and more complex state estimates are 
required than a single configuration at each time-step. A situation could arise 
where the state density repeatedly split into competing hypotheses and then 
merged again, for example if two similar objects were moving in front of one 
another. The sequence-based algorithm would be very unlikely to preserve the 
structure of the trajectories; instead it would tend to choose the most likely 
single path. The two-pass algorithm, on the other hand, by computing a richer 
representation of the past history, is more likely to keep all the likely hypotheses 
and only reject genuine clutter. It may also be desirable to estimate sample-set 
variances to detect periods of uncertainty, for example due to partial occlusion 
of an object, and the two-pass algorithm is much better  suited to this task. 
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Fig. 12. The two-pass smoothing a l g o r i t h m  c o r r e c t s  e s t i m a t i o n  e r r o r s .  Fig- 
ure 11 shows that the two-pass algorithm eliminates the clutter peak which distracted 
the standard tracker. Now the estimated state corresponds to the true hand position as 
it moves steadily up the image from field 20 (compare with figure 10). The variance of 
the sample-set is also greatly reduced, although clearly at the end of the sequence the 
variance increases to match that of the raw output. The mean of the y coordinate of the 
distribution is shown in pixels, along with the mean-square variance around the curve 
in pixels 2 . 
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