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Abs t r ac t .  This paper proposes a novel public-key cryptosystem, which 
is practical, provably secure and has some other interesting properties as 
follows: 

1. Its trapdoor technique is essentially different from any other previous 
schemes including RSA-Rabin and Diffie-Hellman. 

2. It is a probabilistic encryption scheme. 
3. It can be proven to be as secure as the intractability of factoring 

n = p2q (in the sense of the security of the whole plaintext) against 
passive adversaries. 

4. It is semantically secure under the p-subgroup assumption, which 
is comparable to the quadratic residue and higher degree residue 
assumptions. 

5. Under the most practical environment, the encryption and decryp- 
tion speeds of our scheme are comparable to (around twice slower 
than) those of elliptic curve cryptosystems. 

6. It has a homomorphic property: E(mo ,  r0)E(ml, rl) mod n = E ( m o +  
ml, r2), where E ( m ,  r) means a ciphertext of plaintext m as random- 
ized by r and m0 § ml < p. 

7. Anyone can change a ciphertext, C -- E(m,r) ,  into another ci- 
phertext, C ~ = C h  "1 mod n, while preserving plaintext of C (i.e., 
C'  = E ( m , r ' )  ), and the relationship between C and C ~ can be 
concealed. 

1 I n t r o d u c t i o n  

1.1 B a c k g r o u n d  a n d  P r e v i o u s  R e s u l t s  

Diffie and Hellman proposed the concept of the public-key cryptosystem (or 
t rapdoor one-way function) in 1976 [11]. Although extensive research has been 
made by numerous cryptographers and mathematicians  to realize the concept of 
public-key cryptosystems for more than 20 years, very few concrete techniques 
that  seem to be secure have been found. 

A typical class of techniques is RSA-Rabin, which is the combination of the 
polynomial t ime algorithm of finding a root of a polynomial over a finite field and 
the intractability of the factoring problem. Another typical class of techniques is 
Diffie-Hellman, which is the combination of the commutat ive  property of the log- 
ar i thm in a finite Abelian group and the intractability of the discrete logari thm 
problem. The RSA-Rabin class includes RSA [35], Rabin [34], Williams [38, 39], 
LUC [a6], Kurosawa-Itoh-Takeuchi [19], Cubic RSA [20] and the elliptic curve 
versions of RSA [18, 10]. The Diftie-Hellman class includes the Diffie-Hellman 
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[11], E1Gamal [12], and the elliptic/hyperelliptic curve versions of the Diffie- 
Hellman and EIGamal [25, 17, 6]. Several other techniques have been proposed 
such as the Goldwasser-Micali scheme [14] based on the quadratic residuosity, 
the Ajtai-Dwark scheme [2] based on the lattice problem, the McEliece scheme 
[22] based on the error correcting code, knapsack type cryptosystems includ- 
ing the Merkle-Itellman, Chor-Rivest and Naccache-Stern schemes [23, 7, 26], 
and multivariate polynomial type cryptosystems including the Matsumoto-Imai 
and Patarin-Goubin schemes [21, 28, 29], however they are not so efficient or 
not so secure 1. Therefore, from the practical viewpoint, only two techniques, 
RSA-Rabin and Diffie-Hellman, have been used in many applications. 

Among the RSA-Rabin and Diffie-Hellman type schemes, no scheme except 
the Rabiu scheme and its variants such as its elliptic curve versions and Williams 
has been proven to be as secure as the primitive problems 2 (e.g., factoring and 
discrete logarithm problems) even against passive adversaries. Therefore, only 
one technique, Rabin's technique, is known to construct practical and provably 
secure public-key cryptosystems. 

The Rabin scheme was proven to be secure in the sense that  to decrypt a 
whole plaintext from a ciphertext is as hard as factoring. This, however, does 
not guarantee that no partial information (e.g., one bit) of the plaintext could 
be revealed from the ciphertext. Let k be the plaintext (or modulus) size of the 
Rabin scheme. As for the Rabin scheme, only the least O(log k) significant bits 
of the plaintext are proven to be as secure as factoring, but no security proof is 
given on the remaining (k - O(log k)) bits of the plaintext. (Similarly, as for the 
RSA scheme, only the least O(log k) significant bits of the plaintext are proven 
to be as secure as RSA inversion.) [3] 

In order to formalize the security level in which no partial information of a 
plaintext is revealed, Goldwasser and Micali introduced "semantical security" 
and gave a concrete scheme, the GM scheme, that  realized this security [14, 24]. 
It is obvious from the definition that  any semantically secure public-key cryp- 
tosystem should be probabilistic. Although the GM scheme was proven to be 
semantically secure under the quadratic residue assumption, it is not so effi- 
cient, since one bit of plaintext is encrypted to a modulus size (e.g., 1024 bits) 
ciphertext. 

The Blum-Goldwasser scheme [5] is almost as efficient as the Rabin and RSA 
"asymptotically", but it is not so efficient when the plaintext is short. Since a 
public-key cryptosystem is normally used only for distributing a secret key (112 
bits, 128 bits etc long) of a secret-key cryptosystem such as triple-DES and 
IDEA, the Blum-Goldwasser scheme does not solve the efficiency problem of the 
GM scheme. 

To the best of our knowledge, the most efficient semantically secure cryp- 
tosystem is EPE (Efficient Probabilistic Encryption) (page 78 in [13]). EPE can 
be implemented based on the RSA and Rabin schemes and its efficiency is almost 
as same as those of the l=tSA and Rabin schemes. When it is based on the Rabin 
(or RSA) scheme, it is proven to be semantically secure under the factoring (or 
RSA) assumption. In addition, semantical security of the E1Gamal scheme is 
proven under the decision Diffie-Hellman assumption [37]. 

1 The expression, "not so secure" includes the case where its security has not been 
sufficiently investigated by many researchers. 

2 We say a system is "provably secure" if it is proven to be as secure as the primitive 
problems. 
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1.2 O u r  R e s u l t  

This paper proposes a novel public-key cryptosystem, which is practical, prov- 
ably secure and has some other interesting properties as follows: 

1. N e w  t r ick:  Its trapdoor technique is essentially different from any other 
previous scheme including RSA-Rabin and Diffie-Hellman. The proposed 
technique employs efficient (polynomial time) algorithms for solving the dis- 
crete logarithm over a specific finite subgroup. 

2. P roba b i l i s t i c  e n c r y p t i o n :  It is a probabilistic encryption scheme. Let 
E(m, r) be a ciphertext of plaintext rn as randomized by r. 

3. O n e - w a y n e s s  o f  t he  e n c r y p t i o n  func t ion :  It can be proven to be as 
secure as the intractability of factoring n = p2q (in the sense of the security 
of the whole plaintext) against passive adversaries. The trick in proving its 
security differs from that used for Rabin type cryptosystems. For example, 
the proposed cryptosystem is probabilistic encryption, although the Rabin 
scheme and its variant are deterministic by nature. (i.e.., a plaintext can be 
encrypted to many ciphertexts with randomness and a ciphertext is uniquely 
decrypted to the plaintext in our cryptosystem, while plural plaintexts are 
encrypted to a ciphertext and a ciphertext is decrypted into plural plaintexts 
in the Rabin scheme.) The proof of the security of the proposed cryptosystem 
essentially utilizes this property: one plaintext can be encrypted to many 
ciphertexts with randomness while a ciphertext is uniquely decrypted. 

4. S e m a n t i c a l  secur i ty :  It is semantically secure if the following assumption, 
p-subgroup assumption, is true: E(0, r) = h r rood n and E(1, r ') = gh r' mod 
n is computationally indistinguishable, where r and r ~ are uniformly and 
independently selected from Z/nZ. This assumption is comparable to the 
quadratic residue and higher degree residue assumptions. 

5. Eff ic iency:  Under the most practical environment of using public-key cryp- 
tosystems, where a public-key cryptosystem is used only for distributing a 
secret key (e.g., 112 and 128 bits long) of a secret-key cryptosystem (e.g., 
triple-DES and IDEA), the encryption and decryption speeds of our scheme 
are comparable to (around twice slower than) those of elliptic curve cryp- 
tosystems. 
Compared with the RSA scheme with small e (e.g., 3 or 216+1), although the 
encryption speed of our scheme is slower than that of RSA, the decryption 
speed of our scheme is faster than that  of RSA. 
The size of a ciphertext of a k-bit (e.g., 340 bits) plaintext in our system 
is 3k bits, i.e., the size of modulus n (e.g., 1024 bits), which is almost the 
same as that  of the RSA scheme. Note that  the plaintext size of k bits (e.g., 
340 bits) is sufficient in usual for the purpose of distributing a secret key (at 
most 256 bits in almost all block ciphers including AES). 

6. H o m o m o r p h i c  p r o p e r t y :  It has a homomorphic property: 
E(mo, ro)E(ml, rl) ,nod n = E(mo + ml, r3) , if m0 + ml < p. 
Such a property is used for electronic voting and other cryptographic proto- 
cols. 
Note that  no other encryption scheme except the higher-degree residue en- 
cryption [8] has such a homomorphic property, and the higher-degree residue 
encryption is extremely inefficient in decryption. 

7. R a n d o m i z a b i l i t y  o f  c i p h e r t e x t :  Even someone who does not know the 
secret key can change a ciphertext, C = E(m, r), into another ciphertext, 
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C' = Ch r' mod n, while preserving plaintext m (i.e., C'  = E ( m , r " )  ), 
and the relationship between C and C ~ can be concealed (i.e., (C, C ~) and 
(C, E(m' ,  t)) are indistinguishable from the semantical security). 
Such a property is useful for privacy protecting protocols. 

R e m a r k s :  

- O n  t h e  s e c u r i t y  aga ins t  a c t i ve  a t t a c k s :  The provable security of our 
scheme implies a weakness of our scheme against active attacks. This is 
similar to that  of the Rabin scheme. However, our scheme can be easily 
modified to be secure against active attacks (namely, to be secure against 
chosen-ciphertext attacks) under the random oracle model [4]. The technique 
is similar to Bellare-Rogaway's OAEP [4] but our scheme is simpler than their 
modification since semantical security has been already guaranteed under the 
number theoretic assumption before applying the random oracle model in 
our scheme. (OAEP requires the random oracle technique even to satisfy the 
semantical security as well as the plaintext awareness.) 

- O n  n o n - m a l l e a b i l i t y :  The last two properties of our scheme imply a kind 
of weakness in the sense of non-malleability [9]. However, if non-malleability 
is required for our cryptosystem, there are some practical (heuristic) ways 
to convert a malleable scheme to a non-malleable one. 

- O n  t h e  i n t r a c t a b i l i t y  o f  f a c t o r i n g  n = p2q: Although it is not known 
whether n -- p2q is more tractable to factor than n = pq, some special 
algorithms to factor n = p2q have been studied [30, 31, 33, 1]. However, 
such techniques are specific on the elliptic curve factoring method, and the 
fastest algorithm for factoring both n = pq and n = p2q is the number field 
sieve method, whose running time depends only on the composite size, ]n I. 
Therefore, currently the size of n = p2q can be the same as n = pq if n is 
sufficiently large (e.g., ]n I is at least 1024). 

2 T h e  P r o p o s e d  P u b l i c - K e y  C r y p t o s y s t e m  

This section introduces our public-key cryptosystem, which is constructed on the 
multiplicative group over ring Z / n Z  (n = p2q; p, q: primes). Our new technique 
is based on a logarithmic function, L, defined over the p-Sylow subgroup of 
(Z/p2Z) *. 

2.1 L o g a r i t h m i c  f u n c t i o n  

D e f i n i t i o n  1. Let p be an odd prime, and F be the p-Sylow subgroup of (Z/p2Z) *, 
i.e., 

F =  { x E ( Z / p 2 Z )  * I x - - 1  ( m o d p ) } .  

It is well-known that (Z/p2Z) * is a cyclic group with order p ( p -  1), so # F  = p. 
We now define a Fp-valued function, L, on F as follows: 
F o r x  E F ,  

x - 1  
L(x) - 

P 

Clearly, L is well-defined on F. 
Function L has a homomorphic property from multiplication to addition, i.e., 

we can identify L as a "logarithmic function" on P. 
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L e m m a  2. For a, b �9 F, 

L(ab) = L(a) + L(b) mod p, 

Then, L is an isomorphism. (Here, ab means (ab mod p2) E F. )  

Proof. It is easy to see that  

a b -  l = ( a - 1 ) ( b -  l)  + ( a - 1 )  + ( b - 1 )  _ (a__- l ) (b_l )_ t  __(a-1)+(b__-l)  

P P P P P 
= L ( a ) ( b -  1) + L(a) + L(b). 

Note that (b - 1) --- 0 (mod p). L(ab) = ab-lm~ = ab-1 mod p. Hence, 
P P 

L(ab) = L(a) 4- L(b) mod p. 

Clearly, L is an isomorphism. This completes the proof of this lemma. 

C o r o l l a r y 3 .  Let x 
m E Z /pZ .  Then, 

�9 F such that L(x)  ~ 0 modp,  and y = x r~ modp2 for 

m - -  L(y) y _ _ - i  m o d p .  
L(x)  z - 1 

R e m a r k  Let g be a primitive root modp  2, then there exists r �9 (Z/pZ)* such 
that  gp-1 = 1 + pr mod p2, i.e., gp-1 �9 F. 

L(gP_l) (1 + pr) - 1 
- -  - -  r r o o d  p .  

P 

So, we obtain g* = gp-1 rood p2 such that  L(g*) # 0 mod p. 

2.2 O u r  S c h e m e  

This subsection shows how to construct our cryptosystem based on the logarith- 
mic function, L. 

Choose two large primes p, q (IPl = Iql = k), and let n = p2q. Choose 
g E (Z /nZ)*  randomly such that  the order of gp = gp-1 mod p2 is p. (Note that  
g c d ( p , q -  1) = 1 and g c d ( q , p -  1) = 1.) Let h = gn mod n. 

Our cryptosystem, based on the exponentiation rood n, is constructed as fol- 
lows: 

[Public-Key ] (n, g, h, k) 
[Secret-Key ] (p,q) 

Note: h is a supplementary parameter  for improving the efficiency of encryption, 
since h can be easily calculated from g and n. 

[Encryption ] Let m (0 < m < 2 k - l )  be a plaintext. Select r �9 Z / n Z  uniformly. 

C = gmh~ mod n. 

[Decryption ] Cp = Cp-1 rood p2, 

L(C, )  mod p 
m = L(gp) 
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3 Encryption Function is One-Way 

This section proves that  inverting the encryption function (i.e., calculating a 
plaintext, m, from the ciphertext, E(m, r)) of our scheme is as hard as factoring 
n =p~q. 

Def in i t ion  4. Let Ca be an instance generator such that ~1(1/r --+ n, n = p2q, 
IP] = Iq] = k, (p, q : primes). Here, the distribution of n is the same as that of n 
with our scheme. The factoring problem is, given (n, k), to find (p, q). 

The factoring problem is intractable, if for any (uniform/non-uniform) prob- 
abilistic polynomial time machine A, for any constant c, for sufficiently large 
k, 

Pr[A(1 k, n ) =  (p, q)] < 1/k c. 

The probability is taken over the coin flips of G1 and A. 

Def in i t ion  5. Let G2 be a generator in our scheme such that G2(1 k) --* (n, g, C), 
(n,g, k) is a public-key and C is a ciphertext of our scheme (with the same 
distribution of the scheme). 

Inverting the encryption function of our scheme is intractable if for any 
(uniform/non-uniform) probabilistic polynomial time machine Adv, for any con- 
stant c, for sufficiently large k, 

Pr[Adv(1 k, n, g, C) = m] < 1/k c. 

The probability is taken over the coin flips of G2 and Adv. 

T h e o r e m  6. lnvertmg the encryption function of our scheme is intractable if 
and only if the factoring problem zs intractable. 

Proof. (Only if:) 
Assume that  the factoring problem is not intractable. A polynomial time 

machine, then, can factor n with non-negligible probability, and break our scheme 
with non-negligible probability. 
(If:) Let assume that  our scheme is not secure (i.e., there exists an adversary, 
Adv, who can compute m from C with non-negligible probability). We will then 
construct a probabilistic polynomial time algorithm A, with help of Adv as an 
oracle, which, given (n, k), can factor n with non-negligible probability. 

First, given (n,k),  A should generate g by itself in order to input (n,g, k) 
to Adv. When A randomly selects g E (Z/nZ)*,  g p-1 mod p2 has the order o f p  
with probability ( p -  1)/p (overwhelming probability). 

A then chooses z' E Z /nZ uniformly, and computes C'  = g z' mod n. A 
provides (n, g, k) and C' to Adv as a public-key and ciphertext. Adv can output 
a correct plaintext for a non:negligible fraction of the correct public-key set 
{(n, g, k)} and correct ciphertext set {C} with non-negligible probability (taken 
over the coin flips of Adv). 

The distribution of n given by ~1 is exactly same as that given by G2 in our 
cryptosystem, and the distribution of g given by A is statistically close to that  
given by our system. Therefore, we have to check whether the distribution of C'  
given by A is close to the distribution of C given by ~2 in our cryptosystem. 

Let the order of g mod p2 is pp' and the order of g mod q is q' such that p ' l p -  1 
and q'lq - 1. The distribution of C can be represented by the distribution of 
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z = [zl, zu] (z _= zl mod p, z - z2 mod lcm(p', q')) such that  C = g~ = gm+nr = 
gmhr mod n. (Here note that  gcd(p, lcm(p', q')) = 1 and gcd(q, lcm(p', q')) = 1, 

t t i.e., gcd(n, lcm(p', q')) = 1.) We define similarly z' = [Zl, z2] (z' =_ z~ mod p, z' - 
z~ mod lcm(p',q')) such that  C'  = gZ' mod n. When Zl and z~ are fixed, the 
distributions of z2 and z~ are statistically close. Note that  Zl is uniformly dis- 
tributed over Z / 2 k - I z ,  while z~ is uniformly distributed over Z/pZ. Therefore, 
although they are not statistically close, the probability of each value of Zl is 
at most twice of that of z~. Hence, a non-negligible fraction of zl is also non- 
negligible in z~. 

Therefore, if Adv can output  a correct plaintext for a non-negligible fraction 
of our scheme's public-key set {(n, g, k)} and correctly generated ciphertext set 
{C}, then Adv can output  a correct plaintext for a non-negligible fraction of 
{(n,g, k)} and ciphertext set {C'} given by Z. 

When Adv outputs a correct answer, m, for C ~ = g~' mod n, m should satisfy: 
m < 2 k-1 and z' = m (mod p). Since z' is uniformly chosen over Z/nZ,  z' > 
2 k-1 (i.e., z' ~ m (mod n)) with overwhelming probability. We then have 
gcd(z' - m, n) which is either p, p2, or pq, since (z' - m) is a multiple of p, 
(z ~ - m) < n and n = p2q. Thus, A can factor n with the help of Adv with 
non-negligible probability. 

o 

4 S e m a n t i c a l  S e c u r i t y  

This section proves that our cryptosystem is semantically secure if and only if 
the p-subgroup problem is intractable (i.e., the p-subgroup assumption is true). 
Here the p-subgroup assumption is stronger than the factoring assumption but 
still reasonable since it is comparable to the quadratic residue and higher degree 
residue assumptions. 

D e f in i t i on  7. Let Ga be a generator regarding our scheme such that G3(1 k) -+ 
(n, g, m0, ml,  C), (n,g, k) is a public-key and C is a ciphertext of (randomly 
selected) either one of rn0 and ml (say rn). That  is, C = E(m, r), where E is 
the encryption function with random value r. 

Our scheme is semanlzcally secure (against passive adversaries), if for any 
(uniform/non-uniform) probabilistic polynomial time machine Adv, for any con- 
stant c, for sufficiently large k, 

Pr[Adv(1 k, n, g, m0, ml ,  C) = m] < 1/2 + 1/k c. 

The probability is taken over the coin flips of G3 and Adv. 

Def in i t i on  8. Let ~4 be a generator regarding our scheme such that  G4(1 k) ---+ 
(n, g, C), (n, g, k) is a public-key and C is a ciphertext of (randomly selected) 
either one of 0 and 1 (say b). Tha t  is, C = E(b, r). 

The p-subgroup problem is zntractable if for any (uniform/non-uniform) prob- 
abilistic polynomial time machine Adv, for any constant c, for sufficiently large 
k, 

Pr[Adv(1 k , n, g, C) = b] < 1/2 + 1/k c. 
The probability is taken over the coin flips of ~4 and Adv. 

The assumption that the p-subgroup problem is ~nlractable is called the p- 
subgroup assumplion. 
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T h e o r e m  9. Our scheme is semantically secure (agaznst passive adversaries) if 
and only zf the p-subgroup problem is intractable. 

Proof. In this proof, we will simply write E(m) in place of E(m, r). 
(Only if:) 

Assume that the p-subgroup problem is not intractable. A polynomial time 
machine, A, then, can distinguish E(0) and E(1) with non-negligible probability. 

Given (mo,ml ,C = E(m E {m0, ml})) ,  (m0 < ml) ,  we will construct a 
polynomial time machine, B, with help of A as a blackbox, which can distinguish 
E(mo) and E(ml) with non-negligible probability. 

B calculates X = C/g m~ rood n, and set g~ = g(ml-mo)+~n mod n and h ~ = 
gin mod n, where r E Z /nZ  is randomly selected. Let E I denote the encryption 
function with g', and L = l c m ( p -  1, q -  1). When C = E(ml)  = g'~lh r' mod n, 
X = E'(1) = g'h 't' rood n, if t l  = (r l  - r) / (ml  - m o  + rn) mod L is defined. 
When C = E(mo) = g'~~176 rood n, X = E'(0)  = h 't~ mod n, if to = ro/(ml - 
mo+ rn) mod L is defined, to and tl  are defined with non-negligible probability 
(over the distribution of r,  r0 and r l) .  

For any (ml - m0), the order of g~ = g,p-1 mod p2 is p, since (ml - m0) < p. 
For any (ml - too), (rn~ - m o  + rn) mod L is distributed statistically uniformly 
over Z /LZ ,  since g c d ( p , q -  l) = 1 and g c d ( q , p -  1) = 1. 

Therefore, a non-negligible fraction of g~ has the distribution statistically 
close to that of g, for any (ml - m0). 

B then gives X to A, and gets an answer from A whether X is E(0) or E(1). 
This answer is correct with non-negligible probability, and the correct answer 
immediately implies whether C is E(mo) or E(m~). 
(If:) 

Assume that our scheme is not semantically secure: i.e., there exists an adver- 
sary, A, who, given (m0, ml ,  C = E(m E {m0, ml})) ,  (m0 < ml),  can distinguish 
E(mo) and E ( ml )  with non-negligible probability. 

We will then construct a polynomial time machine, B, with h~lp of A as a 
blackbox, which can distinguish E(0)  and E(1) with non-negligible probability. 

Given C which is either E(0) or E(1),  B calculates X = C m'-m~ mod n, and 
= Xg m~ mod n. If C = E(0), C = E(mo) (X = E(0)),  and if C = E(1),  C = 

E(mt)  (X = E(ml - too)). B also randomizes C and obtains C' = Cgn~ mod n, 
r En Z/nZ.  B then gives C~ to A, and gets an answer from A whether CI is 
E(mo) or E(ml).  This answer is correct with non-negligible probability, and the 
correct answer immediately implies whether C is E(0) or E(1). 

[] 

5 A P r a c t i c a l  M o d i f i c a t i o n  

In most applications, a public-key cryptosystem is used only for distributing a 
secret key (e.g., 112 and 128 bits long) of a secret-key cryptosystem (e.g., triple- 
DES and IDEA), hence the plaintext size is fairly small (e.g., 128 bits). Then 
the encryption speed of our scheme will be much faster if the size of r in the 
eneryption procedure is limited to the same as that  of message m. We call this 
modification (limitation) the limited random s~ze verswn. 
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We can prove the semantical security of the limited random size version 
under a specified assumption, the limited random size version of the p-subgroup 
assumption. Due to space limitation in this paper, we omit the formal description 
on the security of the limited random size version, and will show it in our full 
paper. 

Here, we only describe a slightly modified version of our scheme, which is 
introduced to prove the security of the limited random size version. 
[Modi f i ed  v e r s i o n  o f  o u r  scheme]  The only difference of the modified version 
is h: h = h~ mod u, where h0 is selected from (Z/nZ)*  randomly and indepen- 
dently from g. We also assume that  p - 1 = p'u and q - 1 = q'v, where p' and q' 
are primes, and lul and Ivl are O(log k). (We can consider that  the basic version 
of our scheme is a special case of this modified version such as h0 = g.) 

6 P e r f o r m a n c e  

In this section, we compare the computation amount  of our scheme with those 
of the representative practical public-key cryptosystems, RSA, E1Gamal, ECC 
(elliptic curve cryptosystems) and EPE, using the required number of modular 
multiplications modn,  where n is 1024 bits. 

We assume that  modulus n for our scheme, RSA and EPE, and modulus p 
for E1Gamal are 1024 bits and modulus p for ECC is 160 bits, where ECC is 
based on an elliptic curve over the finite field with p-elements. (See Introduction 
for the reason why n for our scheme is assumed to have the same size as that  of 
n for RSA.) 

Furthermore, we also assume that  the group addition on ECC costs 10 times 
as much as the modular multiplication modp does. A modular exponentiation 
with exponent e (k bits) requires 3k/2 modular multiplications in the standard 
binary method, and the extended binary method (4.6.3 ex.27 in [16]) takes 7k/4 
modular multiplications, if the size of both exponents m, r are k bits. (For ex- 
ample, the extended binary method is used in the encryption of our scheme, 
g'~h r mod u.) 

Since public-key encryption schemes are normally utilized for distributing a 
secret key (e.g., 128 bits long) of a block-cipher, we assume that the size of a 
plaintext is 128 bits. 

First, we will evaluate the efficiency of "encryption" procedures of these 
schemes. Note that  the efficiency of encryption process in RSA, EIGamal and 
ECC, does not depend on the size of a plaintext, while that  of EPE and our 
scheme depends on the size of a plaintext. 

The encryption procedure of our scheme requires about  230 (= 7/4 • 130) 
modular multiplications, where we assume that  the size of a parameter r is 
around 130 bits (see Section 5). 

The encryption procedures of RSA, EIGamal, ECC, and EPE takes about 2 
through 1500 (with e is 3 thorough 1000 bit long), 3000, 120 and 13 modular 
multiplications, respectively. Here, we assume that  the least 10 ( -  log 1024) 
significant bits are used in one modular squaring step of EPE. 

Next we will evaluate the efficiency of "decryption" procedures of these 
schemes. 

The almost all processing time for the decryption process of our scheme is 
consumed by computing Cp = C p-1 mod p2. Since IPl -- Inl/3 and p~ = 21nl/3, 
the required number of the modular exponentiation (with 1024 bits) is around 
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230 (~  340 • (3/2) • (4/9)). In addition, we can reduce this amount  into around 
140 by employing a sophisticated arithmetic over modular  multiplication mod p. 

The decryption procedures of RSA, EIGamal,  ECC and EPE require about 
400, 1500, 60 and 400, respectively. Here we assume the Chinese remainder 
technique for RSA and EPE. 

7 Conc lus ion  

This paper  has proposed a novel public-key cryptosystem, which is practical, 
provably secure and has several interesting properties. 

By using techniques similar to those shown in [15], we can prove that  any bit 
of a plaintext in our scheme is individually secure (i.e., hard core bit) assuming 
the intractabili ty of factoring n = p2q [27]. 
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