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Abstract-A modification to the multiple-iterated Merkle-Hellman trapdoor is described 
that permits a knapsack density exceeding the critical density 0.94 of the Lagarias-Odlyzko 
low-density attack. A high density level also permits fast signature generation. Compaction 
and common knapsack weights are used to reduce the public-key size. The security of the 
new trapdoor depends on a simultaneous diophantine approximation problem plus a 
residue recombination problem. 

1 Introduction 

Shamir [16] found that trapdoor knapsacks are not necessarily as hard as the worst case knapsacks 
studied by complexity theory [10]. Desmedt, Vanderwalle, and Govaerts [20] defined the 
"useless" knapsacks as the set of knapsack problems that can not be generated by any number of 
Merkle-Hellman (MH) trapdoor iterations [6]. These suspicions were later confirmed when many 
knapsack public-key cryptosystems were found to be susceptible to polynomial-time low-density 
attacks [301-[38] although the knapsack problem is NP-complete [10]. The Lagarias-Odlyzko 
low-density attack can solve "almost all" knapsacks of density below 0.94 [36],[37] (density is 
defined in w ffthe shortest vector in a lattice can be found. Finding the shortest vector is also an 
NP-eomplete problem [26]. Polynomial-time algorithms [27]-[29] exist to find relatively short 
vectors but their probability of success decreases with the problem size. 

Knapsacks of density above 1.0 are not generally uniquely decodable. The Chor-Rivest 
knapsack [11] can achieve a density of about 1.3 because the message is expanded with the 
Bose-Chowla algorithm. The maximum density of a MH knapsack is ns/(ns + ( r  - 1)(s + 
logn)) < 1, where n is the number of knapsack variables of s bits each and r is the number of 
iterations of modular multiplication in the trapdoor (all logarithms will be base two). The MH 
knapsack density falls because their knapsack weights expand with multiple iterations. We have 
found a method of iterating a knapsack trapdoor without substantial weight expansion. We also 
expand the message by r - 1 variables. Then the maximum density increases with the number 
of iterations to 1 + (r  - 1)(s + logn)/ns ~ I. 

Merkle and Hellman [6] proposed signing messages with their knapsack but the average 
number of signature generation attempts (i.e. message decodings) had a lower bound of (ns) r-1. 
The average number of signature generation attempts for the new knapsack can approach 1.0. A 
knapsack is compacted by lowering n with ns constant because the public-key size is close to 
n2s bits. The new knapsack is compactible and a subset of the knapsack weights may be 
common to all parties. This permits a public-key size of several kilobits considering known 
compact knapsack attacks [39]-[44]. 

The MH cryptosystem and variants such as the Graham-Shamir knapsack (see [17] for a 
description) and Goodman-McCauley knapsack [7] were also vulnerable to attacks on the 
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trapdoor. The modular multiplications that disguised an "easy" knapsack leaked sufficient 
information for an adversary to unravel them [16]-[24]. As a solution to this weakness, Laih eL al 
[15] proposed to "linear shift" each knapsack weight by a random multiple of a constant after the 
trapdoor modular multiplications but this slows down decoding, especially "with compaction. 
Previously proposed knapsack cryptosystems [12]-[15] that have withstood cryptanalysis are 
slower for decoding than the MH knapsack or can not be compacted. 

We propose to publish a knapsack group consisting of congruence classes of any trapdoor 
knapsack. This knapsack group is a residue number representation of the original knapsack, hence 
the name: residue knapsack. Finding the trapdoor may well require that the original knapsack 
weights be recovered and that implies recombining the residues of the knapsack weights without 
knowing the moduli that uniquely define the congruence classes. Asmuth and Bloom's [9] secret 
sharing scheme is based on a similar residue recombination problem. Residue representation has a 
very small effect on the encoding and decoding speed and the information rate (as defined in w of 
a knapsack. 

The MH knapsack is reviewed in w Readers familiar with the MH knapsack may skip to w 
where the residue knapsack is introduced. The security of the residue knapsack is analyzed in w 

2 Background 

2.1 Merkle and Hellman Knapsack 
The "knapsack" or subset-sum problem is to find a combination of weights {a 1, a 2 . . . . .  an} 
that sums to a target value y: 

n 

y = ~, x i a i .  (1) 
i=1  

The solution to the knapsack problem is represented by [ x 1, x 2 . . . . .  x n} and x i may be 

restricted to a range of values such as [0, 2s), where s is a positive integer. A knapsack's density 
is defined as 

ns (2) 
log2A ' 

where A = max{a 1, a 2, . . . .  a n} (i.e. the largest weight). The information rate is ns/logy. 
A message-to-he-encrypted is assigned to { x 1, x 2 . . . . .  xn} and the ciphertext y is computed 

according to (1). To construct a public-key cryptosystem, a set of "easy" knapsack weights are 
translated to a set of "hard" knapsack weights, forming the public-key. Knowledge of the reverse 
transformation or "trapdoor" permits easy decryption. 

The MH [6] "easy" knapsack weights are a superincreasing series a 0, for i = 1 to n, such as 
{1, 3, 7, 17, 35 . . . .  } assuming s = 1, where 

i - 1  
a ~ > (2 ' - l )  X  jo. 

j = l  
(3) 

Their disguising technique is modular multiplication by a constant. An r-times iterated trapdoor 
has final published weights of a i ,2_ a~, for i = 1 to n and initial weights a 0' where 

a~ = wtaki - I  modp t,  (4) 
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for k = 1 to r, and god(p/, pk+l) = 1. Unique decoding is ensured by the small-sum principle: 

n 

p/C,  (2 s -  1) X a~ - !  

i = l  

(5) 

for k = 1 to r. The multiplicative constants w k satisfy god(w t, pi)  = 1. 
Decryption is performed by solving an "easy"  knapsack  problem with super increas ing 

weights a 0 and target value y0, where yr g y, 

yk-I = y k ( w k ) - I  modp/~. (6) 

and x i = |  j = i +  1 , ( 7 )  
a 0 

for i = n decrementing to 1. 

2.2. Cryptanalys is  of  the Merkle  and Heliman t r apdoor  
Shamir [21] found the first successful attack on the single-iterated MH knapsack. Adleman [23] 
found a feasible attack on the Graham-Shamir  trapdoor (see [17] for a description) and was the 
first to employ the Lovasz lattice basis reduction algorithm [27]. Brickell  [24] was the first to 
convincingly demonstrate a feasible attack on the multiple-iterated MH trapdoor. 

Brickell 's attack searches for an alternate trapdoor, defined by b/t-  1 = U ~  k rood V~ where 

- t  = u,b - < (g) 

r r b i = a i , k ~ [2, r] and h~ is some integer. The original trapdoor corresponds to bki a k i , U k = 
(wk) -1 rn.od pt,  and Vk = p/C, for  k = 1 to r. To make these equations linear, V ~ is set to an 
arbitrary constant. Consequently,  one is not l ikely to find the original trapdoor but alternate 
trapdoors can return an alternate superincreasing series according to the following Lemma due to 
Desmedt, Vanderwalle, and Govaerts [20] and independently Eier and Lagger [18]. 

r - I  F. Urb r mod V r, then b;  -1 = ~ r-1 Lemma 1. Under assumptions: b r = a r and b i pr (a i  + yprar 

vrr ~ r  
mod pr), where Ur and Vr are positive integers, y = ~ - - -  - -  and ~ r  = ( w r ) - I  mod pr. 

V r pr  

 rar_ I --_ r-1 Urb r m o d  V r. T h e n  = V r P r o o f .  L e t b i i bi  t L V r J 

- -  ~ ~ p r  r vr( (_ .~+ y ~ r _ [ ( ~ r r r +  y ~ r ] ) =  prVrpr[~rtar'+Pryar'l-lWrlar+,pr,, ~ r  t !  [ . p r ,  , ~'TYai)]) = -~(u i  Vr r - l +  

yprar mod pr), for i = 1 to n. :1 

The first stage of Brickell 's  attack is to find the h/k's of (8) by finding short vectors in a lattice 
containing the public weights a r, for i = 1 to n. Numerous other knapsack cryptosystems and 
cryptanalytical attacks are reviewed in [2]-[5]. 
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3 The Residue Knapsack Public-Key Cryptosystem 

3.1 A Dense Multiple-Iterated Knapsack 
Merkle and Hellman [6] suggested raising the knapsack density to permit faster signature 
generation by selecting a dense super-increasing series and using multiple-iterations to randomize 
the knapsack weights. The density of a single-iterated (i.e. r = 1 ) MH knapsack can be close to 
1.0 if the initial super-increasing series is very dense such as [ 1, 2, 4, 8, 17, 35, 68, 142 ] with s = 
1. The smallest weights of a dense superincreasing series are always close to a binary progression 
but this information does not seem to help present attacks on multiple-iterated knapsacks 
[22]-[24]. The density of a MH knapsack has an upper bound of n~ = ns/(ns + (r  - 1)(s 

log2 pr 
+ log2n)) because of the small-sum principle (5). A problem to be solved is: how can the MH 
trapdoor be multiple-iterated without lowering the density? 

To permit the density to be estimated, we will precisely define the first round of a residue 
knapsack. A dense superincreasing series is selected with a 0 = 1 and random weights: a 0 r (v/, 

i - 1  
(1.0 + lt)vi), for i = 2 to n, where vi= (2 s - 1) ~ ay 0 and g > 0.0. Next,  p l  is randomly 

j= 1 
selected from ](1.0 + It/2)vn+ 1, (1.0 + It)Vn+l]; the lower limit ensures that p l  _ Vn+l is large to 

neutralize Shamir's attack for very dense knapsacks [16]. The maximum value of pl  can easily be 

shown to be close to 2 n(s+~) if It ~ [0.0, 1.0) because (1.0 +/z) ~, 2#. The density after the first 
round is greater than ns/logp 1 = s/(s + It). If s = 100 and It = 2 -3, then the first round density 
is approx. 0.998 but a O, for i = 2 to n, are selected from at least 297 possibilities. 

Desmedt, Vandewalle, and Govaerts [20] proposed introducing random positive weights at 
intermediate rounds to reduce the number of "useless" knapsacks. To address the decreasing 
density of the MH knapsack with multiple-iterations, a negative weight ank+k = _pt  is introduced 
after the kth modular multiplication, for k = 1 to r - 1. During encoding, the variable 
corresponding to akn+k is calculated from the message: 

I n + k -  I 
(9) 

= a/k (10) where f~/ p t "  

Desmedt, Vandewalle, and Govaerts [20] proved that satisfying the small-sum principle 
guarantees unique decoding. The small-sum principle is satisfied if 

y,k ~= n y k x i a k E  [0, pk+l),  (11) 
i = l  

for k = 1 to r - 1, where y,k =y,k-lwl~ modpt .  Adding Xn+lflkn+k reduces  y,k mod  pk 

because ~, x iai  = • x iak  i n - xi pk =_ ~, 2~ a rood pk. The reduction of 
i = l  i=1  I. i=1  i=l  

y,k mod pkmay not be complete because the fractions f/k =ak/p ~ E [0.0, 1.0) have finite 
precision. The fraction precision determines the minimum size of pk+l as shown next. 
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Proposition 1. Let pk+l > (1 + e)p k, f r ac t ions f f , ' fo r  i = 1 to n + k - 1, are truncated at s + 

log2(n/e) + k -  1 bits, e is a positive real, and x i r  [0, 2s). Then y~t r [0, pk+l). 

Proof. Trancatingf k a: = at $+ Iog2n/e + k- I bits fractionalprecision resultsin atruncation 

error per fraction of (-e2-S-k+I/n, 0]. Then the approximation error of Xn+ k in (9) before 
n+k-I 

n+k-1 E x ia :  
truncation is Y. xifki  _ i-- 1 ~ ( -e ,  0] because x i ~ [0, 2s), for i = 1 to n, and x i 

i = l  pk  
n+k-I  

E ~ a :  
[0, 2s+l~ for i = n + 1 to n + k - 1. After  truncation, xn+ t - i f  1 

,, pk 

(-1 - e ,  0]. Then y'~ n + k . n+Jt- 1 "d Y. x ia  ~= ~, xia : - x n + k p  k ( ~ [ O , ( l + e ) p  k)~ [O, pk+l). [:1 
i = 1  i l l  

If  pk+l is randomly selected from (pk(1 + e), pk(1 + e) ( l  + / t ) )  to satisfy Proposition 1, 

then the maximum pk is approximated by 

pk < 2n(s+/t)+(k-1)(e+/z). (12) 

The density after the rth round is close to 

d = ns + (r - 1)(s + logn) (13) 
logp r 

because there are n variables of  s bits and r - 1 variables of  s + logn  bits. With r = 2, s = 
100, n = 6, and/z = e = 2 -3, the final density is close to 1.17. 

3.2 A New Trapdoor  Disguis ing Operat ion  
We have found a new disguising operation that can be appended to any knapsack trapdoor. 

Consider reducing the knapsack weights a r, for i = 1 to n + r - 1, by two moduli { ql,  q2}: 

aij -- a r mod qj , (14) 

for j = 1 to 2, where q2 is kept secret, pr = qlq2, and gcd{ql ,  q2} = 1. Then {a/l, a~2}, for 

i = 1 to n + r - 1, and ql are published. To simplify reduction, ql  can be a power  of  two. 

Recombining the published residues {a~l, at2} to re turn  a r w i t h  q2 secret  appears  to be  

challenging as discussed in w 

3.3 Encryption 
Encryption is performed with a knapsack group: 

n+r-I 
yj [] ~. X i aij mod qi' 

i= 1 
(15) 



117 

fo r j  = 1 to 2, where r > 1. Reduction of  Y2 rood q2 is delayed until decryption because q2 is 

secret. The ciphertext is represented by {Yl, Y2}" The public-key consists of positive integers ao~ 

for i= I to n + r - 1 and j =  1 to 2, fract ionsf~,  for i = 1 to n + k - I an.d k = 1 to r - 1, 

and ql- The secret-key includes {a t,0 a20 . . . . .  an0}, p t  and w ~, for k = 1 to r, and q2" Decoding 

starts by recombining yr m { Yl, Y2} mod { ql,  q2} with the Chinese remainder theorem, where 

yr = q2((Yl - Y2)q21 mod ql) + Y2 (16) 

[8, pp. 268-275]. As with the MH trapdoor, decoding proceeds from yr according to (6) and (7). 
Message encryption is now demonstrated with a small example. First, a private key is selected: 

~, r = 2 ,  n = 2 ,  a n d s = 5  

Letp I = 1221 and { q l ,  q2} = {256, 9} 

Then p2 = qlq2 = 2304 

Let w I = 845 and w 2 = 329 

Leta0 = {1, 32}, for i =  1 to n 

Calculating the public key: 

a I •- wlai~  1 = {845, 178}, for i =  1 to n 

I a: f~ = ~  = {0.69, 0.14}, for i = 1 to n 

anl+l = _pl  

a 2 ffi w2ai 1 mod p2 ffi { 1525, 962, 1491 }, for i = 1 to n + 1 

all ffi a 2 mod ql = {245, 194, 211 }, for i = 1 to n + 1 

a~ w a 2 mod q2 = {4, 8, 6}, for i =  I to n + 1 

Encrypting a message of {x 1, x 2 } = {22, 6}: 

[ 'j �9 Xn+ 1 = ~ x i f  i = L22 0.69+ 6-0.14J = 16 
i f  1 

n + l  
Yl = ~ xiail  rood ql  •- 22-245 +6.194 + 16-211 rood 256 = 202 

i=1 
n + l  

y2 = Y xiai2 = 2 2 - 4 + 6 - 8 +  16 .6=232  
i= 1 

Decrypting the ciphertext { Yl, Y2 } = { 202, 232 }: 

y2ffi {202,232} rood {256,9} -- {202,7} 

y2 = q2((Yl - Y2)q21 mod q]) + Y2 = 9((202 - 7)57 mod 256) + 7 = 970 

yl ~ (w2)-ly2 rood p2 ffi 2297-970 rood 2304 ffi 122 

yo= (wl)-lyl  m o d p l  ~ 302.122 mod 1221 = 214 

x '  2 = [214/32J = 6 

x '  1 = 214 - 6.32 = 22 
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The deciphered message {x" 1, x'2} = {22, 6} matches the original message. 

A further security precaution is to concatenate a message with standard or random bits or sign 
the message to neutralize a chosen ciphertext attack as described in w Another security measure 
is to set ged(a 0, pl)  = 1 to address an attack of ~4.2. 

3 .4  Signatures 
Signature generation is similar to MH's  method [6] except that the message or hash value is 

assigned to Yl e [0, ql) and secret random numbers  may be assigned to Y2 to neutralize a 
chosen ciphertext attack described in w (a fixed integer, secret or public, may also be used). 
Decoding {Yl, Y2} yields the signature {Xl, x 2 . . . . .  Xn}. 

Signature generation is repeated with a perturbation of Y2until x i e [0, 2s), for i = 1 to n 

(to ensure that information about {al 0' a 0 . . . . .  an 0} and pl  is not revealed). The average number of 

signature generation attempts can be shown to be pl/2ns = 2 nt~, where It is defined in w (a 
proof of this result is in [47, pp. 168]). There are less than two trials on average when/t < 1In. 

A residue knapsack signature is valid if 

r - 1  
Yl ~ Y'I - ~ lkarn+k,1 mod ql ,  

k = l  
0 7 )  

where Y'I is the encoded signature and lkis some integer in the range [-LI + el ,  Lpk+l/p~J]. 
With corrections by multiples of an+ k , the number of signature generation trials depends only on 
the density of the initial knapsack. A high final density is still minimizes the verification time. 

/ .  
Multiples of an+ k account for differences in the completeness of the r modular reductions 

between the encoder and decoder. A decoder calculates yk e [0, pk+l), for k = r - 1 to 0, as 

defined by (6) during signature generation. An encoder computes y,k e [0, pk+l), for k = 0 to r 
- 1, following (11) during signature verification. Information is lost during signature generation 

when yk+l is reduced rood F t in (6), where p ~ l  > (1 + e)p k by Proposition 1. Path differences 

may occur, where yt = y,k + ltpk and l k is some integer. The smallest ! ~ value is -I_(y'kmax - 

Ykmin)/pkJ = -4.(( 1 + e)p k - O)/pkJ = -El  + eJ and the largest 1 I: is L(Ymkax - y'kmin)/pkJ = 

L(p k+l - O)/pkJ = Lpk+l/pkJ, where ymkin ~ y~_< Ymtax- 

Normally, pk+l/pk = 1 + e < 2 and the verifier only has to check if/k e { -1 ,  0, 1 }, for k = 

I to r - 1. The probability that l k = 0 is pk/pk+l = 1/(1 + e) and increases with the density. 
Deviations by multiples of ar+k do not significantly delay signature verification if e or r is small. 

The signature generator can ensure that valid signatures have I r-1 = 0 by combin ing  the 
message (or hash) value Yl with a secret random integer c according to the relation 

yr-I = cq I + ((wr)-tyl mod ql), (18 )  

where c e [pr-le/q 1, pr-1/ql). Signature generation is completed as usual from yr-t.  
If only signatures or identification is required, not encryption or key-distribution, then the 

knapsack weights only need to be published modulo ql instead of modulo { ql, q2}. Also, the 

condition pk+l > p~(1 + e) of Proposition 1 is not required. In this "signature-only" mode, valid 

signatures will always have/k = 0, for k = 1 to r - l ,  i f  decreasing moduli  pk > pk+l(1 + e )  
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are selected and the f rac t ionsf  k, for i = 1 to n + k - 1 and k = 1 to r - 1, are rounded up 
(instead of truncating) at s + log2n/e + k -  1 bits precision. 

The redundancy, ns - logql  bits, of  the signature may be reduced by selecting pz+l ~ pZ 

and pk+l > (1 + e)p k in a signature / encryption mode (pk > (1 + e)p ~+1 i i t a  signature-only 

mode), f o r k =  1 to z -  1 and k =  z +  1 to r - l ,  w h e r e z  ~ [1, r - 2 ] . S e t t i n g z <  r -  1 

ensures that pr--I ~ ql  to counter  the trapdoor attacks in Section 4.2. Then ql can be larger 

relative to ns becausep r-1 has increased. In a signature only-mode, a signature is valid i f y  1 -= 
r Y'I - lZan§ mod ql ,  where /z is congruent  modulo ql to a value in the range [-I_1 + eJ, 

r - 1  , [pZ+l/pZJ] and /z  can be calculated according to the relation/z _= (an+z,1) (y 1 - Yl) rood ql" 

In a signature / encryption mode, the verifier may also have to recalculate/z with 1 k = + 1, k ~: z. 
Redundancy is shifted from the signature to Yl at the expense of  a smaller density. Whether a 

\ 

smaller redundancy offsets the lower density depends on the success of cryptanalysis. 

Minimum signature size, ns bits, depends on the difficulty of the knapsack problem generated 
(see w The smallest signature is with n = 2, s > 130, and r > 4 or  n = 200 and s = 1. A 
signature forger may attempt to sign a message with a linear combination of  previous signatures. 
Concatenating standard data with the message or using a secure hash function will neutralize 
combination attacks. A hash function of 128 bits is recommended to counter birthday attacks [46] 
and this requires logql > 128. 

3.5 Generating Common Knapsack Weights 
The public-key size can be reduced by letting r of the total n + r - 1 knapsack weights  be 
common for all parties in a network. Encoding and decoding are not changed. There are still the 
same number of  possible private-keys for a given public-key. The number of possible public-keys 
is reduced but is still very large. Present cryptanalytic attacks do not appear to be stronger with r 
common weights. 

The knapsack weights a~ g aij, for i = n to n + r - 1 and j = 1 to 2 may be common,  as 

well as ql" Common values o f  a l l  are arbitrarily selected from the range [ql/2, ql)" A lower 

limit ql/2 avoids small weights that weaken the knapsack problem. Common values of  a/, 2 are 

selected from [q'2/2, q'2), where the secret q2 has a minimum or average value of q'2- 

Then the private-key values: {aOl,a 0 . . . . .  don}, {pl, p2 . . . . .  pr}, and  q2, are secret ly selected 

as usual. Next,  the common weights  {arl, dr2 } are recombined with the Chinese  remainder  

theorem [8, pp. 268-275] ,  where a~ w {airl, ar2} rood {q~, q2}, for i = n to  n + r - 1. Then 

{w 1, w 2 . . . . .  w r } are calculated according to the relation 

Wk _ . k-I  . -1 a k mod pk ,  = tan+k-l) n+k-I (19) 

decrementing sequentially from k = r to 1, where ak-ln+k-I = _pk-1 and an+k/: - 1 is calculated 

according to the relation h-I  - I  h an+k_ 1 ~- (w h) an+k_ 1 mod ph, decrementing sequentially from h = r 
to k + 1. The private-key is now fully defined and the non-common parts of  the public-key may 
be calculated as usual. When r weights and ql are common, the public-key size is 

r - 2  
(n - 1)logpr + ( ( r -  1)n+ ~ i)(s+ logn/e + r -  2) 

i=1 
(20) 
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bits (logp r approaches ns as / l  and ~ approach zero according to (12)). 
Normal key-generation with the private-key including the calculated {w 1, w 2 . . . .  , w r } does 

not always return the common weights. When calculating akn+k_l to find w k, if  h >_ ph, an+k- 1 
where h ~ [k, r], then ar+k_l will not match its common value. The probability ph/ph+l that 
a h ph n+k-1 < increases with the density. If this test is not passed, a small  permutation of the 

r common weight an+k_ 1 may be tried. For example, increment  ar+k_l mod q] by one and 
r r recalculate an+k_ 1 . k  The small difference between the actual an+k_ 1 and the common an+k_ 1 is 

published as part of the public-key. Occasionally, a value of w t is found that is not relatively 

prime to p t  and then the inverse of w t rood p t  does not exist. Again, ar+k_l may be slightly 

modified and w k recalculated. Also, w k = 0 will occur if ar+k_l = ar+k . Any difference between 
the common weights ensures that w t # 0. An area for future work is to generate some common 

fractions f k in the public-key plus the above common weights. 

4 Cryptanalysis of the Residue Knapsack 

4.1 On the Residue Recombination Problem 
Reducing a r modulo { ql, q2} wi th  q2 kept secret as descr ibed in w creates a residue 
recombination problem. If q2 were publicly known, an attacker could easily recombine a r = 
{ail, ate2} rood { ql,  q2} by the Chinese remainder theorem [8, pp. 268-275]. In w we will 
describe how to unwind the high-density modular multiplications of the residue knapsack trapdoor 
given a r. Exhaustively searching for q2 and unwinding the trapdoor for each guess is not feasible 

with q2 > 2~/2 assuming each trapdoor trial solution requires 2 ~/2 operations and ~ = 80. 

Brickell's attack [24] as reviewed in w finds an alternate trapdoor, where Vr ~ pr. Finding 
q2 does not appear to be easier than finding pr because pr = qlq2" What are the consequences 
to BrickeU's attack of an alternate recombination? Suppose an attacker uses an arbitrary modulus 
m 2 instead of q2 to recombine  {ail, at2}, where Vr = qlm2 . Recombining the residues of 
the knapsack weights with m 2 ;e q2 linearly shifts a r by a multiple of ql that varies with L 

Lemma 2. Under the assumption that a r m { ail , at2 } mod { ql, q2}, br = { air, aa} mod 

{ql, m2}, q2 r [c, c+ d), m 2 r [c, c+ d), and c and da re  positive integers, then (a r - 

br)lql is some integer in the range ( - c  - d, c+ d), for i = 1 to n + r - 1. 

Proof. I f a  r =  {all,  a~2} mod {ql, q 2 } , t h e n a  r = all + q l ( a z 2 -  ail)q 11 mod q 2 b y t h e  

Chinese remainder theorem. Similarly, b r = all + ql(ai2 - ail)ql I m o d  m 2. Then  (a r - 

br)/ql = ((a,~ - ail)q~ 1 mod q2) - ((a/2 - ail)q~ 1 mod m2) ~ ( -c  - d, c+ d). a 

Random and superincreasing images {b~ "1, r-1 r-1 b 2 . . . . .  b n } are found with small-sum modular 
mappings (SSMMs) that satisfy (8). These SSMMs create similar knapsack problems (i.e. 
different knapsack problems with the same solution). With n similar knapsacks, a set of linear 
equations can be solved to find the message. Shamir 's  compact knapsack [44] attack employs 
enumeration to find SSMMs and Brickell 's low-density attack uses lattice basis reduction [30]. 
Random images exist for multiple-iterated MH knapsacks when y approaches zero by Lemma 1. 
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�9 . r-1 . r-1 r-1 
In a residue knapsack, I~1 , 02 . . . . .  b n } has a negligible probability of being a random 

image when 7 approaches zero because of the l inear shifts. Lemma 1 does not guarantee the 
existence of random or superlncreasing images to a residue knapsack. Numerical experiments 
confirmed that 1, --> 0 is not sufficient to return a superincreasing series when m 2 ~ q2" 

The linear shifts caused by an alternate recombination are similar to those of the "linear shift 
knapsack" of Laih et. al [ 15[. The probability of random and superincreasing images existing for a 

random knapsack is nVr/n! [151 and 2 - ( 2  ) �9 a i [191 respectively with s = 1. It still  
i 1 

remains to be proven whether the linear shifts are sufficiently random to ensure that alternate 
superincreasing images of a residue knapsack have a small probability of existing. 

Signatures are checked modulo the public ql and in a signature-only mode, aa  does not need 

to be published. Then a smaller q2 > 2O/2(n+r-l), where ~ = 80, foils an exhaustive search for 

a't2, for  i = 1 to n + r - 1. The reader may wonder  if  a superincreasing series could be 

recovered from all and ql? Lemma 1 implies that the alternate weights bf  -1 ffi u r a i l  mod V r 

approach Vr(a r -1  rood ql) /q l  as  1/' approaches 0, where ~,' = Ur]V r - ((wr)  -1 rood 

ql)/ql" In a mult iple- i tera ted knapsack,  a r ' l  h a s  an  a v e r a g e  value o f  p r - l l 2  a n d  b r - I  

approaches Vr(a r - I  - t iql)/ql as y' approaches 0, where t i is some in teger  in [0, pr - l / q l  ). 

Then unwinding ail mod ql linear shifts b f - I  by a multiple of ql as large as pr -1 /q r  

4 .2  U n w i n d i n g  t h e  R e s i d u e  K n a p s a c k  T r a p d o o r  

Brickell's multiple-iterated knapsack attack [24] depends on the information leaked by the MH 
integer knapsack weights as expressed by (8) but the residue knapsack follows only (11). 
Brickell 's  experimental evidence [24] shows that his multiple-iterated knapsack attack is not 
sucees s fu lun l e s spk+l /a  k > 2 3, for i =  1 to n and k =  1 to r -  1 (with s = 1 and n = 50). 
MH' s  knapsack  has pk+l/ak i = 2s+log n by the s m a l l - s u m  pr inciple  (5), which is always 
suff'u:ient for Brickell's attack. A residue knapsack has pk+l/ak i = 1 + e = 1.125 assuming e = 

2 -3, which is never sufficient for Brickell's attack. 
Shamir [ 16] showed that modular multiplications can become a vulnerable permutation as 

pk+t/pk approaches 1.0. Shamir ' s  attack has time O(n312vl/2), where v = pk+l _ pk. With a 

residue trapdoor, v > ep k > e2 as. For example, with ns = 200 and e = 2 -3, Shamir's attack has 
over 298 operations. The residue knapsack has a pt+]/pk ratio well below the range of Brickell's 
[24] attack but safely beyond the range of Shamir's [16] attack. 

If  the integer  weights of a residue knapsack do not leak suff ic ient  informat ion for a 

simultaneous diophantine approximation attack, then we can still employ the fractions f k  i =aki/p k, 

for i = 1 to n + k - 1 and k = 1 to r - 1. The numerators a k and constant denominator p~, 

where a/k ~ [0, pk) and logp k > ns,  could be recovered by Stern and Toffin 's  [25] lattice basis 
reduction attack if the fractions were published to sufficient precision. A minimum fraction 
precision to recover a set of numerators and a common denominator is generally determined next. 

Lemma 3. Under the assumption of integers a i ~ [ 0 ,  p), p ~ [ 0 , 2 t ) ,  and fractions j~ ~ [0.0, 

l to n, then the average number  o f  se ts  o f  [ al ,  a 2 . . . . .  an, P} such that ~ -  ~1 < 
i I 

1.0), for i = 

2 -L for a given set of {fl, f2 . . . . .  fn } is greater than 2( t'- 1)(n+ 1)-nL. 
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Proof.  Under the further restrictions: p e [2 t--l, 2 t) and a i e [0, 2t'-l), there are 2(t-l)(n+l) 

possible sets of (a 1, a 2 . . . . .  a n, p } .  In practice, the fractions j~ = aJp, for  i = 1 to n, are 
evenly distributed over [0.0, 1.0). If  each fraction is precise to L bits, then the total number of 

possible sets of  fractions {fl, f2 . . . . .  fn} is 2 nL. Then a given set {fl, f2, .:., fn} will satisfy 

J ~ - ~ l  < 2-/" for 2(~-l)(n+l~ ~ sets of {a 1, a 2 . . . . .  a n, p}  on average, ra 
F I  

Lemma 3 shows that the original numerators and common denominator can be isolated from the 

fractions on average if (t - 1)(n + 1) - nL < 0 or, equivalently, L > (t - 1)(1 + 1/n) ~ t( l  + 
l/n). Stern and Toffm's [251 numerical experiments found a minimum fraction precision a little 

larger than t(l + 1/n) bits. As a security measure, if  the fraction precision is t(1 + 1 In) - Oln 

bits, then an average of 2 a spurious solutions will satisfy the published fractions. With a residue 

,knapsack, the fraction precision s + logn/e + k - 1 bits is always far less than the lower bound 

ns(l + l l (n + k - 1)). 
By combining the fractions with the integer knapsack weights, larger fractions with the same 

common denominator may be obtained. Consider an alternate trapdoor for the residue knapsack 

defined by bki =- Wkb~ -1 mod V k, for  k = 1 to r, where the original trapdoor corresponds to 

b k = a k i , W k = w k and V k = pk. Each iteration of the alternate trapdoor has to follow the small- 
sum principle to generate a similar knapsack with the same solution. With a residue knapsack, this 

requires V k+t > (1 + t ) V  tc and 

(21) 

for i = 1 to n + k - I and k = 1 to r - 1. Let 

k,= k -1 k 
z i - ( - b n + k _ l )  b t rood V k (22) 

Substituting bnk+k_l m - W k V  k-I mod Irk and b k m Wb/k-I rood V k in (22), we find 

b k - I  = zkiV k-1 rood V k. (23) 

/~V k - I  ~ / - ' V  k- I  m o d  V k by substi tuting b~ -1 Equat ion 23 can be expressed  as z i - = 

j~i - l v  k - l .  Le t  _k , ,~-1 = ~i - l v k - 1  + z i v h k v  k, where h k is some integer in the range [0, Vk-1). 

This equation is divided by V k and V k-1 to generate the fractions 

k 

V ~ V k -  t " 
(24) 

for i = 1 to n + k - 1. The fractions F :  -1 have a common denominator  V k-l, numerators h k 

[0, Vk-1), and accuracy logV k + s + logn/e + k - 2 bits. 
A residue knapsack trapdoor is unwound one round at a time, from k = r to 2, because the 

fractions of  each round are different. Beginning with k = r, this attack attempts to find V r-1. 

Solving the residue recombination problem such that V r = pr and b r = a r appears to be necessary 
to return a superincreasing series because of the linear shifts of Lemma 2. The attacker knows 
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tail, at2 } and ql ,  where a r ffi { ail, at2 } mod { ql,  q2}, but  does  not  know a ri o r  pr = q�94 
q2 because q2 is secret. 

Suppose that the attacker sets V r = ql and b r '  ail and attempts to reconstruct the original 

common denominator V r- 1 = pr-1. A lower bound on the fraction precision.to recover pr-1 is 

logpr-l(1 + 1/(n + r - 2)) bits by Lemma 3. The fractions F/k-I  are accurate to logql  + s + 

logn/e + k -  2 bits with V r = ql- Then the following security measure is sufficient: 

logql  < logp r -  1 + Iogp r -  1 _ ~ $ -- logn/e - r + 2 (25) 
n + r - 2  

where ~ = 80. This can also be expressed as 

(n + r - 2)(s + logn/e + r - 2 - logq 2) < logp r - I  - ~, (26) 

assuming logql  + l o g q  2 ~ logp r-1. Equation 26 corresponds to the fo l lowing  informat ion 

theoretic argument: the information revealed by the f rac t ions f  k, (n + r - 2)(s + logn/e + r - 
2) bits, minus the information lost by keeping q2 secret, (n + r - 2)logq2 bits, has to be less 

than a lower bound on the information to unwind one round of the trapdoor, logp r-q bits, minus a 
security margin of ~ bits. 

Fractious F i 1 ~x o with a smaller non-common denominator c i = pl/a can be found when r = 

2 and  a 0 d i v i d e s  p l .  Obse rve  that  ~1 = a~/p I = ( w l a  0 m o d  pt)/pl  = (wla 0 rood 

c/t~ (w t m o d  ci)/ciand )r  is an in teger .  Let  zli = (a2n+l)-lai2 . ( p l ) - l a ~  _ 

1 _ j~ l  
(p l ) - l f i l  p l  , (ct~[)_,tilcla[a-- o . c[-,fllcimod q,. F r a c t i o n s F i l _ z i  = h /  fo r  i=  1 to 

ql c i '  
n,  can then be obtained similar to (24). Both c i and h i have logci bits and Fi 1 has logq l  + s + 

logn/e bits. Then cican be isolated if logql  + s + logn/e < 21ogci by Lemma 3 .  A precaution 

is to select god(a/0, p l )  = 1 i f  r = 2 for the largest a/0. Other initial knapsack constructions are 
analyzed in [47, pp. 175-177, pp. 198]. 

A lattice resembling Brickell's [24] may be generated with a variation on the above attack. Let 

(23) be expressed as b f  -1 = zkiv k-1 - hkiV k, where h k is some integer in the range [0, V/:-I). If  

we replace k with k - 1 in (21) and then substitute the above expression for b k - l ,  we find 

(Z k - f ik-1)Vk-1-  h k v  k < vk-l/2s+logn/e+k -1, (27) 

for i = 1 to n+ k - 2. Then 

I g~h k -g~ hkl < dkpk-,, (28) 

for i = 2 to n+ k - 1, where k r [2, r], gk = (z k _ )~ - l )dk  ' and d k = 2s+log n/e+t-1 (the 

factor d t converts j~k-1 to an integer). The h k ' s  are found by reducing the lattice [26]-[29] of 
(29). One round is unwound at a time because the fractions of  each round are different. If  the 

attacker sets V r = ql and b r = ail, then the same counter-measure is effective against this attack: 

ql < max(ql), where max(ql ) is def'med by (25) with q2 secret. 
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An adaption of Adleman's trapdoor attack [23] to the residue knapsack is described in 
Appendix A. That attack is not feasible with ql < max(ql)- To ensure that these adaptions of the 
trapdoor attacks of Stem-Toffin [25], Brickell [24], and Adleman [23], are all not feasible, we 
select a secret q2 of magnitude specified by (26). Any of these attacks appear to be capable of 
unwinding the high-density modular multiplications of the residue trapdoor but not of solving the 
r~sidue recombination problem. 

We considered using the counter-measure of selecting gcd(ar+r_l , pr) = c for the above 
attacks, where c is sufficiently large, with the key selection technique of w because then the 

r pF r inverse of bn+r_ 1 modulo V r will not exist when calculating z r with V r = and bn+r_ 1 = 
an+r _ r  1" This seems to require either gcd(w r, pr) = c, obstructing decoding, or gcd(p r-l,  pr) = 

c, and then the final round may only need to be unwound modulo pr/c. In any case, setting 
r gcd(an+r_l, pr) ~ 1 does not neutralize Adleman's attack. Consequently, a secret q2 is essential 

to the trapdoor security. 

4.3 On the Residue Knapsack Problem 
The residue knapsack problem: (15) plus (9), can not be easier than the contained NP-complete 
[10] classical knapsack group with n variables. The question to be answered is whether the 
residue knapsack problem is any harder than the contained knapsack group? Are known solutions 
to the knapsack problem adaptable to (9)? At low density, (15) will have a single solution (the 
original message) and (9) can be ignored. Equation 15 becomes underdetermined without (9) as 
the density is increased. 

Consider a classical knapsack with ns message bits, largest weight A, logA + s + logn 
ciphertext bits, and density d = ns/logA. Classical knapsacks can easily be shown to have 
2-e-s-l~ n solutions on average, where e g logA - ns. The average number of solutions can 

also be expressed as (A)d- 1 and grows exponentially with the density. A classical knapsack has 
2s+logn 

2 c solutions when the density is d{2 c} = 1 + s + logn + c. The virtual dmax to permit unique 
logA 

decoding corresponds to d{2 c} at c = 0. 
Schnorr and Euchner [38] found empirically that low-density attacks of the Lagarias and 

0dlyzko [32] type have the lowest probability of success when d ~- 1 + (log(n/2))/n. This is 
very close to the virtual dmax- Apparently, finding solutions gets easier beyond the virtual dmar 

but the message becomes obscured by spurious solutions. If we set c = 40, then there are 24o 
~pudous solutions and exhaustively computing 24o lattice basis reductions is not feasible. 

With a residue knapsack, there are ns + (r - 1)(s + logn) total variable bits, the largest 

0veights is A = pr, logpr + s + logn ciphertext bits, and density d = ns + ( r -  1)(s + logn) 
log p r 

rhe average number of solutions is 2 (r-2)(s+l~ where e = logp r - ns, or ( p r ) d -  1 
2s+logn 
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A residue knapsack with 2 c solutions has a density d{2 c} = 1 + s + logn + c. According to 
log p r  

(12), logp r = n(s  + # )  + ( r  - l)(e + /~) and e = n/z + ( r  - l)(e + /z). In a compact mode, 
(15) independently has 240 solutions if r > 3 and s > 40 assuming e = 1. In a [0, 1] knapsack, 

(15) has 2 ~ solutions ff r > 8 and n > 200 assuming e = logn. 
The residue knapsack problem for signatures: (15) with j = 1, has similar density levels. A 

signature has ns bits and the message-to-be-signed has logq I bits.  There  are ns - l ogq  1 
redundant bits in the signature that can be preset to an arbitrary value to lower the density 
(presetting was first used by Odlyzko [33]). Presetting reduces the total number of variable bits to 
logql + ( r  - l)(s + l ogn  - e'/n), where e' g ns - logql .  A signature residue knapsack 

problem has a density d '  = 1 + (r - 1)(s + logn - e'/n) after presetting. The average number of 
log ql 

solutions after presetting is 2 (r-l)(s+l~ or, equivalently,  (ql)d'--l. Then d'{2 c} = 1 + 

c/logql. After presetting, we expect only one valid signature that satisfies (15) plus (9) but there 

are 2 c spurious solutions on average to (15) independently. 
The signature redundancy can be eliminated as described in w This also reduces the density 

because ql is larger but may foil future attacks exploiting redundancy. Presetting log( l f+ l /p  z) 

signature bits to further reduce the density is not feasible because knapsack problems with all 

/f+l/pZ values of/z have to be solved exhaustively to expect a signature to exist. 
Amirazizi, Kamin, and Reyneri 's algorithm [43] for the compact knapsack problem involves 

translating the knapsack problem into an integer programming problem [41],[42]. Applying their 
algorithm to the residue knapsack problem is not feasible when c > 40 because translating (9) to 
an integer programming problem requires multiplications by the fractions ft', for i = 1 to n, that 
cause large error propagations (the fractions are precise to s + logn/e bits). 

Enumeration algorithms [39],[40] do not require multiplications by the fractions and can be 
applied to the residue knapsack at any c value. Ferreira's algorithm [40] has a time/hardware 

tradeoff T , H  = o(2ns/2). We do not know of any algorithms besides enumeration that can be 
directly applied to a residue knapsack when c > 40.  This difficulty is removed if  the residue 
knapsack can be successfully translated to a similar  classical knapsack problem. A similar 
knapsack problem is defined as a different knapsack problem with the same solution. Then any 
classical knapsack attack can be applied to the resulting similar classical knapsack problem. 

This translation is closely related to the trapdoor attacks of w as low-density attacks 
resemble attacks on the MH trapdoor. In the case of the residue knapsack, the intruder looks for 
small-sum modular mappings (SSMMs) that satisfy (21). These modular mappings define an 
alternate trapdoor but the resulting initial knapsack just has to be similar, not superincreasing. 

The attacker begins the translation by recombining b r = { all,  at2} modulo {ql, m2}, for i 

= 1 to n + r - 1, where  V r = q lm2 and m 2 > max(y  2) is an arbitrary replacement for q2" 
Any of the trapdoor attacks of Section 4.2 or Appendix A can be employed to find the SSMMs. 
The lattice of (29) has the same form as the one used by Brickell 's low-density attack [30]. The 

effective total number of knapsack variables N is n + r - 2 when finding SSMMs that satisfy 
(27) with k = r. We considered using the counter-measure gcd(a~+r_ 1, ql) > 2/2 to ensure that 

r This is intended to force the the inverse of ar+r_l rood ql does not  exist when finding 2 i. 

adversary to include q�94 as an extra negative knapsack weight to increase N to n + r - 1 and 
reduce the minimum public-key size by about half. With the problems obtaining a large gcd 

described in w we estimate N at n + r - 2 variables to be safe. 
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1" The recombined b r is linear shifted with respect to a i as shown by Lemma 2. Random images 
(i.e. similar knapsacks) of a random [0, 1] knapsack have a probability of existing less than 
nVr/n! as shown by Laih et. al [15]. Then SSMMs would probably not exist at large n unless 
V r ~ pr.  Recombining with a large V r artificially lowers the density but lutes/he modulus V r of 

the SSMM (unless V r is treated as another negative weight) and linearly shifts the knapsack. 
Low-density attacks of the Lagarias and Odlyzko type do not require prior recombination but can 
not be applied directly when c > 40. 

Brickelrs low-density attack [30] uses lattice basis reduction to find SSMMs and has a critical 
density of 0.54. Jorissen et. al [31 ] showed how to raise this critical density but then the time 
depends exponentially on s. Finding SSMMs does not get easier beyond the virtual dma x. 

Integer programming [41],[42] appears to be capable of finding the SSMMs with N < 4 
variables. Shamir's algorithm for a compact knapsack [44] finds SSMMs by enumeration. The 
complexity of Shamir's algorithm is determined by an enumeration of a [0, 1] knapsack with z 

variables and Toll  = 0 ( 2  zp )  using Ferreira's enumeration algorithm [40], where z = s + 
N(logz  - I) ~ s + N6.3 (assuming z = 160) with N knapsack variables. A classical knapsack 
has N = n variables and a residue knapsack has N = n + r - 2 effective total variables. 

Ranges of algorithms for the classical knapsack problem with 26o operations are plotted in Fig. 
1. A parallel computer with a thousand processors at 10 nanosec/operation can execute 260 
operations in half a year. 
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Fig. 1. Feasible ranges of algorithms for the classical knapsack problem with 260 operations 

Translating a residue knapsack appears to be close in difficulty to solving a classical knapsack 
problem with N = n + r - 2 variables because there are effectively N variables in the rth 
round. One SSMM is needed in the rth translation round compared to n SSMMs to solve a 
classical knapsack. This does not change the estimates of the complexity of Shamir's attack 
because linear dependencies are rare at small n and n SSMM's for a classical knapsack are found 
with one enumeration [44]. Then Fig. 1 applies to the residue knapsack when the number of 

variables corresponds to N = n + r - 2. 
Exemplary parameters are given in Table 1 including the number of message variables n, 

variables size s bits, total number of variables N = n + r - 2, minimum q2 to satisfy (26) with 
= 80, public-key (PK) size in kilobits with r common weights as expressed by (20), the density 
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assuming/t  = 2 -5 and e = 2 -3 according (12) and (13), and z12, where the strongest known 

attack on the residue knapsack problem has T . H  = O(2 z/2) using Ferreira 's  enumeration 
algorithm to fred SSMMs in a compact mode and to enumerate directly with [0, 1 ] knapsacks. For 
example, if a residue knapsack has r = 5, n = 2, and s = 130, then  N = 5 and Shamir ' s  

algorithm has T . H  = O(2 z/2) = O(278), Kannan 's  integer programming algorithm [42] has 

time O(NgNs) = O(2111), and direct enumeration has T . H  = O(2 ns/2) = O(2130). 

Table 1. Exemplary residue knapsack parameters. 

r n s ns  N logq2 d z/2 PK 

5 2 150 300 5 113 3.01 91 2.5 
' 4  3 150 450 5 83 2.01 91 2.8 
5 2 170 340 5 125 3.00 101 2.8 
5 3 170 510 6 106 2.34 104 4.2 
4 4 170 680 6 77 1.76 104 4.7 
3 200 1 200 201 12 1.05 100 45. 

In general, the difficulty of the residue knapsack problem increases with n, r, and s. The 
total number of knapsack variables, N = n + r - 2~ can be increased by raising r instead of n. 
A small  n value permits a smaller signature ns bits, ciphertext (n + 1)s bits, and public-key, 
and a higher density. The residue knapsack density is not limited by the small-sum principle or the 
virtual dma x but grows with r and s. As the density increases, a larger q2 is needed to satisfy 
(26) (log2(q2) > 40 is also required except in a signature-only mode as shown in w Signature 
redundancy increases with q2 unless using the redundancy reduction technique of w that lowers 
the encryption density. This establishes a limit on encryption density depending on the success of 
attacks based on redundancy or small ql. 

With a classical knapsack, there are statistical dependencies between the least significant bits of 
the ciphertext and message variables, especially in a compact mode [7]. This weakness is not 
present in a residue knapsack because the least significant bits of the extra variables (9) depend on 
the whole message. 

4.4 A Chosen Ciphertext Attack 

To find pl,  an adversary doubles both ciphertext residues {Yr Y2} to generate the message- 

ciphertext pairs (x, yr) and (x', 2yr), where yr __ {Yl' Y2} rood { q l '  q2}, and  y,r = 2 y r  •. 

{2y t, 2Y2} rood { q r  q2}- If yo > pl/2 ' then pl  = 2yO _ y,0 with probability near 2 -r.  

Before finding y0 the attacker has to find the initial weights {a 0, a O . . . . .  aO}. In a very dense 

compact knapsack, the attacker knows that a 0 = 1. The attacker finds the pairs (x, yr) and (x', 

2y r) starting with a chosen plaintext x, where x 1 > 2 s- t  and x i < 2 s-2, for i = 2 to n. Next, 

the equation x'  1 + x'2a 0 = 2x 1 + 2x2a 0 is solved for a 0. This attack is continued until  all the 

initial weights are known. 

Whether this attack can be continued to find the rest of the trapdoor after finding pt  is not 
certain but one of several counter-measures can be used. Chosen-ciphertext attacks can be detected 

ff there is some redundancy in the initial knapsack so that all values o fy  ~ will not be decodable. 
As well, the attacker does not know the message corresponding to the chosen-ciphertext and can 
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not sign the message. Similarly, standard data fields can be used to detect a chosen ciphertext 
attack. A chosen ciphertext attack can be neutralized by including random data fields that are 
discarded upon decryption. When generating signatures, Y2 may be set to a random value or any 

fixed value. 

5 Summary 

The residue knapsack cryptosystem is potentially the first knapsack to include all of the following 
features together: a high-density, compactibility, a fast trapdoor, and fast signature generation. The 

density approaches I + (r - l)(s + Iogn)/ns, well beyond the critical density of low-density 

attacks [30]-[38]. Encoding has computation O((ns) 2 + rns(s+ Iogn/c)), where n is the 
number of message terms per block of s bits each, r is the number of iterations of modular 

multiplication in the trapdoor (r > l ), and e is a parameter typically 2 -3. Decoding can be 

performed by Henry's algorithm [45] with computation and memory O(r(ns) 2) and Orion [48] 

has described a decoding algorithm with computation and memory O((ns) 2 + rnslogn). The 
r-2 

public-key size is close to (n - 1)ns + ((r - l)n + Y~ i)(s+ Iogn/e) bits assuming that rns 
i=I 

bits of the public-key are common to all parties as proposed in w Key generation has time 

O(rn3s2). The maximum information rate is ns/((n + l)s + Iogn). 
The residue knapsack problem can be solved by enumeration [39],[40] in time-hardware 

O(2 ns/2) or by translating the residue knapsack problem to a classical knapsack problem. This 

Wanslation does not appear to be easier than solving a knapsack problem of n + r - 2 variables of 
s bits each. 

Low-density attacks [30]-[38] with lattice basis reduction [26]-[29] have been successfully 
applied to the [0, I] knapsack problem but not the compact knapsack problem. Considering 
present solutions to the knapsack problem, the public-key may be an order of magnitude smaller 
for a given security level with the compact knapsack problem. 

The residue knapsack trapdoor is the first to depend on the simultaneous diophantine 
approximation problem plus the residue recombination problem. Our adaptions of lattice basis 
reduction attacks [23]-[25] to the residue trapdoor can not feasibly solve the residue recombination 
problem when the secret q2 exceeds the minimum magnitude of (26). The reader probably does 
not need any encouragement to challenge the security for themselves. Several specific parameter 
sets are suggested in Table I. 

Appendix A: Adleman's Trapdoor Attack 

To satisfy the small-sum principle, an alternate residue trapdoor follows the relations: 

U kb k i - h k V k _ f i  t -  1 V t -  1 < V k- l/2s+logn/e+ t -  1 (30) 

and Ukbtn+k_l - un+k-~t I Vt - V t - l = O ,  (31) 

for i = 1 to n + k - 2, in the kth round, where k r [2, r] and h k is some integer. The original 

trapdoor corresponds to b k = a/k, U t = (wt) -1 rood pk, and V t = pt, for  k = 1 to r. These 

equations can be fitted to a lattice similar to Adleman's lattice [23]. If  the attacker sets V r = ql 

and b r = a i d  then the securi ty-measure of  (26) is sufficient.  The attacker can attempt to 

recombine {ail, ate} rood { ql,  q2} with the Chinese remainder  theorem [8, pp. 268-275], 

although q2 is secret, according to the relation: 
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2 
a iE  ~'~ a i j Q j ( Q ) - l m o d  qj) mod p2 

j = l  
(32) 

where Qj = p2/qj and p2 = qlq2. Then the above equations can be expressed as: 

U flail + U r2ai2 -- h r V  r -- J~i - I  V r- 1 < Vr-- l/2s+logn~+r_ 1, (33) 

[ j r  r - hn+r_l Vr - V r-I  = O, lan+k-.l,l + L/2an+k-.1, 2 (34) 

with k = r, for i = 1 to n + r - 2. Now both residues of the knapsack weights: ail and a/2, 

are employed but another unknown L/~ is introduced. If the attacker sets V r = qlm2 , where m 2 
is arbitrarily chosen, then there is a negligible probability of returning a superincreasing series by 
Lemma 2. If the attacker sets V r = ql ,  then some hr ' s  will always exist to match the logq2 most 

significant bits of f f - l v r - 1  and (n + r - 1)log q2 bits of information from the fractions f k  are 
effectively lost. Then the security measure of (26) is again sufficient. 
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