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A b s t r a c t .  The DSS signature algorithm requires the signer to generate 
a new random number with every signature. We show that if random 
numbers for DSS are generated using a linear congruential pseudorandom 
number generator (LCG) then the secret key can be quickly recovered 
after seeing a few signatures. This illustrates the high vulnerability of the 
DSS to weaknesses in the underlying random number generation process. 
It also confirms, that a sequence produced by LCG is not only predictable 
as has been known before, but should be used with extreme caution 
even within cryptographic applications that would appear to protect this 
sequence. The attack we present applies to truncated linear congruential 
generators as well, and can be extended to any pseudo random generator 
that can be described via modular linear equations. 

1 I n t r o d u c t i o n  

Randomness is a key ingredient for cryptography. Random bits are necessary 
not only for generating cryptographic keys, but  are also often an integral part  
of steps of cryptographic algorithms. Examples are the DSS signature algorithm 
[16] which requires the choice of a new random number every time a new signa- 
ture is generated, and CBC encryption, which requires the generation of a new 
random IV each time a new message is encrypted. (In fact, any secure, stateless 
encryption scheme must be probabilistic, requiring new randomness for each en- 
cryption [8].) In some cases, the random numbers chosen may have to be kept 
secret (as for DSS, where the leakage of one such random number compromises 
the secret key), whereas for other cases they can be made public (as in CBC 
encryption, where the IV may be sent in the clear). 

In practice, the random bits will be generated by a pseudo random number 
generation process. For example, the DSS description [16] explicitly allows either 
using random or pseudo-random numbers. When this is done, the security of 
the scheme of course depends in a crucial way on the quality of the random 
bits produced by the generator. Thus, an evaluation of the overall security of a 
cryptographic algorithm should consider and take into account the choice of the 
pseudorandom generator. 
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It has been well accepted that  a good notion of pseudorandomness for cryp- 
tographic purposes is unpredictability [18,20,3,7]: given an initial sequence pro- 
duced by a pseudo-random number generator on an unknown seed, it is hard 
to predict with bet ter  probability than guessing at random, the next  bit in the 
sequence output  by the generator. Such generators can be constructed based 
on number-theoretic assumptions, but  are computationally costly. Alternatively, 
one could build a generator out of DES which would be unpredictable assuming 
DES behaves like a pseudorandom function, but  in some contexts this may be 
deemed costly too, or we might not want to make such a strong assumption. 
Since using a weaker generator does not necessarily mean the resulting crypto- 
graphic algorithm is insecure, in practice one usually uses some weak but  fast 
generator. 

The intent of our paper is to illustrate the extreme care with which one 
should choose a pseudo random number generator to use within a particular 
cryptographic algorithm. Specifically, we consider a concrete algorithm, the Dig- 
ital Signature Standard [16], and a concrete pseudo random number generator, 
the linear congruential generator (LCG) or t runcated linear congruential pseudo 
random generator. We then show that  if a LCG or t runcated LCG is used to pro- 
duce the pseudo random choices called for in DSS, then DSS becomes completely 
breakable. 

We remark that  the Standard [16] recommends the use of a pseudo-random 
generator based on SHA-1 or DES. The attack we describe does not say anything 
about  the use of DSS with such generators, but  it does illustrates the high 
vulnerability of the DSS to the underlying random number generation process. 

We remark that  LCGs are known to be predictable if part  of the pseudo- 
random sequence is made public (see section 1.2 for details). However in DSS 
none of the pseudo-random numbers used is ever revealed, and thus predictability 
does not imply insecurity here. 

Let us now look at all this more closely. 

1.1 P s e u d o r a n d o m  numbers  in DSS  

Recall tha t  the DSS has public parameters p, q, g where p, q are primes, of 512 
bits and 160 bits respectively, and g is a generator of an order q subgroup of Z~. 
The signer has a public key y -- gX where x E Zq. To sign a message m E Zq, the 
signer picks at random a number k E { 1 , . . . ,  q - 1} and computes a signature 
(r, s), where r = (gk mod p) mod q and s -- (xr  + m ) k  -1 mod q. 

Here the "nonce" k is chosen at random, anew for each message. In practice, 
a sequence of nonces will be produced by a generator G which, given some initial 
seed k0, produces a sequence of values kl, k2, . . . ;  ki will be the nonce for the i-th 
signature. 

The adversary (cryptanalyst) sees the public key y, and triples ( m i , r i , s i )  
where (ri, si) is a signature of mi .  Notice that  the secrecy of the nonces is crucial. 
If ever a single nonce ki is revealed to the adversary, then the latter can recover 
the secret key x, because x = (siki  - m i ) r ~  1 mod q. However, the nonces appear 
to be very well protected, making it hard to exploit any such weakness. The 
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cryptanalyst only sees ri = (gk, mod p) mod q from which he cannot recover ki 
short of computing discrete logarithms, and in fact not even then, due to the 
second mod operation. So even if G is a predictable generator, meaning, say, that 
given kl, k2 we can find k3, there is no a priori reason to think DSS is vulnerable 
with this generator, because how can the cryptanalyst ever get to know kl, k2 
anyway? 

This might encourage a user to think that even a weak (predictable) gener- 
ator is OK for DSS. This view would be wrong. We indicate that in fact DSS 
is vulnerable, because without a sufficiently good pseudorandom number gen- 
eration process, the "masking" of the nonces provided by the algorithm is not 
sufficient to protect the nonces, even though recovering them seems a priori to 
require solving the discrete logarithm problem. In fact we prove a quite general 
lemma showing why this masking is essentially ineffective for pretty much any 
pseudorandom generator, and show specifically how to recover the keys when 
the generator is an LCG or truncated LCG. Thus one should not succumb to 
the temptation of using a weak generator for DSS. 

1.2 Linear congruential generators 
Recall that linear congruential generators are pseudo-random number genera- 
tors based on a linear recurrence Xn+l = aXn + b mod M where a, b and M 
are parameters initially chosen at random and then fixed, and the seed is the 
initial value X0. The advantage of linear congruential generators is that they are 
fast, and it has been shown [11] that they have good statistical properties for 
appropriate choices of the parameters a, b, M. 

On the other hand, their unpredictability properties are known to be quite 
weak. Clearly they are predictable in their simplest form: if the parameters a, b 
and M are known, given X0 all the other Xn  can be easily computed. Plumstead 
(Boyar) [17] shows that even if the parameters a, b, M are unknown the sequence 
of numbers produced by a linear congruential generator is still predictable given 
some of the Xi. Truncated LCG were suggested by Knuth [12] as a possible way 
to make a linear congruential generator secure. However these generators have 
also been shown to be predictable [5,9,19] as have more general congruential 
generators [4,13]. 

However, as indicated above, this predictability does not directly mean a 
cryptographic algorithm using the generator is breakable, since it is possible 
none of the bits of the random numbers used by the algorithm are ever made 
public. DSS is (was) a case in point. 

1.3 Cryp tana lys i s  of  DSS wi th  L C G  

DSS WITH LCG. We consider what happens when the nonces in DSS are gen- 
erated using an LCG with known parameters a, b, M and hidden seed k0. The 
predictability of the generator does not a priori appear to be a problem, due to 
the masking provided by the algorithm as indicated above. However, given just 
three valid signatures, we show how to recover the secret key. 

UNIQUENESS LEMMA. We begin with a general lemma which indicates why the 
above intuition that the DSS protects the nonces may be false. The lemma (called 
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the Uniqueness Lemma) says that as long as the nonces are pseudorandomly 
generated then, even if we ignore the relations ri = (g~' mod p) mod q, the DSS 
signature equations s ik i  - f i x  = m i  uniquely determine the secret key with high 
probability. This means the cryptanalyst can effectively ignore the masking that 
is supposed to protect the nonces. This is true for any  pseudorandom generation 
process, even a cryptographically strong one, using an unpredictable generator. 
This lemma tells us we can concentrate on the signature equations. 

SOLVING THE EQUATIONS. We begin the cryptanalysis of DSS with LCG by 
combining the DSS "signature equations" with the LCG generation equations to 
get a system of equations. (In the process we ignore the ri = (gk~ mod p) mod q 
relations, invoking the Uniqueness Lemma to say that solving the signature 
equations suffices to find the secret key.) However, this system is not trivial 
to solve because it is a system of simultaneous modular  equations in di f ferent  
moduli. Techniques like Gaussian elimination fail. Instead we turn to lattice 
reduction. We show how to use Babai's closest vector approximation algorithm 
to solve such a system. The main difficulty here is dealing with the fact that this 
algorithm only returns (not very good) approximations to the closest vector. We 
then extend this to the case of the truncated LCG. 

1.4 Other results, discussion, and implications 

We extend our techniques to provide a general algorithm for solving a system 
of simultaneous linear modular equations in different moduli. (Another way of 
doing this, when the number of equations is constant, is to reduce the problem to 
integer programming in constant dimension and apply the algorithms of [14,10]. 
Our alternative solution seems simpler and more direct.) 

In many cryptographic algorithms, the random numbers used are processed 
in a way that the public information gives little information about the original 
numbers. This is the case for the nonces in DSS. In such a setting, it may 
be reasonable to think that weak random number generators can suffice: even 
predictable generators could be fine because not enough information about the 
random numbers is revealed to make predictability even come into play. We are 
indicating this may not always be true: the quality of random bits matters even 
when the only thing an adversary sees is the result of a one-way functions on 
these bits. 

A common pseudo-random number generator that comes standard with var- 
ious operating systems is a linear congruential generator with modulus 232. It 
is plausible that there are DSA implementations available where the k values 
are formed by concatenating 5 consecutive outputs from such a generator. Our 
attack easily extends to this case. 

2 P r e l i m i n a r i e s  

2.1 The Digital  Signature Standard 

The Digital Signature Standard (DSS, see [16]) is an E1Gamal-like [6] digital 
signature algorithm based on the hardness of computing the discrete logarithm 
in some finite fields. 
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THE SCHEME. The scheme uses the following parameters: a prime number p, a 
prime number q which divides p - 1 and an element g E Z~ of order q. (Chosen 

a s  g = h ( p - 1 ) / q  where h is a generator of the cyclic group Z;) .  These parameters 
may be common to all users of the signature scheme and we will consider them 
as fixed in the rest of the paper. The standard asks that  2159 < q < 216~ and 
p > 2511. We let G -- { gO : a E Zq } denote the subgroup generated by g. Note 
it has prime order, and that  the exponents are from a field, namely Z q .  

The secret key of a user is a random integer x in the range { 0 , . . . ,  q - 1}, 
and the corresponding public key is y = gX mod p. DSA (the Digital Signature 
Algorithm that  underlies the standard) can be used to sign any message m E Zq, 
as follows. The signer generates a random number k E { 1 , . . . ,  q - 1}, which we 
call the n o n c e .  It  then computes the values A -- gk mod p and r = A mod q. It 
sets s = ( x r  + m )  �9 k - 1  mod q, where k -1 is the multiplicative inverse of k in the 
group Z$. The signature of message m is the pair (r, s) and will be denoted by 
DSA(x,  k, m). Note that  a new, random nonce is chosen for each signature. 

A purported signature (r, s) of message m can be verified, given the user's 
public key y, by computing the values Ul = m . s  - 1  mod q,  u2  = r . s  - 1  mod q and 
checking that  (gUl y~2 mod p) mod q = r. Notice that  the values (r, s) output  by 
DSA(x,  k, m) satisfy the relation s k  - r x  = m (mod q). We will make use of 
this relation in our attack on the DSS. 

HASHING. The 160-bit "message" m above is not the actual text  one wants to 
sign, but  rather  the hash of it, under a strong, collision resistant cryptographic 
hash function H.  Specifically, if m is the actual text  to be signed, the s tandard 
sets H = SHA-1, the Secure Hash Algorithm of [15]. The hashing serves two 
purposes. The first is to enable one to sign messages of length longer than 160 
bits. Second, it "randomizes" the message to prevent any possible attacks based 
on the algebraic structure of the scheme. Accordingly, following [2], we t reat  the 
hash function as a random oracle. 

We stress that  we are considering a t t a c k s .  In this context, treating H as a 
random oracle only strengthens our results. If the scheme is breakable when H 
is a random oracle, we should definitely consider it insecure, because a random 
oracle is the "best" possible hash function! 

Our at tack on the DSS algorithm does not involve the hash function H 
other than to assume it random. Therefore we will assume that  the messages 
are already integers in the range { 0 , . . . ,  q - 1} and that  they are randomly 
distributed. 

SECRECY OF THE NONCE. Recall that  for every signature, the signer generates 
a new, random nonce k. An important  feature (drawback!) of the DSS is tha t  
the security relies on the secrecy of the nonces. If any nonce k ever becomes 
revealed, at any time, even long after the signature (r, s) was generated, then 
given the nonce and the signature one can immediately recover the secret key x, 
via x = ( s k  - m ) r  - 1  rood q. This is a key point in our attack. 
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2.2 P s e u d o - R a n d o m  N u m b e r  Generators  

Each time DSA is used to digitally sign a message m, a nonce k is needed. Ideally 
k should be a truly random number. In practice the nonces k are pseudo-random 
numbers produced by a pseudo-random number generator. 

A pseudo-random number generator is a program G that on input a seed a,  

generates a seemingly random sequence of numbers G(a) = kl, ks, . . . .  
The DSS algorithm can be used in conjunction with a pseudo-random number 

generator as follows. On input a secret key x, a seed a to the generator, and a 
sequence of messages m l , . . . ,  ran, run G(a) to generate a sequence of pseudo- 
random numbers k l , . . . ,  kn and run DSA on input x, mi, ki for all i = 1 , . . . ,  n. 

The pseudo-random number generators we consider in this paper are all 
variants of the linear congruential generator. 

LINEAR CONGRUENTIAL GENERATORS. A linear congruential generator (LCG) 
is parameterized by a modulus M and two numbers a, b E ZM.  The seed to G 
is just a number a -- ko E ZM.  On input k0, the generator produces a sequence 
of numbers, G(ko) = k t , k 2 , . . ,  defined by the linear recurrence ki+t = aki  + 
b mod M. The values ki can be directly used by DSA as random nonces to sign 
the messages. (In which case they are treated modulo q. We assume that with 
high probability a ki value will not be 0.) 

TRUNCATED LINEAR CONGRUENTIAL GENERATORS. For security reasons it has 
been suggested that only some of the bits of the number produced by a linear 
congruential generator be used by applications, in our case the DSA algorithm. A 
truncated linear congruential generator does exactly this. Let's look at this more 
closely. A truncated linear congruential generator is parameterized by a modulus 
M, two numbers a ,b  E ZM and two indices l , h  such that 0 < l < h < lgM. The 
seed is a number ao E Z M  and the generator produces numbers in the range 
{0, . . . .  2 h-l - 1}. The generator computes a sequence ai according to the linear 
recurrence ai+l = aai + b mod M. Then, each number ai is truncated by taking 
only bits l , . . . ,  h - 1 of the number, to get the number ki = ((ai - (ai rood 2t)) 
mod 2h)/2 z which is output by the generator. 

3 T h e  a t t a c k  

We look at the security of the DSS when the nonces are generated using a LCG 
with parameters a, b, M. Later we will extend this to truncated LCGs. 

3.1 Overview 

Our attack on DSS exploits the relationship s k  - r x  -- m mod q holding for any 
digital signature (r, s) = DSA(x, k, m) produced by the DSA algorithm. The 
idea is this. Assume that we receive two messages mt and m2 together with their 
digital signatures (rl, st) = DSA(x, kl, ml) and (r2, s2) -- DSA(x, k2, m2). We 
know that s t k l  - r l x  = m x  mod q and s2k2 - r 2 x  = m2 mod q. The cryptanalyst 
knows mz, rl,  sl, m2, r2, s2. He also knows the public parameters p, q, g of the 
DSS and the public key y = g= of the signer. What is hidden from him is the 
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secret key x of the signer, and also the nonces kl, k2 which the signer used to 
produce the signatures. 

At this point, the cryptanalyst is not expected to have any way of determin- 
ing any of the unknowns short of computing discrete logarithms. However, now 
suppose we know that a linear congruential generator with parameters a, b, M 
has been used to produce the nonces. We assume the cryptanalyst knows the 
parameters a, b, M defining the LCG. (They were chosen at random, but then 
made public.) What is unknown to the cryptanalyst is the seed ko used by the 
signer to start the LCG. Now, we can combine the two signature equations above 
with the linear congruential equation k2 -- ak l  + b mod M. These three equations 
together yield a system of three modular equations in three unknowns: 

S lk l  - f ix  -- ml (mod q) 
s2k2 - r2x  : m2 (mod q) 
- a k l  + k2 = b (mod M) 

(1) 

Our approach is to try to solve these equations. Note it is a system of simulta- 
neous modular linear equations in different moduli. 

This approach at once raises two questions. One, of course, is how to solve 
such a system. But the other question may need to be addressed first. Namely, 
even if we solve it, how do we know the solutions we get are the desired ones? 
That is, there may be many different solutions, and finding a solution to the 
system (1) does not necessarily imply that we found the right one. (Meaning the 
one corresponding to the secret key x.) 

This worry arises from a feature of this approach that we should highlight. 
We are not using all available information. We propose to ignore the fact that 
ri = (gki mod p) mod q. We will simply try to solve the equations, and see what 
we get. When we are ignoring what may seem a fundamental relation of the 
DSS signatures, it is not clear why solving the equations will bring us the right 
solutions: our system of equations might be under-determined. 

We will answer this question in Section 3.2, showing that even disregarding 
the non-linear relationships rl  = (gkl mod p) mod q and r2 = (gk2 mod p) mod 
q, the solution to our equations is uniquely determined in most of the cases. Then 

we can turn to the problem of solving a system of modular linear equations. 

If the moduli are the same, M -- q, the equations can be easily solved by 
linear algebra. So, it is insecure to use q as the modulus in the LCG. However, if 
the modulus M is chosen (randomly and) independently from q, as we assume, 
one might still imagine that the equation k2 = ak l  + b mod M does not help in 
finding the secret key because it is in a different modulus and cannot be easily 
combined with the other equations. In other words, we are faced with solving a 
system of simultaneous modular linear equations in different moduli. We address 
this via lattice reduction techniques in Section 3.3. 

In later sections we extend the attack to truncated LCGs and also present a 
general method for solving systems of simultaneous linear modular equations in 
different modulii. 
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3.2 T h e  U n i q u e n e s s  L e m m a  

In this section we prove that  when DSS is used with a pseudo-random number 
generator, a few signatures are usually enough for the linear equations siki  - 
r i x  = rnl to uniquely determine the secret key x, disregarding that  it must be 
also that  ri -- gk~ mod p mod q. This answers the first question that  we posed 
in section 3.1 and opens up the possibility of breaking DSS by solving a system 
of linear equations. 

We stress this is true for any generator, not just LCG. The generator might 
be very strong (eg. cryptographically strong) or very weak, it does not matter .  
The  number of signatures needed depends only on the length of the seed of the 
generator, growing linearly with this. 

The  statement we make is a probabilistic one: with high probability the 
system of equations obtained by using DSS with a linear congruential generator 
has a unique solution. The probability is taken over the choices of the messages to 
be signed only. (As discussed in Section 2, these are hashes of the real messages 
under some "strong" one-way hash function, and so considering them random is 
natural,  especially from an attack point of view.) In other words, no mat ter  how 
we had chosen x and a, once they are fixed, if the messages m i  are randomly 
chosen the secret key x is uniquely determined with high probability. 

Before stating the lemma we need some definitions. Fix a secret key x E Zq 
of the DSS. Let G be some generator (not necessarily LCG) and let M be the 
total  number of seeds that  G can take. So we will think of a seed of G as being 
in ZM.  Now fix a seed a E Z M  of the generator ~. Let G(a) = k t , k 2 , . . .  , kn .  
Fix a message sequence m l , . . . ,  m n  E Zq and let (ri, si) = DSA(x,  ki,  m i )  be 
the signature of m i  using nonce ki, for i -- 1 , . . . ,  n. Let x '  E Zq and a ~ E ZM,  
and let ~(a ' )  = k l , . . . ,  k~. We say (x' ,  a ')  is a false solution with respect to 
x , a ,  m l , . . . , m n  i f x  ~ x'  but sik~ - f i x  ~ = mi  m o d q  for all i = 1 , . . . , n .  Tha t  
is, the secret key is not the right one, but the equations work out anyway. 

L e m m a  1. Fix  a secret key  x E Z a of  the DSS,  and a seed a E Z M  of  the 
generator ~. Now, choose n messages m l , . . . , m n  uni formly  at random f rom 
Z a. The probability, over the choices of  the messages only, that there exists some 
( x ' , a  ~) which is a false solution with respect to x , a ,  m t , . . . , m n  is less than 
M q  t - n .  Moreover,  the expected number  of  such false solutions is also less than 
M q  1-n.  

Proof. Let k l , . . . ,  kn = ~(a)  be the output  of the generator on seed a. Since a 
is fixed, so are k l , . . . ,  kn. We will assume these are all in Z~. 

Fix x '  E Zq and a' E Z M  such that  x r x' ,  and let k~ , . . . ,  kin = 6(a ' ) .  For 
this fixed x ~, a ' ,  and for a fixed i, we claim that  the probability, over the choice 
of mi ,  tha t  sik~ - r i x '  = mi ,  is at most 1/q. (Here (ri, si) = DSA(x,  ki,  m i ) ,  so 
that  ri = gk~ is a fixed quantity, while si = (mi  + x r i ) k ~  1 is a random variable 
depending on the choice of mi . )  The reason this claim is not entirely obvious is 
tha t  indeed si depends on mi .  

We first note that  sik~ - f i x  ~ = mi  implies ki ~ k~. To see this, note m i  = 
siki  - r i x  = mik~ - r l x  ~. If ki = k~ we would get siki  - r i x  = siki  - r i x '  which 
yields x = x'  because ri ~ 0. But we assumed x ~ x ~. 
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Now, note tha t  if s i k ~ - r i x '  = mi  then it must be that  (mi+xri )k:~ x k ~ - r i x '  = 
mi ,  or m i ( 1 - k ~ l k ~ )  = r i xk~ - l k~ - r i x ' .  But ki ~ k~ implies 1-k~- lk~ # 0 whence 

ri(xk~-l k~ - x ' )  ri(xk~ - x 'k i )  
- 1  , k i  - k~ mi  1 - k i k~ 

But the right hand side does not depend on the choice of mi,  because all the 
quantities there are fixed. (We use here tha t  ri does not depend on mi, a property 
of DSS.) This means there is only one value mi  for which the above equation 
can be true. So if we pick m~ at random from Zq, there is only a 1/q  chance that  
the above equation can be true. 

Now since the messages are chosen independently at random, the probability 
tha t  sik~ - f i x  ~ = mi  for all i = 1 , . . .  ,n,  is q-n .  Recall this is for fixed x ~ E Zq 
(x' r x) and a ~ E ZM.  The probability that  there exists x~,a ~ which is a false 
solution is thus, by the union bound, at most (q - 1 )M.  q - "  < M q  1-n. For the 
claim about  the expected number of false solutions, use linearity of expectation 
instead of the union bound. | 

Recall these results are true for any pseudo-random number generator G. Tha t  
is even if G is cryptographically strong, with high probability there will be only 
one secret key x and seed a such that  the equations r ix  ~ + sik~ = mi  are si- 
multaneously satisfied. Clearly if G is cryptographically strong it will be hard to 
recover these x and a from the signatures (ri, si) and messages mi  only. But for 
the LCG it can be done. 

3.3 Solving the equations 

Lemma 1 shows that  even if M ~ q, if M and q have the same size (i.e., 1/2 < 
M / q  < 2), the system of equations 1 will usually have only a few solutions. 
Therefore, if we can solve the system of equations we can also retrieve the secret 
key. 

SOLVING VIA INTEGER PROGRAMMING. We remark that  systems of linear equa- 
tions in different moduli can be rewritten as integer programming problems by 
introducing a new variable for each equation. Since we have a constant num- 
ber of equations, they can thus be solved using polynomial time algorithms for 
integer programming in constant dimensions as given in [14,10]. However these 
algorithms are relatively complex and slow. Instead, we we want to solve more 
directly and simply. We now present a simple lattice based algorithm that  solves 
our system using a nearest lattice vector approximation algorithm as a subrou- 
tine. 

THE NEAREST LATTICE VECTOR PROBLEM. Let B = {bx, . . . ,  b,} be a finite set 
of vectors in R n. The lattice generated by B is the set of all integer combinations 
of the vectors in B and is denoted by L ( B ) .  Given B and a vector x E R n not 
in L ( B ) ,  the nearest lattice vector problem asks for a lattice vectors w E L ( B )  
such that  liT - xll = minveL(B) IIv -- xll. In [1], Babai gave a simple polynomial 
time algorithm to find an approximate solution to the nearest lattice vector 
problem: given the basis B and the target vector x, Babai's algorithm returns a 
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lattice vector w such that  ][w - x H < c .  minveL(B) [Iv -- XH, where c = 2 n/2 is an 
approximation factor depending only on the dimension of the lattice. 

THE LATTICE�9 In order to solve the system of equations 1, we set up the following 
lattice�9 Let x '  = q/2,  k'  I = k~ = M / 2  and define also % = m i n { x ' , q -  x'},  
74, = min{k~, M -  k~}, 742 = min{k~, M - k~}. Consider the lattice L generated 
by the columns of the matrix 

B = 

"-rl Sl 0 q0 0 
- r 2  0 s2 0 q 0 

0 - a  1 0 0 M  
7~ 1 0 0 0 0 0  

0 7~-~ 0 0 0 0  
0 0 "y/~ 0 0 0 

Notice that  multiplying the first three columns of the matr ix by x, kl, k2 
and subtracting the appropriate multiples of the remaining columns to perform 
modular reduction, we obtain the lattice vector 

X = ( m l ,  m 2 ,  m 3 ,  x/'yz, kl/'Ykl, k2/")'k2)T 
from which we can easily recover the secret key x. 

Running Babai's nearest lattice vector algorithm on lattice L ( B )  and target  
m x t  t t T vector Y = ( 1,m2,m3, / % , k l / ~ k l , k 2 / T k 2 )  we obtain a lattice vector W 

such that  IIY - W H < 81[Y - Xll. Now, if Ix - x'  I < %/14 ,  Ikl - k~[ < 7 k i / 1 4  
and [k2 - k~[ < 742/14, then I[Y - W][ < 1 and since the first three entries of 
W are integers they must coincide with the corresponding entries in Y and we 

m x " "  , T X II, " " satisfying have W (ml ,m2,  3, /7=,kll'/'Y41, for kl ,  k2 = k2/7k2) s o m e  

the equations 1. Moreover the following two inequalities are satisfied 

z" = (x" - z ' )  + z' >_ -7=  + % = 0 
x"  = ( x " - x ' )  + x '  < % + ( q - ' 7 = )  = q .  

Inequalities 0 < k[', k~' < M can be proved analogously. 

If the vector W does not have the desired form, tha t  means that  our initial 
guess (x I, I I kl, k2) was not a good enough. If this is the case we simply repeat  all 
the above steps with a different value for x',  k~, k~. One can check that  if we let 
x '  range in the set { q / 2 +  (1 - (1 - 1]8)J)q/2  1J = 0 , . . .  , 8 I g q / 2 } ,  and k l , k 2  in 
the set { M / 2  + (1 - (1 - 1 / 8 ) J ) M / 2  I J = 0 , . . .  ,81gM/2},  there will be some 
x ' , k ~ , k ~  such that  Ix - x'[ < 7x/14, [kl - kl[ < 741/14 and [k2 - k~l < 742/14. 

! t The number of possible z ' ,  kl, k 2 to start  with, to be sure of finding a solution 
to the system is polynomial in lgq and lg M, so we can t ry  all of them in 
polynomial time. 

I I Once we have found a solution x ' ,  k l , k  2 to the equations 1, we can check 
�9 t 

tha t  we actually found the secret key x by computing gZ mod p and comparing 
it with the public key y. If g~' rood p # y, then x # x'  and we did not found the 
solution that  we wanted. In this case we can use the method just described to 
find a solution to the equations i in the range 0 < x < x'  or z '  < x < q. Since 
by Lemma I the total  number of z such that  system 1 has solution is less then 
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2 on the average, with high probability we will find the right x after one or two 
steps. 

This completes the description of the at tack to DSS when used with linear 
congruential generators. 

4 S o l v i n g  S i m u l t a n e o u s  M o d u l a r  E q u a t i o n s  

The technique described in section 3.3 can be generalized to work on arbi t rary 
systems of linear equations in different moduli. These kind of systems arises 
in the cryptanalysis of DSS when used with more sophisticated pseudo-random 
number generators, such as t runcated linear congruential generators. 

In this section we state the problem of solving a system of linear equations 
in different moduli in its full generality and give an algorithm to find a solution 
to such a systems. When the number of equations and variables is fixed, the 
running time of the algorithm is polynomial in the logarithms of all numbers 
involved in the description of the equations. 

We consider the problem of finding "small" solutions to a system of modular 
linear equations in different moduli. More precisely, let U1, . . . ,  Un be positive 
integers and let Vv be the set of vectors {x E Z n m vi.lxil  < ui}. Let also 
A = { a i j }  be an m • n integer matrix, and b and M be two vectors in Z m. 
We want to find an integer vector x E Vv such that  A �9 x = b (rood M ) ,  
i.e., Ixi] < Ui for all i = 1 , . . . , n  and the following modular equations are 
simultaneously satisfied 

al,lXl -t- . . .  q- al,nXn : bl (mod M1) 

am,iX1 + . . .  + am,nXn = b m  (mod Mm). 

We first assume that  the above system has a solution x and that  a good 
approximation to this solution is known and devise a method to find the exact 
solution. 

D e f i n i t i o n  2. Let x and y be two vectors in Vv. We say that  vector y c- 
approximates x iff for all i = 1 , . . . ,  n we have Ixi -Yi l  < (Ui - l y i l ) / ( c v ~ .  

L e m m a  3. Let c be a constant greater than 2 ( m + n ) ] 2  . There exists a polynomial 
t ime algorithm that on input U1 , . . . ,  Un, A, b, M as above and a c-approximation 
y to a solution x E Vv to A �9 x = b (mod M ) ,  finds a (possibly different) 
solution w E Vv to A . x = b ( m o d M ) .  

Proo]. Let F = {~/i,j} be the n • n diagonal matr ix defined by "Yi,i = 1/(Ui - ly~l)  
and let M be the m • m diagonal matrix whose diagonal entries are M1, �9 �9 �9 Mm. 

Consider the lattice generated by the columns of the matr ix L = [A M ]  and 

define the vectors 

X =  I ' x  F y  
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Notice tha t  X is a lattice vector and 

I f i x  YII ~--~'~(xi-  2 2 1 1 - = y~) 7~,~ < - �9 
i-----i i----1 c 2 n  e 

Running Babai ' s  nearest lattice vector algorithm [1] on lattice L and target  
vector Y we obtain a lattice vector W such tha t  HW - Y[] < c[]X - Y]I <- 1. 
Since the first m elements of W and Y are integers, they must  be the same. So, 

[ ? ] f o r s o m e i n t e g e r v e c t o r w s a t i s f y i n g A . w = b  the vector W is equal to / ,  w 

(mod M ) .  I t  remains to be  proved tha t  w E Vu. Now for all i = 1 , . . . ,  n we 
have 

( W i  2 2 Yi) 7i,i < y~ (Wi  2 2 - _ - y~) 7~,i I I w  - Y[[  2 < 1, 
i 

so tha t  [wi - Yi] < 1/7i,i = Ui - [yi[ and by tr iangular inequality 

Iw~l _< lull + [w~ - y~l < lud + g~ - lud = u~.  

This proves w E Vu. 

We have shown how to solve a system of modular  linear equations, given a good 
approximat ion to a solution. We now prove tha t  for any fixed n and m there 
exists a set of vectors D C Vg of size polynomial in the lg Ui such tha t  for any 
x E Vu there exists a vector y E D such tha t  y is a good approximat ion of 
x. This gives a polynomial t ime algorithm to solve modular  linear systems in a 
fixed number  of variables and equations. 

L e m m a  4. Let 5 > (1 + cvfn-)/2 and let D be the set D1 • D2 x . . .  x Dn where 

Di = { •  ( 1 -  1/6)J)Ui I J = 0 , . . . , 61gUi} .  

Then for any x 6 Vu there exists a vector y 6 D such that y is a c-approximation 
o f x .  

Proof. Clearly it is sufficient to show tha t  for all i and for all x 6 { - U i  + 
1 , . . . ,  Ui - 1}, there is some y in Di such tha t  Ix - y] < (Ui - [ y l ) / ( cv /~ .  Since 
the set Di is symmetr ic  with respect to the origin, we can assume without loss 
of generality tha t  x > 0. Now, notice tha t  the sequence yj = (1 - (1 - 1/5)J)Ui 
is increasing. Moreover Y0 = 0 and Y61g u, > Ui - 1. Therefore there exists a 
j 6 {O , . . . , 61gUi  - 1} such tha t  yj < x < yj+x- Now, let x '  = yj + U(1 - 
1 / 6 ) J / ( c v ~ ) .  If  x < x '  then we have cv/-n(x - yj)  < Ui(1 - 1/(i)J = Ui - yj and 
]x - yj[ < (Ui - [yj[)/(cvfn). Otherwise x _> x '  and we have 

c v ~ ( y ~ + l  - x)  < c v ~ y j + l  - c v ~ y ~  - v~(1 - 1 / W  

= Ui(1 - 1 /5)J+l(cx/n/(5  - 1) - 1) 

< Ui(1 - 1/(~) j + l  = Ui  - Y j + I  

and Ix - Y j + I [  ___ ( U i  - [ y j + l D / ( c v / - n ) .  

T h e o r e m  5. There is an algorithm which on input m modular equations in n 
variables and n positive integers U1, . . .  ,Un, finds a solution X l , . . . , x n  to the 
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equations such that Ixil < Ui for all i = 1 , . . .  , n  and for any fixed n and m the 
running time of the algorithm is polynomial in the sizes of the numbers. 

In the above theorem the interval in which the variables xi ranges need not be 
centered around the origin, as if we want Li < xi < Ui we can simply substitute 
xi - (Ui + L i ) /2  for xi and obtain an equivalent linear system to be solved in 
the interval Ixil < (Ui - Li) /2 .  

C o r o l l a r y  6. There is an algorithm which on input m modular equations in n 
variables and positive integers Lt ,  U1 , . . . ,  Ln, Un, finds a solution x l , . . . ,  xn to 
the equations such that Li < xi < Ui for all i = 1 , . . . ,  n and for any fixed n and 
m the running time o[ the algorithm is polynomial in the sizes of the numbers. 

5 O t h e r  P s e u d o - R a n d o m  N u m b e r  G e n e r a t o r s  

In section 3.1 we presented an attack to DSS that  involves the solution of a 
system of three modular equations in different moduli. The at tack easily ex- 
tends to any pseudo-random number generator expressible by modular linear 
equations. As an example we consider t runcated linear congruential generator 
and generators where a long nonce is obtained by concatenating shorter random 
numbers. 

5.1 Truncated Linear Congruential Generators 

We recall tha t  a t runcated linear congruential generator computes a sequence of 
values ai starting from a seed a0 according a modular linear recurrence relation, 
and for each i outputs  a number ki obtained by taking the bits of ai between 
positions l and h. The computation of the ai can be easily be expressed by the 
equation 

a i = a a i - l + b  ( m o d M )  ( 0 < a i < M )  (2) 

where a, b and M are the parameters of the generator. Now let's look at how to 
express the truncation operation. If l = 0, then we can simply write 

ki = ai (mod 2 h) (0 ~ ki < 2h)- (3) 

If 1 ~ 0 we need two equations. First we extract  the/- lowest  order bits of ai via 

di = ai (mod 2 t) (0 < di < 2t). (4) 

Then we use dl to zero the/- lowest  order bits of ai and extract  the relevant bits 
of ai via 

2Zki = ai - dl (mod 2 h) (0 < ki < 2h-l).  (5) 

Notice that  a i - d i  is always an integer multiple of 2 t, so equation (5) has solution 
despite of the fact tha t  21 has not an inverse modulo 2 h. 

So, the entire process of computing k l , k 2 , . . . , k n  from a seed a0 can be 
expressed by modular linear equations (2),(4) and (5) for i = 1 , . . . ,  n. 

Consider now the use of DSA with a t runcated linear congruential generator 
of parameters M, a, b, l, h. For concreteness, we assume that  half of the bits are 

t runcated,  i.e., h - l = ( lgM)/2 .  Since we want to use the numbers output  by 
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the generator as nonces in the DSA algorithm, we also assume that  h - l = lg q. 
Consider the system of equations 

81kl  - f i x  = ml  (mod q) 
s2k2 - r 2 x  = m 2  (mod q) 
83k3 - r3x  = m3 (rood q) 
84k4 - r4x  --- m4 (mod q) 

together with equations (2),(4) and (5) for i = 1 , . . . , 4 .  
By Corollary 6, we can find in polynomial time a solution to the above 

equations such that  0 <_ x ,  ki < q, 0 < ai < M and 0 _< di < 2 t. By Lemma 1 
we know that  with probability 1 - M / q  3 > 1 - 2q2 /q  3 = 1 - 2 / q  the equations 
have no false solution. Therefore, with high probability, the solution x we found 
is the DSA secret key. 

5.2 Linear Congruential  Generators wi th  Concatenat ion 

If the numbers ai output by the pseudo-random generator are too short, the 
nonces ks can be obtained by concatenating several as together. 

For example, a common pseudo-random number generator that  comes stan- 
dard with various operating systems is a linear congruential generator with mod- 
ulus 232. The 160 bit number k required to sign with DSA can be obtained by 
concatenating 5 consecutive outputs from such a generator. 

Our attack immediately applies to these schemes. Let as be the sequence of 
random numbers defined by a linear congruential generator modulo M -- 232. 

The concatenation operation is easily expressed as a linear equation: 

k j  = a a j  + M a a j + l  + " "  + M a - l a a j + ~ - I  (mod M a) (0 < ks < M ~) (6) 

where a : ~lg q / l g  M] = 5. 
This time just two signature equations are enough to guarantee uniqueness 

of the solution with probability 1 - M / q  ~ 1 - 2 -128, and the secret key x can 
be easily found solving the system of modular equations 

81kl - -  r l x  = m l  (mod q) 
82k2 r 2 x  m2 (mod q) 

together with equations (2) and (6) for i = 1 , . . . ,  2a - 1 and j = 1, 2. 
The attack easily generalizes to generators involving any combination of trun- 

cation and concatenation operations. 

A c k n o w l e d g m e n t s  

The first author is supported in part by a 1996 Packard Foundation Fellowship in 
Science and Engineering, and NSF CAREER award CCR-9624439. The second 
and third authors are supported in part by DARPA contract DABT63-96-C- 
0018. 

R e f e r e n c e s  

1. L. Babai. On Lov~sz' lattice reduction and the nearest lattice point problem. 
Combinato~ica, 6(1):1-13, 1986. 



291 

2. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing 
efficient protocols. Proceedings of the First Annua/Conference on Computer and 
Communications Security, ACM, 1993. 

3. M. Blum and S. Micali. How to generate cryptographically strong sequences of 
pseudo-random bits. SIAM J. Computing, 13(4):850-863, November 1984. 

4. Joan Boyar. Inferring sequences produced by pseudo-random number generators. 
Journal of the ACM, 36(1):129-141, January 1989. 

5. A. M. Frieze, R. Kannan, and J. C. Lagarias. Linear congruential generators do not 
produce random sequences. In Proc. 25th IEEE Syrup. on Foundations of Comp. 
Science, pages 480-484, Singer Island, 1984. IEEE. 

6. Taher E1 Carnal. A public key cryptosystem and a signature scheme based on 
discrete logarithms. In G. R. Blakley and D. C. Chanm, editors, Proc. CRYPTO 
8~, pages 10-18. Springer, 1985. Lecture Notes in Computer Science No. 196. 

7. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. In 
Proc. 25th IEEE Syrup. on Foundations of Comp. Science, pages 464-479, Singer 
Island, 1984. IEEE. 

8. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and 
System Sciences 28:270-299, April 1984. 

9. J. Hastad and A. Shamir. The cryptographic security of truncated linearly related 
variables. In Proc. 17th ACM Syrup. on Theory of Computing, pages 356-362, 
Providence, 1985. ACM. 

10. R. Kannan. Minkowski's convex body theorem and integer programming. Mathe- 
matics of operations research, 12(3):415-440, 1987. 

11. Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer 
Programming. Addison-Wesley, 1969. Second edition, 1981. 

12. Donald E. Knuth. Deciphering a linear congruential encryption. IEEE Transac- 
tions on Information Theory, IT-31(1):49-52, January 1985. 

13. H. Krawczyk. How to predict congruential generators. In G. Brassard, editor, 
Proc. CRYPTO 89, pages 138-153. Springer, 1990. Lecture Notes in Computer 
Science No. 435. 

14. H.W. Lenstra. Integer programming with a fixed number of variables. Mathematics 
of operations research, 8(4):538-548, 1983. 

15. National Institute of Standards and Technology (NIST). FIPS Publication 180: 
Secure Hash Standard (SHS), May 11, 1993. 

16. National Institute of Standards and Technology (NIST). FIPS Publication 185: 
Digital Signature Standard, May 19, 1994. 

17. J. Plumstead (Boyar). Inferring a sequence generated by a linear congruence. In 
Proe. 23rd IEEE Syrup. on Foundations of Comp. Science, pages 153-159, Chicago, 
1982. IEEE. 

18. Adi Shamir. The generation of cryptographically strong pseudo-random sequences. 
In Allen Gersho, editor, Advances in Cryptology: A Report on CRYPTO 81, pages 
1-1. U.C. Santa Barbara Dept. of Elec. and Computer Eng., 1982. Tech Report 
82-04. 

19. J. Stern. Secret linear congruential generators are not cryptographically secure. 
In Proc. 28th IEEE Syrup. on Foundations of Comp. Science, pages 421-426, Los 
Angeles, 1987. IEEE. 

20. A. C. Yao. Theory and application of trapdoor functions. In Proc. 23rd IEEE 
Syrup. on Foundations of Comp. Science, pages 80-91, Chicago, 1982. IEEE. 


