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Abstract .  A certain number of public-key cryptosystems based on error- 
correcting codes have been proposed as an alternative to algorithms 
based on number theory. In this paper, we analyze algorithms that can 
be used to attack such cryptosystems in a very precise way, and optimize 
them. Thus, we obtain some more efficient attacks than those previously 
known. Even if they remain unfeasible, they indicate the cryptosystems 
parameters forbidden by the existence of these algorithms. 

1 I n t r o d u c t i o n  

1.1 A n  N P - c o m p l e t e  p r o b l e m  

It  is known [BMT78] tha t  the problem of finding a codeword of given weight 
in a linear binary code is NP-complete.  This property can be used to build 
cryptosystems or identification systems. But, as for other NP-complete problems, 
some cases of  this problem can be solved by probabilistic algorithms. This means 
tha t  cryptographic systems such as the following ones must  take into account 
the performances of these algorithms. 

1.2 T h e  M c E l i e c e  p u b l i c  k e y  c r y p t o s y s t e m  

P r e s e n t a t i o n  This cryptosystem is one of the first that  has used error-correcting 
codes. I ts  purpose is public-key ciphering. Though Sidelnikov and Shestakov have 
shown tha t  Generalized Reed-Solomon codes can not be used directly [SS92b], 
it is still not broken in its original description [McE78]. 

P r i n c i p l e  We assume tha t  we have a (n, k) linear code on GF(2) ,  described by 
its generator mat r ix  G, for which we have a decoding algorithm tha t  corrects 
at most  t errors (the original description of McEliece uses Goppa  codes [Ber73], 
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but the larger class of alternant codes [MS83] can also be used). We now choose 
at random some invertible matr ix  S and a permutation matr ix  P.  The triplet 
(S, G, P )  will be the secret key and (~, G = S G P )  will be the public key of the 
cryptosystem. Then, to transmit a k-bits message m, the sender uses the ciphered 
message c --- mG@ e with e a random error of weight at most t. To decipher, the 
recipient decodes cP -1 = m S G  @ e P  -1 with his decoding algorithm. 

Security The security of this cryptosystem is based on the secrecy of e, and on 
the fact that  the decoding algorithm can only be applied ff one knows a canonical 
form of the generator matr ix  G. But, ff we consider the public matr ix  

r a G +  e 

it is the matr ix  of a linear code of which a minimum weight codeword is e. Hence, 
an algorithm that  can find the shortest word of a linear code is an attack of the 
McEliece cryptosystem. 

1.3 The J. Stern public key identification scheme 

J. Stern has presented at Crypto'93 a new public-key authentication scheme 
[Ste93] tha t  uses property 1.1. In this scheme, the public key is an (n, k) code 
parity check matr ix  H,  and each sender receives a secret key consisting in a 
n-bits word s of weight t. The public key is the decoding syndrome H s  and the 
sender has to prove that  his secret key is of weight t, which can be done without 
revealing s thanks to the described protocol. As for McEliece cryptosystem, if we 
have an algorithm that  finds codewords of weight t + 1 in a code, we can apply 
it to the matr ix  H ~ = ( H I H s )  until it finds a codeword $ with last bit at 
one. The first n bits of ~ then consist of a signature s ~ for the public signature 
Hs .  

1.4 Trying to hash with error-correcting codes 

An implicit idea in [Ste93] is to use error-correcting codes in a hashing way. 
Given the parity check matr ix  H of a (n, k) linear code chosen at random, then 
the minimum weight w of this code can be evaluated by (•) > 2 n-k.  Let us 

assume that  we have a set M of messages to hash such that  IMI = (•) with 
m > w. Then we can identify each m E M with a n-bits word of weight m. Using 
the property 1.1 we can hash such a message by its n - k-bits syndrome H m .  
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2 The attack algorithms 

2.1 A l g o r i t h m  o f  J .S .  L e o n  

P r i n c i p l e  This algorithm [Leo88] can be used for any linear code. It uses the 
generator matr ix  to find short codewords through a probabilistic method. The 
decription below is slightly different from those of [Leo88], but it is more simple 
to implement, and it runs a little faster than the original description. Let us 
assume that  the parameters of this algorithm are p and s, then one iteration of 
the algorithm is as follows: 

1. Permute the columns of the generator matr ix  randomly. 
2. Apply a gaussian elimination on the rows of the matr ix  to obtain this form: 

a = ( z k  I z I B),  

with Z a (s - k) x k matrix.  
3. Search combinations of at most p rows of Z that  lead to codewords of the 

restricted code ( I  I Z )  of weight less than p. 
4. For these codewords, compute the whole word and check its weight. 

W o r k  f a c t o r  We assume that  a codeword c of weight w exists. Then the prob- 
ability 7r that  a permutat ion of the columns leads to a favorable configuration 
is 

P (T) 
rL~,,)(n,k,w)= ~ (:) 

i = l  

For each iteration, an estimation of the number of operations is: 

1. k x k/2 x n for the gaussian elimination. 
2. P ~-':~i=1 (~)(i- 1) additions of ( s -  k)-bits words. 
3. the average number of cases such that the whole computation is needed is 

p p--i  

X 2s_k 
i=1 

Consequently, an estimation of the work factor for this algorithm is 

WL(p,s)(n, k, w) =- 
k x k / 2 x n +  P [ ~'-'('-~)I (,- k) + n'-'%'. ' 

rrz(p,,)(n, k, w) 
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2.2 A l g o r i t h m  o f  P . J .  Lee  a n d  E.F .  Br i cke l l  

P r i n c i p l e  This algorithm [LB89] is the best known attack against McEliece 
cryptosystem [McE78]. Its principle is the same as for J.S Leon's algorithm, but 
it takes advantage from the fact that  the shortest codeword is brought by the 
ciphered text.  Hence, one iteration of the algorithm is as follows: 

1. Permute the columns of the generator matr ix  randomly. 
2. Apply a gaussian elimination on the rows of the matr ix  to obtain thes 

form G - (Ik I A ) ,  with the corresponding permuted cipher text c = 
( c l e e l  I c2r 

3. Guess that  the error el is of weight at most p and checks whether the error 
e = ( e l  ] e 2 ) i s o f w e i g h t w .  

W o r k  f a c t o r  In this case, we are sure that  the error e of weight w exists. The 
probability 7r that  a permutat ion of the columns leads to a favorable configura- 
tion is 

P 

(:) 
i----0 

For each iteration, an estimation of the number of operations is: 

1. k • k / 2  • n for the gaussian elimination. 
p 2. About k /2  + ~ i=1  (~)i additions on the (n - k)-bits words of A. 

Consequently, an estimation of the work factor for this algorithm is 

• •  + ( .  - k)  + k 

WLe(p)(n, k, W) -.~ 7rLe(p)(n , ]r w) 

2.3 P r i n c i p l e  

This probabilistic algorithm [Ste89] can be used for any linear code. It uses the 
pari ty check control matrix.  As for the above algorithms, we first reduce the 
problem with a gaussian elimination after a random permutat ion of the columns 
of the check control matrix: 

with Z a (s • k) matrix.  
The idea of the algorithm is to consider Z as a new parity check control ma- 

trix. If we find a short codeword of Z then the corresponding complete codeword 
of H is a good candidate to be short. 
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H o w  t o  f i nd  c o d e w o r d s  o f  Z The original algorithm [Ste89] randomly splits 
the column of Z in two sets X and Y. First, it computes all the linear combi- 
nations of p columns of X and stores them. Second, it computes all the linear 
combinations of p columns of Y and checks the collisions with the stored values. 
This allows to build codewords of Z of weight 2p. 

W o r k  f a c t o r  In fact it is more simple and more efficient to consider X and Y 
as the left half and right half of the matr ix Z: 

. ). 
Then the probability that  an iteration is successful is slightly different than the 
one given in [Ste89]: 

( ~  ( , - , - w  "~ (~-p~ [ n - w - ( e / 2 - p  h ( n - ~ - ( k - 2 p )  
rs(p , l ) (n ,  k, w)  = t p / t k / 2 - p / t  p ] ~ kl2-p ] t (n -k - l ) - (w-2p)J  

\k/Z] \ k /2  1 \n--k--LI 

For each iteration, an estimation of the number of operations is: 

1. (n - k) x (n - k ) / 2  x n for the gaussian elimination. 

2. 2 x ( ~ ) ( p -  1) additions of t-bits words. 

3. Each t-bits value of X-vectors linear combination is reached about 

times. Hence, the total number of collisions is about ~ Besides, for one 
2 1  �9 

collision, one has to compute 2p - 1 additions of (n - k - ~)-bits words. 

Consequently, an estimation of the work factor for this algorithm is 

Ws(p,l)(n, k, w) = 

(,, - k) • (,, - k ) / 2  • n + 2~ x ( , , / ~ ) (p_  1) + (,, - k - ~ ) ( 2 p -  1) " ~ - ~  

~r s(p,l)(n, k, w) 

2.4 A v a r i a n t  o f  J .  S t e r n  a l g o r i t h m  

H o w  t o  f ind  c o d e w o r d s  o f  Z The problem with the above algorithm [Ste89] 
is that  it needs great amounts of memory for large dimensions. Besides, the 
memory access isn't instantaneous. Hence the results in table 4 must be taken 
with care. But keeping the same principle, one can find short codewords of Z 
by considering linear combinations of at most p columns of Z. More generally, if 
the syndrome of a n - k-bits word of weight p by Z is of low weight (less than s), 
then it is possible to build a codeword of H which is a good candidate to be 
short. 
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W o r k  f a c t o r  Let us assume that  a codeword c of weight w exists. Then gaussian 
reduction yields the following form of H: 

0 

Then c = ( c l  I ~2 I ~3) must he such that w(c l )  <_ 8 and 1 _< ~(c3)  _< 
p. The probability ~r that  a permutation of the columns leads to a favorable 
configuration is 

.~o(~ , . , , ) (~ ,k ,~)= ( ~ _ , ) ( 7 ) ,  j , ,  ,-~ , 
,=~ j=o (~) ( "? )  

For each iteration, an estimation of the number of operations is: 

1. (n  - k)  • (n - k ) / 2  • n for the gaussian elimination. 
2. P ~'~i=1 ( ~ ) ( i -  1) additions of s words. 
3. The average number of cases such that  the whole computation is needed is 

$ 

x 21 

Consequently, an estimation of the work factor for this algorithm is 

Ws~(p,,,l)(n, k, w) = 

n P ( n - k - g )  - " ( n - k )  x ( n - k ) / 2 x  +E,=~(~)(i-1) + 

~rs~(p,,,l)(n, k, w) 

3 "Factorization" of the attacks 

One can remark that  certain attacks may be slightly increased if the number of 
problems to solve is great. For instance, we can assume in the McEliece cryp- 
tosystem that  we have several ciphered text to cryptanalyze, let us say N. Then 
it is possible, once the gaussian elimination has been performed, to achieve the 
remaining operations of Lee algorithm for the N ciphered text.  Hence, the work 
factor to decrypt one of the N words turns in 

k • k / 2  x n + N ( n  - k ) [ k / 2  + ~'~,=1 p (~)i] 

wL<p)( g ,  n, k, w) = g~L~162 k, w) 

This means that  cryptanalyzing one cipher text in McEliece cryptosystem re- 
quires more work than cryptanalyzing one cipher text among N. 
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4 P e r f o r m a n c e s  o f  t h e  a l g o r i t h m  

4.1 O p t i m a l  p a r a m e t e r s  

A first a t t empt  in optimizing some of these algorithms was given in [Cha93]. 
Unfortunately, this kind of asymptotic evaluation doesn't lead to practically 
good parameters.  Using the preceding work factors, one can find the optimal 
parameters to solve a problem with one of these algorithms. Some examples 
are given in table 1. The first two codes can be broken. The third corresponds 
to J.Stern's authentication scheme specifications, and the last to the parameters 
proposed by Adams and Meier JAM88] for McEliece's cryptosystem. For this last 
example the results can be compared to those of Lee and Brickell' algorithm: 

WLe(p=~)(1024, 644, 38) = 2 raa, 

which shows an improvement of a factor 26.9 using the optimized Stern's attack. 
Note that  if we use the remark of section 3, then 

W~e(p=l)(1024, 644, 38, N) = 268.4 

where the number of texts we use is N > 215. 

Leon Stern Stern var. 
(p, 8) (p,t) (p,s s) 
p = 3  p = 2  p----2, s = 7  

(128,64,16) s = 69 s = 8 s = 20 
W = 2  2s '~lW=2 2s'1 W = 2  2aa 

p = 3  p = 3  p = 3 ,  s = 3  
(256,128,30) s---- 133 s  18 s 13 

W=244"z W=242"a W=243.9 
p = 3  p = 2  p = 3 ,  s = 4  

(513,257,57) s = 263 l = 12 l : 17 
W = 2 r4"s W = 2 ra'3 W = 2 73 .9  

~(1024,645,38) 
p - - 3  

s = 653 
W = 2 n ' r  

p = 2  
g = 1 8  

W = 286.4 

p = 3 ,  s = l  
g = l l  

W = 2 n a  

Table 1. Optimal parameters 

4 . 2  W h a t  w e i g h t s  c a n  b e  f o u n d  ? 

If we take as a limit the work factor 245, then it is possible to find very short 
codewords even in large codes. 
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On the other hand, the number N(n,k)(W) of codewords of weight w in a 
(n, k) random code can be estimated by the following formula: 

(2) 
N(n,k)(w) "~ 2n_k.  

For sufficient large vMues of w, this number grows enough to allow the algorithms 
to find at least one of the codewords. In fact the work factor can be divided by 
N(n,k)(w).  Table 2 shows an estimation of the weights one can find using the 
described algorithms. These weights can be seen as the lower and upper bound 
of the non-accessible codewords area. 

Code Algo. 
Leon 

Upper bound Stern vat. 
Stern 

Estimated 
minimum 

weight 
Stern 

Lower bound Stern vax. 
Leon 

(256,128) (512,256)(1024,645) 
29 18 

30 29 
31 

30 58 

30 

(1024,512) 

77 
77 
78 

26 
19 26 
22 29 

75 115 

125 184 
128 186 
129 186 

Table 2. Accessible weights 

4.3 Consequences on the security of  cryptographlc systems 

These results prove that  use of codes of large dimensions is not enough to ensure 
security for cryptosystems based on error-correcting codes. For instance, in the 
McEliece cryptosystem, the weight of the random error cannot be less than 22. 
Besides, these results forbid the use of error-correcting codes as hash-functions 
in the way described in part 1.4. In fact, it is possible to build couples of words 
of given low weight w that  have the same syndrome. For instance if we try 
to use a (1024, 512, ~ 115) random linear code, and use syndrome of words of 
weight w = 130 to hash messages (see 1.4), then the algorithms cannot find a 
message given a syndrome, but they can find word of weight about 190. Let us 
assume we have a codeword c of weight 190, we can split it in two words of 
weight 190/2 = 95 cl and c2. Then we select 130 - 95 = 35 bits among the 
1024 - 130 = 894 zero-bits of c. This gave us a word c3 of weight 35. We have 

H c  = 0 = Hc l  ~ Hc2. 

Hence, cl ~ c3 and c2 @ c3 are of weight 130 and 

H(cl c3) = H(c2 
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5 Conclusion 

We have estimated and improved existing attacks against cryptosystems based 
on the NP-complete problem of finding codewords of given weight in a linear 
error-correcting codes. These attacks don' t  succeed in breaking McEliece's cryp- 
tosystem or Stern's authentication scheme, but  they forbid the use of some pa- 
rameters. 
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