
Reinventing the Travois: Encryption/MAC in 30 ROM
Bytes

Gideon Yuval

Microsoft Research, Redmond, WA 98052, U.S.A.

Abstract . By using a large number of round, we hope to be able to
scrounge an Sbox out of nowhere, in an environment for which even
TEA and the SAFERs are gross overdesign.

1 B a c k g r o u n d

Some people in the software industry are looking into home-control systems, much
preferably without stringing new wires. This raises a simple issue: I have no more
access to my power-lines than a thief has; and ditto (even more so) for wireless.

Therefore, if we want the same security we now have by owning the wire, we
need some kind of cryptologic authentication.

The CPUs considered for this are quite underpowered (by today's standards):
8051 or similar[l], 1KB flash EPROM, 64 bytes RAM, 128 bytes EEPROM, and
a peak 1MHz instruction rate; that last figure is relatively very fast, since the
wire is 10KBPS or less.

In the classic study of access-control weaknesses, Ali Baba could replay the
"open" message, using the authenticator "simsim" (or "sesame"); since replay
attacks were not blocked, it did not matter how strong the 40 thieves' crypto &
authentication was on other fronts. We therefore have to use EEPROM to keep
track of a serial number, and get rid of replayed ones.

To add to the problem, messages (including the authenticator) had better be
kept down to 8 bytes or so, to give them some decent chance to get through all
the line noise, with the wimpy power-supplies planned.

2 M A C s s c i p h e r s

To authenticate a message, between parties who share a secret, we need a keyed
MAC. I notice that all the secure hashes in common use are keyed MACs for
which the key is frozen at spec time, and used as a chaining variable for longer
messages. I also notice that all these hashes/MACs are a block cipher use in
Meyer/Davies feedforward mode. So it seems we need a block cipher.

The SAFER-SK family is great on the security front (unless the crooks get
smarter than Lars Knudsen); but it needs 512 bytes ROM for its two S-boxes
(even if we never decrypt), plus 1-2KB for the code. Getting that much space
off a 1KB chip, which is also trying to get some useful work done, is obviously
unrealistic.

206 Gideon Yuval

TEA may indeed be a Tiny Encryption Algorithm on a 32-bit CPU; but on
a chip for which 16-bit subtraction is already a design issue, it is liable to be
rather less tiny.

In summary, we need a decent block-cipher that uses as little ROM and RAM
as possible, except what is available anyway. The only resource we have in some
abundance is CPU cycles - the 6.4msec it takes to ship an 8-byte message amount
to 6,400 instructions at the peak rate.

3 Stealing the Sbox

Since the chip will also-have non-crypto code running on it, we can try to scrounge
an Sbox in the memory used for that code. This Sbox is not designed by Copper-
smith; it is not even designed by a semi-competent cryptologist; it is whatever
bits are there when the assembler has done its thing.

But a 256 .8 Sbox (the obvious size for S /W crypto), is large enough to avoid
some attacks; and on that kind of chip, the coders want the code to do useful
work, and the chip designers want high code-density; so such an Sbox ought to
have enough entropy to make life interesting.

Using an 8-byte key and and 8-byte plaintext, the resulting 8051 encryptor is

Stitle(small slow 51 encryptor)
$nomod51
Snopaging
$1ist
name slow_51_encrypt
sbox equ ????h
text data 32
key data 41
ofRounds equ 32
size equ 8

cseg
org 7777
mov dptr,#sbox

Allrounds:
m o v r3,#ofRounds

0neround:
mov r0,#text
mov rl,#key ; 8-byte key, 8-byte text
mov r2,#size; =8
mov text+8,text ; to get wraparound logic

subround:

Reinventing the Travois: Encryption/MAC in 30 ROM Bytes 207

mov a,�9
add a,�9
movc a,@a+dptr ; dptr is frozen, pointing to table in ROM, which is
; just part of the code
inc rO
add a,@rO
rl a ; make sure bits in table get "scrambled'' some
mov @rO,a
inc rl
djnz r2,subround

mov t e x t , t e x t + 8 ; f i n i s h wraparound l o g i c
d jnz r 3 , 0 n e r o u n d
end

For the 51-challenged, a C decompilation follows:

for(r=O; r<NumRounds; r++) {
text [8] =text [0] ;
for(i=O;l<8;i++) {

text[i+l] =(text [i+1] + Sbox[(key[i]+text[i])Y,256])<<<I;
// rotate i left
}
text [0] =text [8] ;

}

The full .HEX file is

:1004BOOO90????7B20782079297AO8852028E627DD
:ODO4COOO93082623F609DAF6852820DBE8EC
:O0000001FF

The .LST file-excerpt below may help correlating the two. Lines have been
truncated to fit

14::
15:
16:
17:
18:
19:
20:
21:
22:
23:

0200 90 CO DE mov dptr,#sbox
0203 Allrounds:
0203 7B 20 mov r3,#ofRounds

0205 Oneround:
0205 78 20 mov rO,#text
0207 79 29 mov r1,#key ; 8-byte key, 8-..
0209 7A 08 mov r2,#size; =8
020B 85 20 28 mov text+8,text ; to get .

208 Gideon Yuval

24: 020E subround:

25: 020E E6 mov a,@rO

26: 020F 27 add a,@rl

27: 0210 93 movc a,�9 ; dptr is .

28: 0211 08 inc rO

29: 0212 26 add a,@rO

30: 0213 23 rl a ; make sure bits . .

31: 0214 F6 mov �9

32: 0215 09 inc rl

33: 0216 DA F6 djnz r2,subround

34:

35: 0218 85 28 20 mov text,text+8 ; finish .

36: 021B DB E8 djnz r3,0neround

The 32 rounds (each byte gets hit 32 times; we look up that Sbox 256 times)
are there to cover up for the many weaknesses of the design. Also:

1. Not all bit-planes in the Sbox will be equally random, nonlinear, ? ; the rotate
instruction spreads the XORing among all the bit-planes.

2. The key schedule is stupid, making parts of the encryptor commute with other
parts (with or without rotating the key and text). This is a code-size issue.
It also lets us ship the message while the authentication code is running.

3. The modulo-2 additions do not commute with the rotation; this should stop
attacks like Biham and Ben-Aroya's on Lucifer, in which the XOR is moved
up & down the flowchart.

On the other hand, this cipher lets carry-propagation do its thing at least as
many times as TEA does, and uses no >8-bit operations (coding a 32-bit rotate,
on a pure 8-bit chip like the 8051, is almost a major design-issue).

Using a public-domain BASIC/51 interpreter as a source for S-boxes, and
checking out how many output bits change when one bit is changed in byte 7 of
the input, we find

1 round 5+-2 bits change
2 rounds 24+-10 for the worst S-boxes, up to 28 for better ones
3 round 30+-5
4 32+-4

But the minimum over 1024 pairs usually goes something like

1 round 1
2 1
3 1
4 5
5 rounds 20, & stays there (+-)
So 5 rounds are needed before the outliers behave decently; and it seems

unwise to go below 8 rounds if we want real security.

Reinventing the Travois: Encryption/MAC in 30 ROM Bytes 209

Since this cipher is intended to be used when SAFER would be way too
expensive, I refer to it as T R E Y F E R .

4 P r o t o c o l

To put this cipher into a protocol:
Messages can be repeated indefinitely; but they only get acted on once. The

sender will repeat the message until it gets an ACK.
To get the useful content of a message, subtract the previous message f rom

it (since we wait for an ACK, "previous" is well-defined between sender and
receiver). Thus, 0 is never a useful content. Other contents are encoded so as
to make common contents be small integers. This will make wraparound take a
fairly long time; but not as long for (e.g.) "dim light to 75%" as for "open the
garage door".

We now can have an 8-byte message that contains a 2-byte f rom/ to field, a
4-byte counter/content field, and a 2-byte authenticator. All of these numbers
can be juggled up & down. They will never give us Fort Knox security, but are
likely to be more secure than other weaknesses around the house.

Since all messages are one encryption block, it seems the attacks by Preneel
&: van Oorschott[2] and by Bellare at al.[3] do not apply.

And, since we never code up a decryptor, we have a chance to export non-joke
security without going to jail.

5 S t a n d a r d S - b o x

If anyone wants to t ry his hands at breaking this kind of cipher, he should avoid
his own code, and get something that someone else wrote. If nothing else is at
hand, use the 1st 256 primes (all modulo 256), starting with 2 (the only even
value in the table).

R e f e r e n c e s

1. Hersch, Russ: 8051 Microcontroller FAQ, widely available on the Internet
2. Preneel, B. and van Oorschott, P., MDx-MAC and Building Fast Macs from Hash

Functions, Crypto'95, p.1.
3. Bellare, M. Canetti, R. and Krawcyzk, H., Keying Hash Functions for Message

Authentication, Crypto'96, p.1

