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Abs t rac t .  We consider a special type of wiremesh covering arbitrarily curved 
(but smooth) surfaces that conserves length in two distinct directions at every 
point of the surface. Such "Chebyshev nets" can be considered as deforma- 
tions of planar Cartesian nets (chess boards) that conserve edge lengths but 
sacrifice orthogonality of the parameter ccrves. A unique Chebyshev net can 
be constructed when two intersecting parameter curves are arbitrarily speci- 
fied at a point of the surface. Since any Chebyshev net can be applied to the 
plane, such nets induce mappings between any arbitrary pair of surfaces. Such 
mappings have many desirable properties (much freedom, yet conservation of 
length in two directions). Becatlse Chebyshev nets conserve edge lengths they 
yield very strong constraints on the projection. As a result one may compute 
the shape of the surface from a single view if the assumption that one looks at 
the projection of a Chebyshev net holds true. The structure of the solution is 
a curious one and warrants attention. Human observers al)pareutly are able to 
use such an inference witness the effmaciousness of fishnet stockings and body- 
suits in optically revealing the shape of the body. We argue that Chebyshev 
nets are ascful in a variety of common tasks. 

1 I n t r o d u c t i o n  

Tile already weI1 established field of photogrammetry has recently made remarkable 
progress[1993], largely because of innovative methods developed by the computer 
vision community. Modern methods make it viable to dispense largely with extensive 
camera (pre-)calibration and yet to obtain projective or affine solutions from two 
or more views. Such solutions can then be post-calibrated on the basis of known or 
assumed metric properties of the scene. Examples of such properties are parallelity, 
ort:hogonality and equipartition of length. The ideal scen(~ would contain a Cartesian 
3D -lattice. Of course, 'if such a fiducial structure were awtilable one cotlld actually 
disl)ense with the first step and unravel a single perspective view. In this pal)er we 
consider a generalization of this latter possibility: Shape from a single view on the 
basis of prior information concerning the metrical structure. We will focus on smooth, 
general surfaces on which a network of fiducial curves has been drawn. 

Various authors have remarked upon the observation that  the projection of such 
networks often allows the human observer to obtain a vivid 3D impression of the 
surface[1981, 1983, 1986]. However, this clearly need not hold for arbitrary networks: 
As a counterexample one could pick any network in the i)rojection (e.g., a Cartesian 
grid) and use the inverse projection to put it on any surfitce. In such cases the impres- 
si(m is always that  of a fiat, frontoparallcl object[1986], even g th,~ actual su'~facr i.s 
highly curved. One has speculated that  such so called "shape from contour" is enabled 
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by nets of principal curvature directions[1981]. For instance, Stevens, 1981 has: . . .  to 
conclude anything about the sign of Gaussian cuTnlature, the physical cu'l~Jes must be 
lines of curvature. On the face of it this seems unlikely, and in this paper we consider 
more general possibilities. 

2 Curvilinear "Cartesian grids" 

Consider the problem of how to generalize the notion of "Cartesian grid" (chess board) 
on a general, curved surface. Clearly one has to do some concessions in order to be able 
to apply the net to the surface. Two obvious possibilities are, 1 stlv, to keep all angles 
at ~r/2, or, 2 ndly, to preserve the equality of edge lengths. In the 1 ~l case one obtains 
conformal nets. In general their edge lengths will vary from place to place. The nets 
of principal curvature directions are one possibility (since the principal directions are 
orthogonal), but infinitely ninny others exist. In the 2 nd case one obtains the so called 
"Chebyshev nets". In that  case the angles vary from place to place, ,.e., the nmzes 
become parallelograms. In this paper we consider this 2 nd possibility. 

Chebyshev nets occur in real life (among more) as basket ball nets (part of a 
pseudosphere), nets used as hammocks, food containers, stretched over balloons, etc., 
fishnet stockings and bodysuits. In figure 1 we show an example: A dancer's legs 
dressed in fishnet stockings. Notice the clarity with which the 3D shape is revealed, 
especially in the (complicated) knee region. Since the final category was presumably 
desiglmd to bring out the body shape particularly clearly, one guesses that  "shape 
from (Chebyshev) nets" will be possible. When we consider the edges of the net as 
freely rotatable about the vertices (the knots in a real wire net), such networks are 
evidently deformable. Indeed, the fishnet stockings probably started out as planar 
Cartesian nets (flat pieces of very tenuous cloth) which were then stretched over the 
body. 

1. Photograph o t a  dancer's legs clad 
with fishnet stockings. Notice how well the 
3D shape is visually revealed from tile pro- 
jection. Notice especially tile (geometrically) 
extremely complicated knee area. 
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3 C h e b y s h e v  N e t s  

Tile inain facts oil Chebyshev nets are that 1 stly, they can be constructed with great 
freedom: One may specify two arbitrary (transversal) curves through any point of 
the surface and proceed to construct a unique Chebyshev net on them, maze by 
maze[1927]. Then, 2 naly, each Chebyshev net can be applied to the plane (and hence 
to any other smooth surface). There are some limits to the validity of these statements 
though: They apply typically only to finite regions. Outside these regions the net 
"collapses" and needs to be "overstretched" which is forbidden by tim constant edge 
length constraint[1882]. Indeed, the length of no diagonal can exceed double the edge 
length. In such cases one has to patch pieces together in other to "clothe" the surface. 
This introduces the notion of (tailor-like) "cutting and sewing". The classical reference 
is Chebyshev's lecture "On the cutting of our clothes". Chebyshev[1878] demonstrated 
how to construct a tight, sexy suit for the unit sphere from two pieces of "cloth". We 
illustrate how to cut the cloth for such a suit in figure 2. We are not aware of any 
such illustration in the literature, but presumably this mimicks Chebyshev's solution 
for tile problem. Two identical pieces of cloth should be cut--minding the weft and 
warp directions--and sewn together along corresponding points. The seam will run 
along the equator of the unit sphere (see figure 3). Of course the net will be in tension 
when applied over the sphere and a "crooked seam" will result in uneven tension. (Our 
example is exact, the edges being geodesic arcs of length 6 ~ Presumably Chebyshev 
used infinitesimal edge length; the difference should be slight though.) Notice that  this 
method yields a nice (piecewise) "Cartesian" coordinate system for the unit sphere: 
This suggests another application for Chebyshev nets. 

2. llow to cut the cloth in order to sew a tight suit for the unit sphere. The two identical 
pieces should be sewn together along corresponding points. In clothing the unit sphere the 
seam should run straight along the equator. The resulting fit should be perfect, though 
perhaps slightly uncomfortable since the cloth will be in tension. 

The I st fundamental form (metric) for a Chebyshev net with parameters u, v (thus 
u =constant and v =constant are the "wires" of the net) is simply 

ds 2 = du 2 + 2cos (dudv  + dv 2, 
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where r denotes the angle between the wires (thus we obtain the Pythagorean theorem 
for r = ~/2). One easily shows that  the Gaussian curvature is 

- 1  0 2 (  
K ( u , v )  = - -  

sin ~ Ou Or" 

Notice that  the diagonals of the mazes are orthogonal: If we use oL = u + v ,  fl = u - v  
as new parameters the metric becomes 

( , 2 �9 i 2 r  ,,~2 ds  2 = c o s  2 ~ a a  -I-sn ~al.~ �9 

3. A quadrant of  the spherical suit. The  "seam" is 
the equator of  the sphere, the sides are the primeval 
weft and warp threads.. 

In order to find examples of Chebyshev nets one may derive a system of 2 nd order 
differential equations, essentially[1882] 

o2z 8 2 
OuOv ~ D 2 z OuOv 

Ou 0"~ -- a'-ft -ffffu ~v - -  Ou av Off Ov - -  Ou D"~ 

and solve for ( x (u ,  v) ,  y (u ,  v ) ,  z (u ,  v)) .  One easily checks that  the class of surfaces of 
translation are a particular set of solutions. Solutions are only simple to obtain in 
special coordinate systems. For instance, for the unit sphere one finds[1882] 

x ( u ,  v) = sin am(u + v) cos(u - v ) k ,  

y (u ,  v)  = sin am(u + v) sin(u - v ) k ,  

z ( u ,  v)  = cos am(u + v), 

with a m  the Jacobi amplitude and k the modulus of the elliptic fimctions. 
In figure 4 we illustrate a Chebyshev covering of the plane and in figures 5 

and 6 of the sphere. Of course neither of these is unique. The planar case is an 
interesting one: In this case both the weft and warp families of threads are parallel 
curves. According to Stevens' speculations[1981] such families should be interpreted as 
(locally) cylindrical.  Of course the "shape from Chebyshev net" solution will be planar. 
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Stevens would probably argue (our speculation) that  the Chebyshev net assumption 
is not a natural one for human observers to make. 

Evidently, it is a different problem to find Chebyshev nets on a given surface 
whereby two initial parameter curves can be specified freely. This leads to a 2 nd order 
partial differential equation. We will not consider the problem here. The reader will 
find the necessary material in Bianchi[1927]. 

In practice one will often revert to finite methods because of several reasons. For 
instance, one might be interested in finite edge lengths to start with and consider the 
edges as rigid rods, freely rotatable about the vertices[1970]. (One may well speak of 
"finitesimal" nets, whereas the true Chebyshev nets are infinitesimal.) Or one might 
be interested in piecewise geodesic edges (a stretched wire has to be a geodesic). I t  
turns out to be the case that  (true) Chebyshev nets with geodesic wires are necessarily 
developable surfaces. In that  case only one family (either the weft or the warp) can be 
geodesic[1882]. Since the developables form too restricted a class one has to consider 

4. A planar Chebyshev net. The weft and 
warp threads form parallel families. 

finitesimal nets with only piecewise geodesic wires (the edges). In such cases one 
most easily constructs the net maze by maze. In figure 5 we show a covering of 
the sphere obtained with such a piece-by-piece construction. Such purely geometric 
methods of course yield nets that  will typically be mechanically unstable (statically 
that is). Examples are the planar nets of translation: Obviously only the subset of 
Cartesian nets is stable. One produces such stable nets by applying isotropic tension 
on the wires. In order to construct stable nets one has to consider the detailed static 
mechanical constraints. An example is the basket ball net: It assumes the form of a 
hyperbolically curved surface of revolution (constant Gaussian curvature), such that  
the wires are its asymptotic curves[1942]. 
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5. A finitesimal spherical Cbebyshev net. The edges 
are geodesic arcs of fixed length on the sphere. The 
net has been extended to its natural limits. This net 
was the basis for the computation of the cut needed 
to "dress" the sphere illustrated in figure 2. 

4 Shape from (Chebyshev) Nets 

First consider an orthogonal projection of a finite Chebyshev net with straight edges 
on a plane. How does one compute the shape from the projection? One immediate 
observation is tha t  the observed edge lengths hi (say) are related to the (unknown) 
true length A as ,k 2 + Az  2 = A 2, where Az denotes the depth difference over the edge. 

6. A true (infinitesimal) spherical Chebyshev net: 
Of course only a few weft and warp threads at fine 
spacing could be drawn. 

Thus i f  the true edge length were known one could immediately regain the depth 
differences up to a sign. Since we don' t  assume the true edge length to be known 
this doesn't  immediately apply. One has an additional constraint though: Surface 
consistency requires that  the (algebraic) sum of the four depth differences over the 
edges of each maze vanishes. Thus we have (for any maze) 

where aj  = -I-1. Clearly A 2 >_ max(Ak). There is such an equation for each maze, the 
unknown A 2 being the same for all mazes. These equations generically determine A 2 
and w~ tlail, ai2, a~3' ~r~4/, with wi = + l ,  for all i (index i identifies the maze). In order 
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to obtain the full solution we need to establish ~2{wt . . . . .  w.}, where /2 = 4-1 and 
n denotes the number of mazes. Since 12 clearly represents an essential ambiguity (a 
"depth reversal") one may set one of the w~ arbitrarily to 4-1. 

In order to find the wi one compares adjoining mazes p and q (say): The depth 
interval over the common edge has to be the same for both mazes, this establishes 
wpwq. If one specifies wl = 1 (say), all the other we generically follow from such a 
pairwise comparison. In case the data are essentially noise free and the case is generic 
such a sclmme always lead to the solution. The I)airwisc c()mparison can for instance 
be implemented as a painting algorithm. One obtains the true edge length A and the 
true shape up to a depth displacement and a depth inversion. We have implemented 
the required synchronization of depth reversals for 2 N x 2 N nets via the sequential 
synchronization of non-overlapping 2 x 2 subnets, each with elements of size 2 k x 2 k 
(k - 0 , . . .  N - 1). One easily handles even large nets this way. 

With perfect data  such reconstructions work very well and one obtains both the 
true edge length and the true shape (up to a global depth reversal of course) from 
any single view of the net, the solution is essentially exact and depends only on the 
number of digits carried in the calculations. (See figure 7.) 

If the data are noisy it is the pairwise comparison that  tends to break down first: At 
a certain noise level the distinction between a surface attitude and its depth reversal 
becomes insignificant. The synchronization of local depth reversals is then no longer 
feasible. (In order to obtain a robust solution one might a t tempt  to find the set of 
wi's that  globally minimizes the total failure at the common edges. Such a solution 
may be obtained via a simulated annealing procedure. However, the expected gain is 
perhaps not worth the effort.) When the noise level is just slightly bad, one expects 
failure due to synchronized depth reversal of larger areas. When the noise level is 
really bad one expects tha t  the individual mazes will be depth reversed at random. 

7. Typical example of "depth from nets": On the left two projections of the same net and on 
the right a reconstruction. With perfect data the reconstructions from one view are essentially 
exact. This net covers a paraboloid, the initial curves (drawn in bold line) are general curves, 
not geodesics. 

In order to study the behavior of the solution in noisy conditions we considered 
a small (3x3 mazes) net. For such sizes one can still search for the global optimum 
of local depth reversals with an exhaustive search procedure. (Notice tha t  the ef- 
fort scales exponentially with the number of mazes.) We constructed a generic, finite 
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Chebyshev net (straight edges, vertices on the fiducial surface) on a paraboloid, using 
non-geodesic initial curves (or rather: edge progressions). The net was constructed 
exactly, maze by maze. We selected a projection in which tile mazes had mutually 
quite different aspects. The projection was perturbed in the following manner: First 
we found the r.m.s, projected edge length. Next we added normally distributed ran- 
dom numbers to the Cartesian coordinates of the projected vertices, with zero mean 
and spread proportional to the r.m.s, projected edge length. The constant of propor- 
tionality will be referred to as the "noise level". This type of noise would be typical 
for data  obtained by measurements of limited accuracy in the image (projection). We 
find the expected result, namely that: 
- -  for low noise levels the reconstructions are essentially perfect. This regime extends 
to noise levels up to about 10-2; 
- -  for high noise levels the synchronization of depth reversals breaks down completely. 
It is still possible to obtain reasonable estimates of the true edge length. Tids regime 
starts from noise levels roughly in the range 10-2-10-1;  
- -  in an intermediate region (here noise levels in a narrow range of about 3 10 -3 to 
3 10 -2) one obtains mixed results. Sometimes the solution will be essentially good, 
merely somewhat deformed. Other times one witnesses depth reversal of local areas 
(larger than single mazes). In such cases a more intelligent algorithm (using prior 
information concerning smoothness for instance) might be expected to be able to 
"mend the damage". Sometimes one obtains really bad results, the depth reversals 
seem essentially random on the local (single maze) level. 
Such behavior is indeed to be expected for a method that  depends critically on the 
assessment of (often small) differences between Euclidean lengths (tile true and tile 
projected edge lengths). There is no way such a method could "deteriorate gracefully", 
rather, one is confronted with sudden breakdowns when critical noise levels are ex- 
ceeded. Fortunately, the dangerous noise regime is pretty obvious from the image data 
themselves (histogram of projected edge lengths compared with tolerance). 

We present an example in figures 8, 9 and 10. These illustrate three cases with 
noise level 1%. Case A illustrates an essentially correct reconstruction, the result is 
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8. Scatterplots of the recovered absolute differences over the (projected) edges against the 
veridical values. Notice that the results are quite acceptable in all three cases. 
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9. Scatterplots of the recovered depths at the ver- 
tices (the average depth has arbitrarily set to zero) 
against the veddical values (average depths also set 
to zero). In case A the result is acceptable, in case B 
there is some correlation, but regional depth rever- 
sals make the result less than acceptable, though a 
smart algorithm might still be able to amend the 
problems. In ease C we are left with a crumpled 
mess and the depths are essentially unrecoverable. 

merely somewhat dis torted as compared with the  fiducial shape. Case B i l lustrates 
the effect of local (but  at  a larger scale than the single mazes) depth  reversals: The 
reconstruction is at  least piece-wise correct. Case C i l lustrates a thoroughly crumpled 
reconstruction, this result is useless. In all three cases tile (3D) edge length was 
es t imated near to veridical (case A a deviation of 9.9%, case B a deviation of 11.5% 
and in case C a deviation of 11.0% from veridical). From figure 8 it is evident t ha t  the 
absolute depth  differences over the edges are also well recovered in all cases (in case A 
we find a correlation of 99.2%, in case B of 99.1% and in case C of 98.7%). Because 
of the noise there are surface inconsistencies in all cases of the order of 10% of the 
t rue edge length (true edge length was 0.4 whereas the maximum surface consistency 
violation in case A was 0.029, in case B 0.056 and in case C 0.073). After the  depth  
reversal synchronization procedure we were left with 1 sign violation (out of a total  
of 24) in case A and 9 sign violations in both cases B and C. Sometimes there were 
several solutions (with the  same number of unresolved depth reversals), namely 2 in 
case A and a single solution in cases B and C. The unresolved depth  reversals caused 
the major  differences in the correlation of the recovered depths  at  the vertices with 
the veridical depths.  These correlations were 97.5% in case A, 67.4% in case B and 
31.1% in case C. 

5 Conc lus ion  

We have presented a method tha t  lets us compute the shape of curved surfaces, 
covered with a wire mesh, from single views under the assumption tha t  the net is the 
orthogonal,  planar  projection of a Chebyshev net. Such a reconstruction is robustly 
possible (given sufficiently precise data) ,  explaining the informal but  generally agreed 
upon fact tha t  human observers can visually appraise the 3D shapes of such items 
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10. Projections of the fiducial and the recovered nets on the coordinate planes. In this 
coordinate system the Z-axis is the depth dimension. Thus tile projections on tile XY-plane 
a re  very similar: Essentially the input i m a g e  with 1% (projected) edgelength perturbations. 
Clearly case A represents an acceptable solution, case B nicely shows the result of regional 
depth reversals a n d  case C is a crumpled mess due to essentially random local depth reversals. 
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as basket ball nets, wire frames draped over balloons, used as packaging for foods, 
hammocks or fishnet stockings and bodysuits. The procedure radically differs from 
the established photogrammetic methods in that  it is inherently Euclidean (it requires 
that  the image plane carries a Euclidean metric). As such it is of interest as one 
extreme item in tile toolbox of computer vision methods. 

Although we have presented the case of orthogonal, planar projection, it is straight- 
forward to generalize to the case of central projection provided the camera is fully 
calibrated. One simply changes to polar coordinates. Since the solution will be up to 
a scaling one may set the true edge length to unity and introduce the distance to 
the maze as the new unknown. Different from the present case this distance will vary 
from maze to maze, but the fact that  A is the same for all mazes was not used in 
the solution anyway: Thus the solution essentially proceeds as described above and 
conceptually nothing new is gained, though such a solution may well prove to be of 
value in applications. 

We envisage at least these three applications of Chebyshev nets in computer vision: 
1 stt~, they enlarge the set of fiducial objects on which one may draw to post-calibrate 
projective photogrammetic reconstructions, 2 ndty, the fact that  "shape from (Cheby- 
shev) nets" is viable and that  humans seem able to perform this feat suggests their 
use in computer graphics. Renderings of Chebyshev nets may be used to provide the 
spectator with powerful depth cues. Finally, and 3 rdly, Chebyshev nets provide versa- 
tile parameterizations of surfaces for purposes of object representation. (For instance, 
we have presented a rather attractive parameterization of the hemisphere.) They are 
attractive because they are rather immediate generalizations of the planar Cartesian 
meshes (chess boards), yet they allow for much freedom, e.g., can be naturally ro- 
tated about a point, deformed in various ways and applied to arbitrary other surfaces 
as--for instance--the plane. Thus any surface appears as a deformation of e.g. the 
plane such that  lengths in two directions are conserved. This suggests many possible 
applications in CAD-CAM and object representation. 
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