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A b s t r a c t .  This paper analyzes the KMOV public key cryptosystem, 
which is an elliptic curve based analogue to RSA. It was believed that this 
cryptosystem is more secure against attacks without factoring such as the 
Hs in broadcast application. Some new attacks on KMOV are 
presented in this paper that show the converse. In particular, it is shown 
that some attacks on RSA which work only when a small public exponent 
e is used can be extended to KMOV, but with no restriction on e. The 
implication of these attacks on related cryptosystems are Mso discussed. 

1 Introduction 

In 1985, Koblitz and Miller independently proposed new public key cryptosys- 
tems based on elliptic curves [9, 16]. These cryptosystems rely on the difficulty 
to solve the discrete logar i thm problem for elliptic curves. Other cryptosystems 
based on the same problem have been proposed thereafter. We refer to [15] for 
more information. A more recent overview is [1]. 

Koyama,  Maurer, Okamoto  and Vanstone proposed another kind of elliptic 
curve based cryptosystems [11]. Their  schemes are based on the difficulty of fac- 
toring large numbers  and are similar to RSA and the Rabin scheme. The most  
practical of these schemes (Type 1) is generally called the KMOV public key 
cryptosystem, according to the first letters of the author ' s  names. This  scheme 
was the base for a few similar cryptosystems. Demytko proposed a scheme, which 
uses only one coordinate of a point over an elliptic curve to represent messages 
and ciphertexts [5]. Koyam a  proposed a scheme tha t  is based on singular cu- 
bic curves [10]. Another closely related cryptosystem proposed by Koyama  and 
Kuwakado in [14]. 

It  is believed that  breaking these systems as well as RSA completely is as 
difficult as factoring. However, there exist a few attacks on RSA which do not 
require to factor the modulus.  Such at tacks are sometimes possible when the 
ciphertexts and some additional information is known, i.e. (i) when some parts  of 
the 151aintext is known, (ii) the encryption of the same or related plaintexts is sent 
to different users (e.g. in a broadcast  application) or (iii) when the encryptions 
of two related plaintexts are sent to the same user. 

A few authors have shown tha t  such at tacks can be extended to elliptic curve 
cryptosystems [14, 12, 20, 8]. These at tacks are based on division polynomials  
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whose degree e 2 grows quadraticly with the public parameter e. Because of these 
results and the more complex structure of KMOV, it is sometimes believed that  
KMOV is more resistant against this kind of attacks. 

In this paper, we present new attacks on KMOV which do not depend on e. 
In particular, it is shown that  the plaintext can be found with high probability 
(but not always) in each of the following situations: 

(i) p a r t i a l l y  k n o w n  p l a i n t e x t :  The ciphertext and one half of the plaintext 
is known. 

(ii) b r o a d c a s t  app l i ca t i on :  3 encryptions of the same message or 6 encryp- 
tions of linearly related messages are known. All messages are encrypted 
with distinct public keys. 

(iii) r e l a t e d  me s sages  for  t h e  s a m e  user :  The encryptions of two (linearly) 
related messages are known. Here, both messages are encrypted with the 
same public key. 

2 D e f i n i t i o n  o f  E l l i p t i c  c u r v e s  

This section gives a summary of basic facts about elliptic curves over the field 
7]/(p).  Let a, b be two integers, such that  4a 3 + 27b 2 ~ 0 (mod p). By E~,b(p) 
we denote the group whose elements are given by {(Xl, Yl) �9 (7/ / (P))  2 : Y21 - 
x 3 + az l  + b (mod p)} U {O}. By O we denote the point at infinity, which will 
also be the neutral element of E~,b(p). The inverse of a point (xl, Yl) is (xl,  -YI). 
The sum (x3, Y3) = (xl, Yl) + (x2, y~) of two points that  are not the inverse of 
each other can be computed by 

{ 3x~ + a (mod p) if x 1 ~ X 2 (mod p) 
2yl 

A =  Yl-Y2 (modp)  i f x l ~ x 2  (modp)  
X 1 - -  X 2 

x 3 = A  : - x l - x 2  (modp)  

y3 - - x 3 )  - ( m o d  p )  

A multiplication of a point P by an integer t will be denoted by t �9 P 

t 

t . P  = P + -  �9 �9 + P'. 

Let p, q be two distinct primes and n = pq. Then E,~,b(n) will be defined by 

Ea,b(n) = Ea,b(p) • Ea,b(q) 

If a point (Xl, Yl) �9 (7] / (n))  2 satisfies y21 ---- x31 + axl  + b (mod n) then we will 
associate (xl, Yl) with the point ((Xl mod p, Yl mod p), (Xl mod q, Yl mod q)) �9 
Ea,b(p) • Ea,b(q). Two points represented like this can be added by using the 
same arithmetic operation as in the definition, however, computed over 7/ / (n) .  
The points (O, P)  and (P, O) �9 E~,,b(n) can not be represented like this. Finding 
such a point is, however, very unlikely and would lead to a factorization of n. 
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3 Descr ipt ion of K M O V  

Koyama, Maurer, Okamoto and Vanstone proposed three cryptosystems based 
on elliptic curves in [11]. We describe their Type 1 scheme here. We will not 
consider the Type 0 scheme, which seems less practical than the Type 1 scheme, 
because the order of a general elliptic curve must be computed and the Type 2 
scheme, which is a Rabin-type generalization. 

The private key of the Type 1 scheme consists of two large primes p = q = 
2 (mod 3). The public key consists of the product n = pq and an integer e 
that  is relatively prime to (p + 1)(q + 1). A message is a pair (m~, my) where 
m=, my �9 Z / ( n ) .  It is encrypted by computing (c=, %) = e. (m~, my) (mod n) 

2 3 (mod n) is determined over the elliptic curve Eo,b(n) where b = my - rn= 
by the message. Both values c~ and % are sent to the receiver. The receiver 
can determine the curve over which the message was encrypted (even though 
this computation is in fact not necessary) from the ciphertext since (c=, %) and 
(mz, my) are points on the same curve and therefore 

2 3 2 3 (mod n). (1) b =_ Cy -- c= -- my -- m x 

Then, he can decrypt the message by computing (m=, my) - d.(c=, %) (mod n) 
where d = e -1 (rood (p + 1)(q + 1)). This follows from the fact that the order 
of the curve Eo,b(n) divides (p + 1)(q + 1). 

4 The value of a m o d u l a r  po lynomia l  equat ion  of small  
degree 

All RSA-based cryptosystems are based on the difficulty of solving polynomial 
equations over 7]/(n). No method for solving a univariate equation f ( m )  =_ 0 
(mod n) for m where f ( x )  is a polynomial of degree > 1 is known without 
factoring n. However, if some additional information on a solution m is known 
then this situation may change. Such situations are described in this section. 

Coppersmith describes an algorithm that  finds a root of a univariate poly- 
nomial if this root is small enough [3]. In particular, he proved the following 
result. 

T h e o r e m  1 ( C o p p e r s m i t h ) .  Let f ( x )  be a monic integer polynomial of degree 
k and N a positive integer of unknown factorization. In time polynomial in 
l o g g  and k, we can find all integer solutions m to f ( m )  = 0 (mod N)  with 
Iml < N ilk. 

Coppersmith also discusses the application of his method to general multivari- 
ate polynomials [3, Section 3], but we will only describe the implication to 
polynomials in two variables here. If f ( x ,  y) is a polynomial of total degree 
k then he showed, that  it is often possible to find efficiently a solution m=, my 
t o f ( m = , m y ) - 0  ( m o d N )  if 

m (Im ,l, I yl) < g 
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for some e > 0. Even though there is no guarantee that  a solution will be 
found, our experiments have almost always been successful, because the lattice 
reduction algorithm had found the small lattice vector related to the solution. 

Another method that  will be used in this paper was discovered by Copper- 
smith, Franklin, Patarin and Reiter [4]. The authors observed that  an unknown 
value m can often be found when two polynomial equations of small degree 
f (m)  =_ g(m) - 0 (mod n) are known, since (x - m) must divide the gcd of 
f (x)  and g(x) and since gcd(f(x),  g(x)) is very likely a linear polynomial. Their 
attack is practical if the degrees of the polynomials are smaller than about 2 a2. 

Description of an improved algorithm. In this paper, we will study some attacks 
that  are based on the more general problem where only f (x)  is a polynomial of 
small degree and where g(x) is a rational function of large degree that  can be 
computed in a small number of arithmetic steps. For example, if one coordinate 
is fixed then the encryption function in KMOV defines such a rational function 
g(x), that  can be computed in a small number of operations (i.e. O(log(e))) even 
though the degree of the function may be large (i.e. e2). 

Even though, the small polynomial equation f (m)  - 0 (mod n) can gen- 
erally not be solved, f (x)  can be regarded as an implicit representation of m. 
Using this representation it is possible to perform arithmetic operations on m in 
almost the same way as arithmetic operations with algebraic numbers are per- 
formed. For example, it will be possible to compute an encryption on a message 
m given implicitly by a small polynomial equation f (m)  - 0 (mod n). 

The first step of our algorithm is a square free factorization on f(x) .  Thus 
allows us to assume that  f (x)  is in fact square free over 7][x]/(n). In the following, 
we will perform arithmetic operations in the quotient ring R = ?][x]/(n, f(x)), x 
will be an implicit representation of m. More generally, any polynomial h(x) E R 
will represent h(m) and hence we can define a ring homomorphism r : R --+ 
7 / (u )  given by 

r h(=) h(m). 
Note that  r is initially not known explicitly since the solution m is unknown. 
Note also that  r is well defined since f (m)  - 0 (mod n), i.e. r does not depend 
on representatives of an equivalence class in R as 

r + h'(x)f(x)) - h(m) + h ' (m)f(m) - h(m) - r (mod n). 

Let t be the degree of f(x) .  We will now show that  arithmetic operations with 
m known implicitly can be performed efficiently by representing all intermediary 
results r e 7]/(n) with polynomials h(x) E R of degree smaller than deg(f(x)) = 
t such that  h(m) =_ r (mod n). 

Given two polynomials h(x), h'(x) E R of degree smaller than t. Then poly- 
nomials representing the sum and product of h(m) and h'(m) can be found by 
adding respectively multiplying h(x) and h'(x) together and finally reducing the 
result modulo f(x) .  A polynomial r(x) representing the inverse of h(m) can be 
found by using the extended Euclidean algorithm, i.e. by finding two polynomials 
r(x) and s(x) such that  r(x)h(x) + s(x)f(x)  = gcd(h(x), f(x)).  The inverse of 



239 

h(x) is r (x)  if the gcd is 1. Otherwise, if gcd(h(x), f (z ) )  # 1 then we have either 
found a nontriviM factor of n or f (x ) .  It is also possible to test equality, since 
h(m) - h'(m) (mod n) implies deg(gcd(h(x) - h'(z) , f (x)))  _> 1. Either we 
have deg(gcd(h(x) - h'(x), f (z)))  = t and thus h(m) =_ h'(m) (mod n) or we 
have deg(gcd(h(z) - h'(z), f (x ) ) )  = 1 and h(m) ~ h'(m) (mod n) or we have 
found a nontrivial factor of f (x ) .  Hence we have shown that  we can compute 
efficiently a polynomial g'(z) of degree smaller than t such that  

g(m) =__ g'(m) (mod n) 

or find a nontrivial factor of either n or f ( z ) .  
A factor of n would mean that  the secret key is found. If a factor of f ( z )  is 

found then we can rerun the algorithm with g(x) and each of the new factors 
of f (x) .  Since the degree of f ( z )  is t we will compute g(z) in at most 2t rings 
Ri = 7][x]/(n, fi(z)) where f i (x)  are factors of f (x ) .  

On the other hand if we find g ' (z)  then we compute the god of g'(x) and 
f (z) .  From g'(m) =_ f (m)  = 0 (mod n) follows that  (x - m) is a divisor of the 
gcd. Thus when this ged is in fact a linear polynomial then we can find m. We 
can now describe the algorithm as follows. 

A l g o r i t h m  2. Given an RSA-modulus n with unknown factorization, a polynomial 
f ( x )  of small degree and a rational function given by a short straight-line program 
(i.e. a short sequence of arithmetic operations to compute g(x)  from the set { x }  U 
77/(n)). Then this algorithm tries to find a solution m to f ( m )  = g(m) = 0 
(mod n). 

Step  1: Use square free factorization (e.g. [2, Algorithm 3.4.2]) to find 

t 

= I I  
i----1 

where f i(z) are square free polynomials. If no factorization is found here (i.e. 
f (x) is square free) then continue with step 2. Otherwise call this algorithm 
recursively with n, f i ( x )  and g(x) for all 1 < i < t and return the union of 
solutions found. 

S t e p  2: Let R : 7][x]/(n, f(x)) and compute g(x) over R. 
If in any step a nontrivial factor o f n  is found then print this factor and terminate 
the algorithm. 
If in any step a nontrlvial factor f ' (x) of f (x) is found then call this algorithm 
recursively with n, f ' ( x ) ,  g(x) and with n, f (x) / f ' (x) ,  g(x) and return the union 
of the solutions of this two calls. 

S tep  3: If no exception in Step 2 occurs then we get g'(x) = g(x) over R where 
g ' (z)  is a polynomials whose degree is smaller than deg( f (x ) ) .  Now compute 
r (z )  = gcd( f (x) ,  g'(x)). 
If r(x) is a constant then return 'no solution has been found'. If r(x) is a linear 
polynomial then try to solve r(m) = 0 (rood n). This either finds a solution 
m or a nontrivial factor of n. 
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If r(x) is a polynomial of degree larger than 1 then return that the algorithm is 
unable to solve r (m)  = 0 (mod n). 

Remark. In the situation, where we use this algori thm m will be the unique 
solution over 7]/(n). This is not a sufficient condition since the algori thm can 
not find m when there is more than one solution to g(m) = 0 over 71[x]/(n, f (x)) .  
Therefore, our algori thm may  sometimes fail. Fortunately, some of the at tacks 
presented later in this paper  allow a more rigorous analysis. 

5 P a r t i a l l y  k n o w n  p l a i n t e x t  a t t a c k  

In this section, we consider the security of the cryptosystem under the assump- 
tion tha t  some par t  of the plaintext is known. We ask for the largest fraction of 
plaintext that  can be recovered from the ciphertext when the rest of the plaintext 
is known. Hereby we assume an ideal si tuation for the attacker, i.e. we assume 
tha t  the known bits are consecutive or s imply those tha t  help most.  

Coppersmith  has shown that  1/k of the bits of the plaintext can be recovered 
if a univariate equation of degree k over the plaintext is known. (See Theorem 1) 
This shows that  up to 1/e unknown plaintext bits can be recovered from an 
RSA-encryption when the rest of the plaintext is known. 

The at tacks on KMOV in this section are based on the fact that  the ciphertext 
(e~, %) and the plaintext (m,~, my) are points on the same curve, i.e. tha t  we 
can derive b from the ciphertext such tha t  

3 2 (mod n). (2) m x + b - my 

When the plaintext is part ial ly known then we can eventually solve this equa- 
tion. The mult ivariate  version of Coppersmi th ' s  algori thm [3, Section 3]) can be 
applied when about  1/6 of the bits of the plaintext are unknown. 

Here, we present another method that  can tolerate up to 1/2 of unknown 
plaintext but tha t  is less flexible since either m~ or my must  be completely 
known. 

T h e o r e m  3. Let n, e be a public key for KMOV and C = (c~, %) be the encryp- 
lion of a message M = (rex,my). Then M can be computed e]ficiently given 
n, e, C and either ma or my. 

Proof. Since (c~, %) and (m~, my) are points on the same elliptic curve we have 

3 2 3 2 (mod n). (3) e x - ey = m x - my 

When either m~ or my are known then Equation (3) becomes a univariate equa- 
tion of degree 2 or 3 in the missing plaintext.  Hence, we can apply the algori thm 
described in Section 4. Since there is no guarantee tha t  the algori thm works in 
general we have to analyze this special case, which fortunately is simple enough 
to be analyzed rigorously. 
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Assume that  m~ is known and my is unknown. Then we compute e �9 (m=, y) 
3 _  b,n). It can be shown by induction over k and using over Z[y] / (y  2 - m= 

the definition of the addition on elliptic curves that  k - (m=,y )  -=- (rk, s~y) 
(mod n) for two integers rk, sk. Thus we will finally get an equation r = cy 
(mod n), which is solvable when se ~ 0 (mod n). If, however, se = 0 (mod n) 
then C is a point of order 2 and it follows from M = d . C  (mod n) tha t  C = M. 
Hence, M is always computable. 

Now assume that  my is known and m= is unknown. Then we will compute 
e .  (z, my) over Z [ z ] / ( z  3 + b - m~,  n). As before it can be shown by induction 
over k that  k .  (z, my)  = ( rk z ,  sk) (mod n) for some integers rk, s~. Thus we 
finally have to solve the equation r = c= (mod n), which is possible when 
r~ ~ 0 (mod n). Again we have to treat the case r~ = 0 (rood n) specially. It 
can be observed that  c= ~ 0 (mod n) and a = 0 (mod n) implies 2. C ~- - C  
(mod n). Therefore C is a point of order 3 and hence M can be found easily. [3 

Example.  Let n = 493 and e = 7 be the public key of KMOV. Assume that  we 
know the ciphertext C = (214,358) and my - 229 (mod n), which is one half 
of the plaintext. First, we derive b from the ciphertext C and have 

3 2 3 m~ + b -  my  = m= + 297 = 0 (mod493) .  

Now we encrypt the point P = (x, 229) over 7][z]/(z 3 + 297,493) and get 

C = (12 z, 358) (mod 493). 

Therefore we have m~ =- 214 .12  -1 ~ 100 (mod 493). 

6 A t t a c k s  i n  b r o a d c a s t  a p p l i c a t i o n s  

In this section, we consider the situation of a broadcast application where a 
message is encrypted with different public keys and sent to the corresponding 
users. An attacker who intercepts some of these messages can sometimes combine 
the information he gained in such a way that  he can learn the encrypted message. 
In particular, we will consider the following two situations: 

1. All ciphertexts ci are the encryption of the same message m. 
2. The ciphertexts ci are the encryption of linearly related messages 

mi  =~ o q m  + fli (rood ni) 

for some m where ~i and 13i are known constants. 

We will review the security of RSA in broadcast applications before describing 
the attack against KMOV, since it is sometimes overlooked that  Coppersmith 
has improved HLstad's result [6]. 

A simple method can be used when at least e RSA encryptions of the same 
message m encrypted with the same public exponent e are known, i.e. when the 
ciphertext ci are known such that  

e i - - m  ~ ( m o d n i )  f o r l < i < e .  
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From these equations we can derive C such that 

e 

C = m  ~ (rood H n i ) "  
i=1 

e Since m e < I-Ii=l ni it follows that m can be found from C by computing the 
e-th root of C over 7]. 

This simple method is no longer possible when we have k messages that are 
encrypted are not equal but linearly related. In this case, we will generally have 
a polynomial equation we can derive k equations 

f i ( m )  =-- 0 (mod ni) for 1 < i < k. 

We multiply the polynomials f i ( m )  by the inverse of their leading coefficient 
and possibly by a power of m such that the resulting polynomials are all monic 
polynomials of equal degree. Then we use the Chinese Remainder Theorem to 
derive an equation 

k 

F ( m )  =_ 0 (mod N) where N = 1"[ ni. (4) 
i=1 

The polynomial F is monic and thus we can use Coppersmith's algorithm if ]m I < 
N1/deg(F) to find m. This attack has apparently been described by Shimizu in 
[19]. 

A small improvement of this method is possible when the degrees of the 
polynomials fi (m) are different. Instead of multiplying them by a power of m it 
might be possible to compute powers of the polynomials itself. Since f i ( m )  - 0 
(mod ni)  implies f i ( m )  t' = 0 (mod n~') we can thus gain an equation r ( m )  =_ 
0 (mod N) for a larger N. Given for example two RSA encryptions with el = 5 
and e~ = 3 and a Rabin encryption of linearly related messages mi - a i m  + fli 
(mod hi)  we can derive the following equations 

( a i m  -[- i l l )  5 - -  Cl -~ 0 

( a 2 m  + f12) 3 - c2 - 0 

( a 3 m  -~-/~3) 2 - -  c3 ~-~ 0 

From these equations we compute 

m ((m +/~1a11) 5 - cla -5) ~ 0 

( ( m +   2a;1)3 - Cla-3)2 - 0  

((m +  3a 1) 2 - c la -2 )  3 = 0 

(rood nl) 

(mod n2) 

(mod n3) 

(mod nl) 

(mod n22) 

(mod n33). 

All these equations are defined by monic polynomials of degree 6. Thus we can 
use the Chinese Remainder Theorem to get an equation 

F ( m )  = 0 (mod n i n o n  3) 
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2 3 1/6 where F is monic of degree 6 and [m I < (nan2n3) . 

When KMOV is used then a message (m~, my) can often be found when only 
3 encryptions of the same message but with 3 different public keys are known. 
In particular, we have the following theorem. 

T h e o r e m 4 .  Let t >_ 1, nl ,  n2, n 3  be the moduli of  3 different K M O V  keys, n = 
max(n1, n~, ns) and h = min(nl ,  n2, ns). Given the 3 ciphertezts of a randomly 
chosen message M = (m= ,my)  E { O , . . . , h -  1} 2 encrypted with these 3 keys 
then M can be found in t ime O(t  2 log(n) 3) with probability 1 - l i t .  

Proof. Because of Equation (1) we can derive bl from the ciphertext such that  

3 2 (mod ni) for i E {1, 2, 3}. - b i  -- m x - my 

Thus we can find 
s 2 (mod nln2n3)  b = m= - m y  

must lie in the same for some --h ~ _< b < ninon3  - h 2. Moreover, since max - my 
S s 2 is much smaller than m~ interval it follows b = m~ - my 2. We expect that  my 

and that  therefore m= .,~ b 1/z, and we will show that  rn~ can be found with high 
probability by using this approximation. 

Let m0 = [bl/31. Then it is possible to find M in time O(t  2 log(n) 3) when 
_ ' < m0 + (4/3)t  2 m0 < m= < m0 + (4/3)t  ~. Indeed, we test for every m0 < m= 

,3 _ b is a square. If this is the case then we let my whether the integer m~ 

(m "3 - b) 1/2 and check whether the encryption of (m ' ,  m~) with one of the 
public keys is equal to the corresponding ciphertext. This can be done in time 

I O(log(n) ~) for every m=. 
Thus it remains to show that  the probability for m0 _< m= _< m0 + (4/3)t  2 is 

at least 1 - 1/ t  for a randomly chosen message. Assume that  rn~ > h / t  and let 
2 < (3/4)7m~ < 7((3/4)m~ + 7 = (4/3)t  2. Then we have m u / t  <_ m~ and thus my _ 

3 3 >  3 2 ( 7 -  (3/2)m~) 2) = m~ - (m~ - 7) 3. Hence it follows m~ _ m = -  my > ( m ~ -  7) 3 
and therefore that  mo _< m~ < m0 + (4/3)t  2. Hence, when the attack fails we 
have m~ < h / t  and the probability of this event is 1/t .  [] 

When the messages are not equal but linearly related then we can derive 
equations of the form (Timy +6i) 2 -  ((~im~ +/3/) 3 ~ bi (mod hi). Such equations 
can be combined with the Chinese Remainder Theorem to one equation of degree 
3 in two unknowns m= and my, i.e. from k messages we find f such that  

k 

f ( m x , m y )  -- 0 (mod H n i ) "  
i=1  

Applying Coppersmith's  result we can hope for a solution if 

{ k \ (l/6--e) 

for some r > 0. This implies tha t  the ciphertexts of 6 related messages might 
give enough information to recover the plaintext. This theoretical result should, 
however, be compared to our experimental results in section 9. 
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7 A t t a c k s  b a s e d  o n  r e l a t e d  m e s s a g e s  f o r  t h e  s a m e  u s e r  

In this section, we discuss the situation where two related messages are both 
encrypted with the same public key. This situation has been analyzed by Cop- 
persmith et al. for RSA [4]. They have shown that  the ciphertext can be found 
from two encryptions with exponent e if it is computationally feasible to com- 
pute the gcd of two polynomials of degree e. They conclude that  the attack is 
possible if the size of the public exponent e is smaller than about 32 bits. 

The attack on KMOV presented here does not depend on the public param- 
eter e. It is therefore not possible to prevent this attack by choosing e large. 
Let (m~,  my)  and (rh,, rhy) be two plaintexts that are related by known linear 
relations 

rh~ - ~ m ~  + "r (5) 

rhy -- ~my + 5. (6) 

Assume that  we know the encryption of these 

(c . ,  c~) --- e .  ( m . , . ~ , )  

(e . ,  e~) -- e .  ( ~ ,  r ~ )  

From the ciphertext we can derive the curves 
points (m, ,  my) and (rhx, ~y)  must lie. Thus 

3 2 
m x + b - my 

( ~ r ~  + V) 3 + ~ - ( /3 .~  + 6) 2 

These two equations allow us to express rnu as 

w(x) --- (~x + ~)3 - z 2 ~  - 
2/~5 

two messages, which is given by 

(rood n) (7) 

(mod n) (8) 

Eo,b(n) and Eo,~(n ) on which the 
we have 

- 0 (mod n) 

-_- 0 (mod n) 

a polynomial w in m , .  If we set 

62 + b -/32b 

then w(m, : )  - m u (mod n). Now let f ( x )  = x 3 - w ( x )  2 + b, which is a poly- 
nomial of degree 6. From (1) follows f ( m ~ )  =_ 0 (mod n). Next, we compute 
e .  (x,w(x))  -- (h(x) , j (x))  (mod n) over 7 ] [ x ] / ( n , f ( x ) ) .  Since we know the 
result of this encryption explicitly we have the equations 

h ( m ~ )  -- c~ (mod n) (9) 

j ( m ~ )  =_ cu (mod n). (10) 

Finally, we compute gcd(f(x),  h(z) - c~) and hope to find a linear polynomial 
of the form A(x - m,) ,  which allows us to find m~. 

Remark .  The same attack would work even when the relation between (rex, my) 
and (rh~, rhy) is not linear but given by a polynomial relation whose degree is 
small. 

When only one relation is known (e.g. between m~ and rh~ but not between 
mu and rhy) then it is still possible to recover the plalntext when e is small. In 
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that  case, we have to compute the gcd between two polynomials of degree e 2. And 
this seems possible if e is smaller than about 216 [7]. If this method is successful 
it finds m=, afterwards my can be found using the method of Section 5. Thus, 
it is sometimes possible to recover the plaintext of two related messages even if 
one of the two text blocks (m=, my) is chosen randomly for every message. 

8 I m p l i c a t i o n  o n  r e l a t e d  c r y p t o s y s t e m s  

Demytko's cryptosystem [5] uses, contrary to KMOV, only one coordinate to 
represent messages. This difference seems to be crucial, as the attacks presented 
in this paper can not be applied to Demytko's cryptosystem. Other proposed 
cryptosystems only vary the type of curve that  is used for the encryption and 
use like KMOV both coordinates of a point to represent messages [10, 13]. Our 
attacks work in almost the same way against these cryptosystems too. For ex- 
ample Koyama uses in [10] singular cubic curves of the form 

+ = (mod (11) 

where the plaintext is a pair (m=, my) and a is chosen such that  the Equation (11) 
with x = m= and y = my is satisfied. Koyama claimed that  this cryptosystem is 
provably as secure as RSA, but  faster than RSA. However, this claim hold only 
one day. Shamir presented at Eurocrypt '95 an attack which showed that  one half 
of the plaintext can be found when the other half is known. Because of (11) the 
plaintext can also be recovered when at most 1/6 of m= and my is unknown. 
When 6 linearly related messages are known then a Hs attack is possible. 
The claim in [10] that  the scheme is as secure as RSA in broadcast application 
is therefore not justified. The author wrongly assumes in the proof of section 5.2 
of [10] that  his elliptic curve cryptosystem cannot be weaker than RSA since he 
shows only that  a successful attack on RSA would imply a successful attack on 
his scheme. The inversion of this implication is missing. Finally, we can perform 
a similar attack on Koyama's scheme as on KMOV when the ciphertexts of 
two related messages encrypted with the same public key are known. Again, 
this contradicts the conclusions the author draws from Theorem 4 as our attack 
shows that  there is no reason to assume that  Koyama's  scheme is as secure as 
RSA. 

9 E x p e r i m e n t a l  r e s u l t s  

This paper contains a few algorithms that  have not been proven to work in 
all cases. We have therefore implemented all attacks in order to check their 
effectiveness. The attacks based on lattice basis reduction (i.e. based on [3]) are 
very computation expensive. This is specially the case when lattices of large 
dimension are involved. Therefore, we could not verify experimentally that  all 
theoretical bounds are reachable. Fortunately, more knowledge can often help to 
reduce the dimension of the lattices. 
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A Hs attack against KMOV with a 512-bit modulus and 6 linearly re- 
lated messages seems to be computationally infeasible. But if 8 linearly related 
messages are known then a lattice basis of size 17 and 2400-digit integers has to 
be reduced. The package LiDIA, which implements a very sophisticated lattice 
basis reduction algorithm proposed by Schnorr and Euchner [18], can reduce 
such a lattice basis in about 2 weeks on an Ultra Sparc. The same attack with 9 
linearly related messages can be done in about 15 minutes by reducing a lattice 
basis of size 6. 

We observed that  the attacks in Section 6 succeed almost always and we have 
not observed a failure in any of the other attacks. 

10 Countermeasures  

One possibility to avoid the attacks in this paper is to randomize some parts of 
the plaintext before the encryption. We propose that  somewhat more than 1/5 
of the bits in both coordinates of a point should be chosen randomly. This avoids 
the attacks presented in Section 5. Moreover, e should not be chosen too small, 
since a small e would give yet other small modular equations over the plaintext 

3 2 (rood n) for even more effective that  can be combined with m~ + b = m~ 
attacks. Since the degree of the equations resulting from division polynomials 
(see e.g. [12]) is e 2 we suggest to choose e at least 16 bits long. These propositions 
require, of course, a careful analysis. 

11 Conclus ions  

The attacks in this paper show that  it is very dangerous when a cryptosystem 
leaks a modular relation of small degree on the message. Furthermore these 
attacks are an example for the fact that  a more complex looking cryptosystem 
not necessarily is more secure than a simple looking one. The comparison of RSA 
and Koyama's  scheme shows that  a security analysis that  considers only complete 
messages (i.e. showing that  ability to decrypt all messages in one system implies 
that  messages encrypted with the other system can also be decrypted) should 
not be used alone for comparing the security of two cryptosystems. 
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