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Abst rac t .  Recently, there has been an interest in creating practical 
anonymous electronic cash with the ability to conduct payments of ex- 
act amounts, as is typically the practice in physical payment systems. 
The most general solution for such payments is to allow electronic coins 
to be divisible (e.g., each coin can be spent incrementally but total pur- 
chases are limited to the monetary value of the coin). In Crypto'95, T. 
Okamoto presented the first efficient divisible, anonymous (but hnkable) 
off-line e-cash scheme requiring only O(log Af) computations for each of 
the withdrawal, payment and deposit procedures, where A/" = (total coin 
value)/(smallest divisible unit) is the divisibility precision. However, the 
zero-knowledge protocol used for the creation of a blinded unlinkable 
coin by Okamoto is quite inefficient and is used only at set-up to make 
the system efficient. Incorporating "unlinkable" blinding only in the set- 
up, however, limits the level of anonymity offered by allowing the linking 
of all coins withdrawn--rather than a more desirable anonymity which 
allows only linking of subcoins of a withdrawn coin. 
In this paper we make a further step towards practicality of complete 
(i.e., divisible) anonymous e-cash by presenting a solution where all pro- 
cedures (set-up, withdrawal, payment and deposit) are bounded by tens 
of exponentiations; in particular we improve on Okamoto's result by 3 
orders of magnitude, while the size of the coin remains about 300 Bytes, 
based on a 512 bit modulus. Moreover, the protocols are compatible 
with tracing methods used for "fair" or "revokable" anonymous cash. 

1 I n t r o d u c t i o n  

Off-line untraceable electronic cash has sparked wide interest among cryptog- 
raphers ([CFN90, FY93, Oka95, CP93a, PW92, Bra93b, BGK95, 0 0 9 2 ,  DC94, 
EO94, FTY96, CMS96, CFMT96, DFTY97], etc). In its simplest form, an e-cash 
system consists of three parties (a bank B, a user H and a receiver Tr and four 
main procedures (account establishment, withdrawal, payment and deposit). In 
a coin's life cycle, the user H first performs an account estabhshment protocol to 
open an account with bank B. To obtain a coin H performs a withdrawal protocol 
with B and during a purchase H spends a coin by participating in a payment 
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protocol with the receiver (shop) T~. To deposit a coin, 7~ performs a deposit 
protocol with the bank /L An e-cash system is anonymous if the bank /3, in 
collaboration with the receiver 7~, cannot trace the coin to the user, except with 
negligible probability. The system is off-line if during payment 7d and H do not 
communicate with the bank B. For the bank's protection, if an off-line coin is 
double spent, the user's identity is revealed with overwhelming probability. 

An e-cash system as presented above, however, is not a complete solution. In 
practice it is desirable (similar to other payment systems, electronic or physical) 
that payments of arbitrary amounts (up to the withdrawn amount) can be made. 
Intermediate solutions are possible (see remarks below) but they either diminish 
the provided anonymity and/or result in communication overhead. Therefore 
divisibility is the missing link for constructing practical e-cash systems. This 
paper presents the first truly efficient divisible e-cash system. 
Previous  work: There has recently been a strong effort in developing se- 
cure divisible untraceable off-line electronic cash protocols [OO92, DC94, EO94, 
Oka95]. With dwisible e-cash a coin of value $x can be spent in several increments 
but the total amount cannot exceed Sx, unless the user is willing to be identi- 
fied with high probability. In Crypto '95, Okamoto [Oka95] presented the first 
divisible e-cash scheme in which all procedures can be performed efficiently (i.e., 
in O(logA/'), where :V = (total coin value)/(smallest divisible unit)); this result 
has been recently proven to be asymptotically optimal [OY98]. Furthermore, all 
protocols are of comparable efficiency with the most efficient non-divisible off- 
line e-cash systems available, except for the account establishment protocol whzch 
takes more than ~000 multi-exponentiatzons modulo a 1030 bit prime. 4 Hence, 
[Oka95] can be practical only if account establishment is performed infrequently 
(typically once) for each user. Account establishment is used to create a "li- 
cense" with which coins are withdrawn; hence the cost of not performing it at 
each withdrawal is that withdrawals of coins using the same license can be linked. 
As noted by [PW92], the more the user uses the same license the more likely he 
can be traced by other means (i.e., correlating various payments' locality, date, 
type, frequency, etc.). In fact, there have been independent results [Oka96] which 
reduce the computation of the account establishment of [Oka95] by two orders 
of magnitude. But our "account establishment" protocol is three orders of mag- 
nitude more efficient than [Oka95] (see Section 6), hence its functionality can be 
included in every withdrawal and, unlike [Oka95], there is no trade-off between 
the degree of unlinkability among coins and efficiency attained. 
Al te rna t ives  to divisibility: In contrast to a divisible coin, an exact payment 
protocol using multiple single term coins was analyzed in [FPST97]. That result 
complements the protocol presented here, in the sense that [FPST97] is more 
efficient for small divisibility precisions (Af) but it becomes impractical when 
higher precision is required. As analysed in detail in [Tsi97], keeping multiple 
coins is in general (except for very large A/') faster at payment, but it becomes a 
bottleneck in storage and computation at withdrawal. The exact threshold de- 

4 Each multi-exponentiation is equivalent to approximately 1.2 modular 
exponentiations. 
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pends on an additional parameter K, defined as "the number of exact payments 
that  can be performed after one withdrawal"; for a 512 bit modulus the com- 
putation at withdrawal for the divisible system is smaller when K - In ~ > 48, 
while the storage requirements are smaller when K - In ~ > 61. 

Other approaches to exact payments involve having the user simply state the 
amount s/he is spending, by including the amount in the hash-computed chal- 
lenge used for the payment (challenge semantics/electronic checks). Then, either 
the payment is checked on-line with the bank [PW92, Cha85] to prevent over- 
spending, or a trustee is allowed to trace the user upon over-spending [JY96]. 
But in several settings on-line payments are clearly undesirable, while provid- 
ing divisibility "directly" allows the bank to call upon the trustee only when a 
judge orders such tracing (i.e., presumably much less frequently). Another on- 
line solution is making "change" with the bank just before a purchase [BGK95]. 
Methods for off-line "electronic checks" also exist [dCv+89, Bra93a, dST98]. 
However the model of electronic checks is quite different in the following re- 
spect: users can conduct only a single payment (unless of course there is on-line 
communication) regardless of the amount. Thus, "having $1,000 in one's wallet" 
is a relative term, since after e.g., a $1 purchase the "wallet" is empty. In this 
sense the model is a subset 5 of the "K-payment model" presented in [FPST97], 
for K = 1. Yet another approach would be to ask the shop to return change, 
but this transfers the problem of "exact payments" to the shop, while it creates 
anonymity-related problems and it may require on-line communication with the 
bank for "refreshing" the anonymity of the returned change. 
O u r  c o n t r i b u t i o n s :  The major advantage of our system is that  the construction 
of the electronic license (the bulk of the computation in [Oka95]'s "user account 
establishment" protocol) can be performed with a few tens of exponentiations, 
while [Oka95] requires several orders of magnitude more (see Section 6 for de- 
tails). Furthermore, in contrast to our scheme, the number of exponentiations 
in [Oka95] depends on the length of the RSA modulus (which is a potentially 
insufficient 512 bits in their efficiency calculations), impairing scalability. 

Our system remains efficient during payment, while the size of our coin is 
around 300 bytes for a 512 bit modulus (see Section 6 for a detailed analysis). 

An additional advantage to our system is that it is compatible with tracing 
methods for e-cash [CMS96, DFTY97, FTY96], thus a full solution (e-cash with 
exact payments and anonymity revokation) can be employed. Transferability can 
also be added in a modular fashion, as described in Section 8. 

We also present a tool for "range-bounded commitment" which has applica- 
tions outside electronic cash (e.g., in group signatures [CS97]). Lastly, the secu- 
rity of the divisible electronic cash protocol is provided under a formal model 
[FY93], based on new cryptographic assumptions (similar to those appearing 
in [Bra93b] and [Oka95]--see Appendix A). 
O r g a n i z a t i o n :  We first give an overview of Okamoto's [Oka95] scheme in Sec- 

5 However, electronic checks allow unlinkability between 2 payments (the purchase and 
the refund); urdinkability between K payments is much more costly--see [Tsi97] for 
an analysis. 
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tion 2, focusing on the account establishment and withdrawal protocols. In Sec- 
tion 3 we sketch our idea and illustrate the necessity of a multiplicative commit- 
ment, which is achieved using the range-bounded commitment presented in Sec- 
tion 4. Our scheme is then described in Section 5. Next we discuss the scheme's 
efficiency (Section 6) and its security (Section 7). We conclude with a discussion 
and open problems in Section 8. 

2 The  O k a m o t o  s c h e m e  

In Okamoto's divisible off-line e-cash scheme [Oka95] each user H generates a 
composite number N of the form N = piqj where p, q are primes with p =_ 3 mod 
8, q _-- 7 mod 8 and i , j  are odd integers 6. H is associated with gP' (mod P) ,  
where P = 2Q + 1 with P, Q primes and g a generator of the subgroup GQ of 

In t h e  a c c o u n t  e s t a b l i s h m e n t  p r o t o c o l  the user obtains a license (N, L1 = 
(N+al)  1/K mod ni,  52 = (N+a2) 1/K mod n2) where (ni, K) is an RSA public 
key and al 6R Z* is also public. To provide for anonymity of the user and secu- 
rity for the bank, this protocol takes approximately 4000 "multi-exponentiations" 
modulo a 1030 bit prime, assuming 256 bit primes p and q. Furthermore the num- 
ber of exponentiations depends on the length of the RSA modulus. Due to an 
attack in [CFMT96], Okamoto suggests a fix to this protocol, requiring approx- 
imately 150 additional multi-exponentiations (see appendix of [CFMT96]). 
W i t h d r a w a l  of the coin is nothing more than an RSA blind signature [Cha83] 
on H(NIIb), where H is a one-way function and b is a random value. The bank's 
public key is chosen based on the value of the coin. 

T h e  p a y m e n t  p r o t o c o l  consists of two parts: 

- ( C o in  A u t h e n t i c a t i o n )  U convinces/~ that  the coin is a legitimate coin 
(i.e., (1) it is signed by B, and (2) N is of the correct form). 

- ( D e n o m i n a t i o n  R e v e l a t i o n )  Nodes of a tree defined by N are "opened" 
such that if the spent amount exceeds the monetary value of the coin then 
N can be factored. 

The coin authentication protocol in combination with the denomination protocol 
guarantee that  N is a composite of the form N ~ plqj where p, q are primes with 
p -- 3 mod 8, q _-- 7 rood 8 and i, j are odd integers. If a node is double spent 
(same node rule), or if an ancestor or descendant of an already spent node is 
opened (root route rule), then using [Oka95] in conjunction with the observation 

of [CFMT96] N will be factored and gP' (mod P)  will be determined. 
The reader should note that  the same N is used for each coin with the same 

license. Hence, coins can be linked. Our system does not have this property. 

6 [n [Oka95] N was a Williams Integer, i.e., i -- j = 1, however, as observed 
in [CFMT96] the [Oka95] protocols can only guarantee that N is of the form pre- 
sented above. 
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3 T h e  b a s i c  i d e a  

Okamoto's scheme [Oka95] is quite efficient. In fact it is only inefficient during 
the account establishment protocol. To emulate the functionality of this protocol, 
all that  is needed is a method for providing a receiver T~ with an N, such that  
(1) g is a composite of two numbers, (2) N is signed by the bank, and (3) Tr 
(and subsequently the bank, at deposit time) is guaranteed that if N is factored, 
the owner of the coin will be identified. 

The denomination revelation protocol of [Oka95] guarantees condition (1). 
It determines that  N is of the form piqj and allows the generation of a binary 
tree such that  each tree node represents a portion of the coin's value, and over- 
spending results in factoring N. 

We suggest a new approach for withdrawal (i.e., signing N) and coin au- 
thentication (i.e., proving the correctness of N to ~ ) .  Our idea is to modify 
the Brands [Bra93b] protocol for withdrawal and coin authentication. At with- 
drawal, H randomly generates N = pq and identifies the particular withdrawal 
(hence himself) with I = g~ (mod P) where gl,g2 are generators of the sub- 
group G o of Z~. During withdrawal, H ends up with a message (A = 31"Pq"q32 
(mod P),  B = [N, gq]) and a signature on A, B: signt3(A, B). Hence (2) above 
is guaranteed. The correctness of A and the unforgeability of the signature are 
guaranteed by the protocol in [Bra93b]. 

To guarantee condition (3), we observe that during payment N is revealed 
and if the coin is over-spent N can be factored, based on the result in [Oka95] 
and as corrected in [CFMT96]. At coin authentication H proves that  A =_ g N x  
(mod P) for some X =_ g2 ~ (mod P). Since the withdrawal guarantees that  A - 
gPq-q (mod P), this indirectly guarantees that  N i.e., the factorization 1 Y 2  = Pq, 
of N reveals the user's identity I. Notice though that  this only holds if we 
guarantee that for a given 91P,91q,91N with 91 pq ~-~ 91N (rood P),  we have 
that  N = pq G Z (instead of simply N = pq (mod Q)). We call this property 
"multiplicative commitment". There are various promising ways to satisfy it, 

such as working over a composite modulus (instead of a prime P), or limiting 
the size of p,q so that  no wrap-around occurs in the index operations (i.e., in 
gPl q (Boa P), pq < Q, where Q is the order of gl in Z~,). I-Iere we present a 
concrete way of satisfying this multiplicative property using a range-bounded 
commitment (i.e., by limiting the size of p, q). 

4 R a n g e - b o u n d e d  c o m m i t m e n t  

The idea of checking whether a committed integer is in a specific range was 
developed in [Oka95] for license generation. We shall call such protocols range- 
bounded commitments (RBC). Here we formalize the notion of RBC and present 
an efficient instantiation based on the Discrete Logarithm Assumption. 

This protocol is of independent value and can be used in limiting the range 
of numbers in other protocols; e.g., in the group signature scheme of [CS97, pp. 
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422, 423] it is proposed to limit the size of Alice's secret key (x) using a cut- 
and-choose approach; our range-bounded commitment  is a much more efficient 
way to implement this check. 
A r a n g e - b o u n d e d  c o m m i t m e n t  ( in formal  def.) is a protocol between a prover, 
79, and a verifier, i;, with which 79 commits  to a string, x, and proves to 12 that  
x is within a predetermined range, H,  with accuracy 5. Hence the protocol uses 
a secure bit commitment  as a building block; then, with overwhelming proba- 
bility in the security parameter  k, 79 can conduct an efficient proof as long as 
0 < x < 2 H and l; is convinced that  7 [x[ _< (1 + J )H.  In the process a negligible 
in k amount  of information about  x is leaked to l;. 

We now present an efficient range-bounded commitment  protocol based on 
the DLA in which 79 sends commitment  X _-__ g= rood P and then proves to ver- 
ifier V tha t  Ixl < (1 + J ) H  mod Q. 

S e t u p :  Input  a range H and a security parameter  k. 
Choose the accuracy (i such that  J > ( 2 k + 2 ) / H ;  this ensures that  for a legitimate 
prover the probabili ty of failure or of information leak is negligible. Select primes 
Q, P with P = 2Q + 1, IQI = 2(1 + J ) H  + 6. (For simplicity we assume tha t  J is 
calculated so that  J H  is an integer.) 
Secret input to 79 is x, with 0 < x < 2 g .  Common input is a commitment  
X _= g= rood P on x. 
T h e  p r o t o c o l :  (For iteration i) 
(1) 79 picks ui ER {0 , . . . ,  2 (1+6)H -- l } ,  and sends Ui = g" '  rood P to 1;. 

(2) V sends ei ER { 0 , . . . , 2  k -- 1}. 
I 

(3) 79 responds with u i = eix  + ui. 
' _ l 2(I+~)H. (4) 12 verifies gu, =_ X e, Ui rood P and 0 < u i < 

The protocol can be made n o n - i n t e r a c t i v e ,  as discussed in [BR93], if e = 
e l . . .  ej = 7-lo(X, U 1 , . . . ,  Uj),  where 7/0:  {0, 1}* ~-~ {0, 1} 2k is a random oracle. 
In this case j -- 2 iterations are needed, so that  [e[ -- 2k. If  the protocol is 
i n t e r a c t i v e  one iteration suffices, as shown in soundness below. 

Notice that  in this particular instantiation of RBC 79 reveals more informa- 
tion than in a Schnorr proof of knowledge [Seh91] of the representation of X; 
hence 79 also proves that he knows the representation of  X w.r.t,  g. 

For s o u n d n e s s ,  (recall that  we can only guarantee tha t  Izl is within the 
extended range [0, (1 + (f)H]) observe that  if I~1 > (1 + ~ ) n  (mod Q), i.e., 
x > 20+~)H or x < --20+~)H, then for a fixed ui, there exists only one ei for 

! I which 0 < u i < 2 (T+~)H. For all e i ~ ei the verification fails, hence the prover 
can only cheat by guessing el, with probabil i ty of success 1/2 k in each iteration. 

For c o m p l e t e n e s s ,  notice that  a legitimate 79 (i.e., for which 0 < x < 
2 H) fails to convince Y when, in some iteration i, ui > 20+~)H -- eix.  The 
probabil i ty of this happening is at most  2 k +H-  (1 +~)H = 2k- ~a and, for j rounds, 
1 - ( 1 -  2k-6H) j . From the choice of J and j = 2, this becomes 1 - ( 1 -  2 -k -2 )  j = 
1 - (1 - 2 - k - 2 )  ~ ~ 2 - k - 1 .  

7 Throughout this paper, lal denotes the length of a in bits. 
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For secrecy ,  the probability that  l; can extract some information regarding 
x is negligible in k, as analyzed in [FGY96] where operations with exponents are 
also performed on the integers--but  for a different reason and without checking 
the range. 

Formally, we can prove the following theorem: 

Theorem 1. Assuming g= (mod P) is a secure string commitment on x, the 
above protocol is a range-bounded commitment. 

R e m a r k s :  For applicability in our e-cash scheme, the leak of information about 
x from X - g~ mod P does not impact security since X is already known to l;. 

We also want to note that it is possible to use similar ways as [CS97] to 
"blind" the commitment  on X = g=, i.e., by commiting to X -- g~G y for a 
second generator G and random y, and conducting a proof of knowledge of x, y 
in parallel. 

5 T h e  s c h e m e  

Bank Initialization (setup) procedure: 
The bank B chooses the security parameters k and H,  and computes ~ > (2k + 
2 ) / H  and primes Q, P ,  with P = 2Q + 1, IQI = 2(1 + g)H + 6. Intuitively, k 
controls security for the bank and H security for the users (anonymity). For the 
remaining of the paper the notation for modulo operations is simplified; e.g., 
h - g= (rood P)  is written h = g=. All arithmetic is performed in a subgroup 
GQ of Z~, of order Q, except for the operations involving exponents, which are 
performed in ZQ. B chooses: 

- Generators g,gl,g~ of GQ, 
- 7/, 7/0, 7t 1 , . . . ,  from a family of collision intractable hash functions [Dam88], 
- A private key x ER ZQ (a different key can be used for every denomination). 

B publicizes the description of GQ (i.e., P and Q), the generator-tuple (g, gl, g2), 
the description of 7/, 7 /0 ,7/1 , . . . ,  and its public keys h - g~, hi - g~, i -- (1, 2). 
U s e r  I n i t i a l i z a t i o n  ( a c c o u n t  e s t a b l i s h m e n t )  p r o c e d u r e :  
The u s e r / / s h o w s  (by physical or other means) his identity to the bank B and 
then U and B establish a means with which an authenticated channel can be 
used during withdrawal. 

5.1 W i t h d r a w a l  

The signature that  is used by the bank to sign a coin is a variation of the Schnorr 
signature [Sch91] and is also used in [Bra93b]. The signature signt3(A, B) on the 
pair (A,B) E GQ • GQ, consists of a tuple (z,a,b,r) e GQ x GQ x GQ x ZQ, 
such that: 

gr = h~t(A,B,z,a,b)a and A ~ = z~t(A'B'z'a'b)b (1) 
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T h e  w i t h d r a w a l  p r o t o c o l  

At the beginning of the withdrawal protocol, the user creates an authenti- 
cated channel with the bank. This is needed in all e-cash (and physical cash!) 
protocols to guarantee that  only the owner of an account withdraws money from 
it and that  the user is communicat ing with the real bank. 

- U: (This step can be pre-computed.)  
Select primes p -- 3 rood 8, q = 7 mod 8 at random such tha t  IP[ = Iql _< 
H = ( I Q I -  6)/[2(1 + ~)] and calculate N = pq. 
Send I = gl p. 

- /4, B : Using the range-bounded commitment with security parameter  k and 
range H,  U proves to B- - in  an interactive way and with just  one i t e ra t ion- -  
that  he knows the representation of I w.r.t, gl (i.e., the number  p) and tha t  

Ipl < (1 q- (f)U. 
- B: Verify I # {1,gl}, Ig2 ~ 1. 

Pick w ER ZQ, and send a ~ = g~O, b ~ = (lg2)~ t o / / .  
- U: Compute  z'  = hPh2 (= (Ig2ff since hi = g~, h2 = g~). This step can 

be pre-computed (or z I can be supplied by B). 
Let A (ig2)q ~ _  N q = gl g2, B = [N ,Y  = gq], and z = z 'q. 
Pick Vl,V2 EFt ZQ and compute  a = a'V~g v~ and b = b~qVaA~2. 
Compute  the challenge c = 7/(A, B, z, a, b), and send the blinded challenge 
c ' - -C/Vl  ( m o d Q )  t o B .  

- B: Send the response r '  - c 'x + w (mod Q) to U, and debit U's  account. 

- //: Accept iff gr' = hC'a , and (Ig2) r' = z'C'U. Compute  r - r'vl + v2 
(mod Q), to get the signature (z, a, b, r) on (d,  B). 

5 . 2  P a y m e n t  & D e p o s i t  

We remind the reader tha t  [Oka95], given a composite N signed by the bank, 
shows in the denominat ion revelation how to define a coin as a binary tree, and 
identify the user upon over-spending. Since we have a different signature scheme 
for N,  we describe a new verification in the coin authentication below; otherwise 
payment  and deposit are the same as in [Oka95]. 
C o i n  A u t h e n t i c a t i o n :  

- U s e n d s  t h e  co in  t o  TO: Send A , B  = [N,Y],s ignt3(A,B),  where N = 
pq, Y = g2 q aS defined at withdrawal. 

- 7~ ver i f i es  t h a t  t h e  co in  is l e g i t i m a t e :  
1. V e r i f y  t h e  s i g n a t u r e  signs(A,  B), and tha t  Y ~ g2, Y ~: gN, A # 

l, ( - l / N )  = 1, (2 /N)  = - 1 .  Here, (a /N)  denotes the Jacobi symbol of 
a modulo N.  

2. P r o v e  t h a t  q is c h o s e n  c o r r e c t l y :  Use the range-bounded commitment 
(base g2) with Y, to prove that  U knows the representation of Y w.r.t, g2 
(i.e., he knows q) and that  Iql ~ (1 + ~)H. The challenge e is computed 
based on a haSh function so that  even a collaboration of L /and  7r cannot 
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forge the proof; the input of the hash function includes the shop's iden- 
tity, the payment date and time, a description of the purchase, and a 
description of the nodes that  are to be spent. 2 iterations are performed 
as discussed in Section 4 for the non-interactive case. 

3. Ver i fy  t h a t  A is c o r r e c t l y  c o n s t r u c t e d :  g N y  .~ A. 
4. L i m i t  t h e  w a y / 4  can  m i s b e h a v e :  Check whether N is divided by the 

first INI primes congruent to 3 mod 4. This simplifies identification of 
double-spenders as pointed out by [CFMT96]. [CFMT96] also describe 
the tracing protocol used by B in this case. We adopt this protocol. 

D e n o m i n a t i o n  R e v e l a t i o n :  We use [Oka95]'s protocol with the only modifica- 
tion being the substitution of the coin (C, N) in the hash functions of Okamoto 
with our coin, (A, B). This protocol guarantees that  if one of the node rules 
(see Section 2) is violated, then /4  has released enough information to allow B 
to factor N. Note that  if k' < k/4 nodes are spent, then 2 �9 (k/4 - k') ad- 
ditional square roots of randomly chosen numbers must be shown by the user; 
these are described in [Oka95]'s coin authentication and are also performed here. 

Deposit: 7d sends the payment transcript to B. 

6 E f f i c i e n c y  

We examine the efficiency when H = IPl = Iql = 256, k = 40, N = 512 bits, s 
IQI = 688 (i.e., 5 ~ 0.33), IPI = 689, and the binary tree has 18 levels, i.e., the 
divisibility precision is 217, hence sufficient to divide a $1,000 coin down to 1 
cent. We assume the existence of fast, random hash functions. No pre-processing 
is assumed (unless explicitly stated). In practice several of the steps can be 
pre-computed. 

Below we compare our system with [Oka95] when [Oka95] is run with the 
setup at each withdrawal. Also, as a baseline, we use exponentiations over a 512 
prime modulus with 512 bit exponents, since the two systems use a different 
modulus at different steps in the protocols. 
S t o r a g e  r e q u i r e m e n t s :  The informat ion/ /needs  to store for one coin (p, q, (a, 
b, r)) is 323 Bytes (up to 495 Bytes if/4 stores, rather than recalculating before 
each payment, A and /or  z). In comparison, the coins in [Oka95] are 264 Bytes 
and in [Bra93b] 384 Bytes, when the same parameters are used. 
C o m p u t a t i o n  a n d  c o m m u n i c a t i o n :  Our exponentiations are approximately 
3 times less costly than [Oka95], since we use a modulus of 689 bits instead of 
1030 and exponentiations require O(logQlog s P)  bit operations [Kob87]; here 
we assume that  a modular multiplication is performed in O(log 2 P)  steps, i.e., in 
time quadratic 9 to the modulus size [Kob87]. Due to the reduced exponent size 

Although we believe that 512 bits are not sufficient for an RSA modulus, we use 
this value for comparison with [Oka95]. However our coin remains small if, e.g., 
INI = 1024 (+300 Bytes). 

9 Algorithms performing multiplication in time O(log 1588 p) do exist [KnuB1] but are 
applicable for numbers much larger than the ones we use here. 
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some of our exponentiations, including the ones in our range-bounded commit- 
ment, are approximately 6 times less expensive than [Oka95]. We should note 
that a multi-exponentiation (of the form =' =2 gl g2 ) costs the equivalent of 1.2 ex- 
ponentiations [Oka95, KnuS1]. 

At withdrawal H and B perform the equivalent of 12 full exponentiations 
modulo N (512 bits). H also needs to calculate one Williams integer, but  he 
can pre-compute one any time before withdrawal. In contrast, in [Oka95] H 
needs to perform more than 4000 exponentiations 1~ when setup is performed 
at each withdrawal to obtain the same functionality (i.e., to obtain unlinkability 
between coins in both systems). This equates to approximately 32,000 multi- 
exponentiations for the 512 bit baseline. 

In the coin authentication phase, U transmits 774 Bytes. H needs to perform 
the equivalent of around 5 exponentiations modulo N (if he re-computes A, Y 
and z) and Tr around 7. 

In the denomination revelation phase, 11 9 nodes (on the average) are paid. 
For each node, two 512 bit values are sent to T~, for a total of 1,152 Bytes. 
In addition, about 320 Bytes (on the average) are sent for verifying that N is 
a Williams integer. As in [Oka95] the user computes approximately 20 square 
roots (mod N) which the shop verifies. 

7 Security 

We now present our security model and give an overview of the proofs. 
As with [Oka95], our security model has been based on [FY93] and is modi- 

fied to work for divisible, unlinkable coins. We model the security of our scheme 
by requiring that  it satisfies four requirements, which are slightly stronger than 
the corresponding [Oka95] properties (included in brackets) which do not include 
unforgeability: unreusability [No overspending], untraceabzhty [No tracing], un- 
expandabzhty [No forging and No swindling:2/, and unforgeability. The use of a 
probabilistic polynomial time machine (p.p.t. TM) in our model simulates user 
collaboration as views to the TM. Thus, in establishing the security we prove 
that even a collaboration of users (and/or  shops) cannot break the scheme. 
Our proofs of security are based on the following a s s u m p t i o n s :  

- ( F a c t o r i n g  a n d  dec i s i on  D i f l l e - H e l l m a n )  Let P = 2Q+ l, Q, p0, qo, pl, q: 
be primes, No = Poqo, N1 = p:q:, and H = ]Pol = tqol = IPll = Iq:] _< 
(IQI - 6) / (2(1  + ~)) for some ~ > 0. Let the order of g in the multiplica- 
tive group Z~, be Q. Then, no p.p.t. TM 34 can, given P,Q,g ,g ,  [Y0( = 
9 q~ mod P), No(= Poq0)], [Y:(= gq: mod P) ,  NI (=  p:q:)] and [L( = gpr mod 

a0 Due to the attack in [CFMT96] the computation is actually higher (Okamoto sug- 
gested a method requiring 4% more exponentiations); we omit these computations. 

it We adopt the calculations of [Oka95]. 
t2 "No swindling" is defined as the (computational) impossibility of the shop to double- 

spend a paid coin. This is guaranteed here from unreusability and unexpandability: 
even a collaboration of users/shops cannot over-deposit the withdrawn/paid coins. 



571 

P), I i - r ( -  gV~-r mod P)] (r En {0, 1}), compute r with probability better 
than 1/2 + 1/H c, for a l l  constants c and sufficiently large H (i.e., M cannot 
compute r non-negligibly better (in H) than random guessing). 

- ( W i t h d r a w a l  p ro toco l )  If random hash functions exist, then our with- 
drawal protocol is a restrictive blind signature protocol: the message m = 
Ig2 g~Xg2 is signed by the string A - ~ ~ -- - gl g2, in such a way that a/ f l  = ul. 

- ( H a s h  func t i ons )  Hash functions (7/, 740,7/1,...) act like random oracles. 

R e m a r k s  on these assumptions are provided in appendix A. 
Our Withdrawal protocol assumption is based on the representation problem 

in g~oups of prime order, which in turn is equivalent to the discrete logarithm 
assumption (DLA) [Bra93a]: 

Defiiai t ion 2. (The  r e p r e s e n t a t i o n  p r o b l e m  in g r o u p s  o f  p r i m e  o rde r )  
In s t ance :  A group GQ, a generator-tuple (gl, �9 �9 gk), h E GQ. 
P r o b l e m :  Find a representation of h with respect to ( g l , . . . ,  gk). 

For our proofs we use lemma 3 below, which has been proven by [PS96] based 
on the DLA and our Hash functions assumption. 

L e m m a  3. (Schnor r  s i g n a t u r e s )  Schnorr s,gnatures [Sch91] are exzstentially 
unforgeable, even when the prover in the Schnorr identzfication protocol is queried 
polynomially many times. 

T h e o r e m  4. Unreusab i l i t y :  
Let k be the security parameter. I f  the successfully deposzted nodes of a coin vio- 
late the root route rule or the same node rule, then the identity of the coin's owner 
can be eI~iciently (i.e., by a p.p.t. TM) computed (and subsequently proven) from 
the transcripts of the withdrawal and the deposit protocols with overwhelming 
probability (in k). 

T h e o r e m 5 .  Let k be the security parameter. WLOG we treat the collection of 
the portions of a coin as being a single, indiviszble, coin. 
Unforgeab i l i t y :  No p.p.t. T M  can, from the vzews of users of arbitrarily many 
withdrawal and payment protocols, compute a single coin that does not embed 
the identity of at least one of these users and that wall lead to two successful 
purchase (or deposit) protocols, except with neghg~ble probability (in k). 

U n e x p a n d a b i l i t y :  The probabdity that from the views of users and shops of N 
withdrawal and of N payment protocols, a p.p.t. T M  can compute an additional 
coin that will lead to a successful purchase (or deposit), is negligzble (zn k). 

T h e o r e m  6 .  U n t r a c e a b i l i t y :  

Let k be the securzty parameter. We treat the collection of the portions of a coin 
as being a single, indivisible, coin. 
Let a p.p.t. TM A/[ have access to all 13's views of withdrawal, payment and 
deposit protocols. Then for any two coins C~, Cj and withdrawals W0, W1, such 
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that Ci,Cj are the coins originating from W0, W1, Ad cannot distinguzsh non- 
negligibly better in random guessing (in k) whether Cj came from Wo or W1. 
U n l l n k a b i l i t y :  this theorem guarantees unlinkability in the average case) 3 

8 Extens ions  and open problems 

T r a n s f e r a b i l i t y :  There is a general method with which a coin can be trans- 
ferred from the shop (who now acts as a payer) to another payee, proposed in 
[vAg0]. The method preserves the anonymity of the shop and is applicable to 
all anonymous off-line e-cash schemes. The coins grow upon each transfer, but 
[CP93a] showed that  this is inevitable, and the approach is asymptotically op- 
timal. Intuitively, the shop obtains a "blank" (zero-valued) blind coin from the 
bank, and includes it in the hash of the random challenge to the user (for exact 
payments divisible "blank" coins can be obtained). Then the shop can transfer 
the payment by "spending" the blank coin with a payee. Note that  the blank 
coin is "bound" to the original payment (since it is included in the random 
challenges used for that payment),  while the shop cannot over-spend, or it is 
identified. The shop only needs to contact the bank (in an off-line manner) in 
order to obtain "blank" coins; finding algorithms to withdraw multiple (unlink- 
able) "blank" coins faster than performing multiple withdrawals in parallel is a 
problem pending further research. 

T r a c i n g  m e t h o d s :  The tracing techniques of [CMS96, DFTY97, FTY96] build 
on withdrawal protocols that are similar to [Bra93b]. Thus, adapting their func- 
tionality to our protocols is straightforward. 

F i n d i n g  d o u b l e - s p e n d e r s :  We remark that  when a user over-spends the bank 
establishes a link between her/his deposit and withdrawal protocols for identifica- 
tion; ideally a link to the user's account should be possible, to minimize database 
accesses (since accounts are much fewer than withdrawals). Fortunately, the ad- 
ditional cost necessary for this case is minimal, and is omitted here for clarity; 
efficiency is only marginally affected (one Schnorr proof at payment) and secu- 
rity remains intact, with the exception of our first assumption which needs to 
be modified as shown in Appendix A. 

It is apparent that  the storage, computat ion and communication require- 
ments of our scheme are minimal, resulting in the first anonymous, unlinkable 
divisible off-line electronic cash scheme that  can be implemented in practice. 

Two interesting open problems are to reduce the security of the system to 
more standard assumptions, and to find a way to break the linkability between 
portions of the same coin. 

13 In particular if the bank can rink coins then it can trace users, except for some 
special cases, e.g., when all users have made the exact same number of withdrawals 
and payments. 
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A R e m a r k s  on a s s u m p t i o n s  

1. An assumption similar to Factoring and deciswn Dzffie-Hellman appears 
in [Oka95]. It implies that  the decision Diffie-Hellman and factoring problems 
are difficult, since if either can be solved the assumption does not hold. If 
for tracing of over-spenders a pointer to the account database is desired, as 
described in Section 8, this assumption needs to be modified as follows: 
( M u l t i p l e  F a c t o r i n g  a n d  dec i s ion  D i l i i e - H e l l m a n )  (Let Q, P, H, 5, p0, 
qo, pl , ql , No, N1, Yo, Y1, It ,  I i - r  be defined as previously, and no, Ul EI~ ZQ ). 
No p.p.t. TM can, given Q, 5, g, [Y0, No, Yg ( -  g~oqo mod P)],  [Y1, N1, Yt'(---- 
gUlql mod P)] and [It, I~(-- gut mod P)], [ I i - r ,  I ~ - r ( -  gU~_r mod P)] (r ER 
{0, 1}), compute r with probability better than 1/2 + 1/H c, for all constants 
c and sufficiently large H.  
We believe that this assumption represents an interesting number theoretic 
problem to be studied. 

2. The Withdrawal protocol assumption appears in [Bra93b]. It is stronger than 
the DLA, but there are arguments [Bra93b] suggesting that  breaking it re- 
quires breaking either the Schnorr signature scheme or the DLA. 

3. The Hash functions assumption is difficult to guarantee. [Oka95] suggests 
using tamper-free devices. [BR93] suggest an implementation using MD5 in 
a special manner. 


