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Abs t r ac t .  This paper shows that using direct properties of a zero- 
knowledge protocol itself, one may impose a honest behavior on the veri- 
fier (without additional cryptographic tools). The main technical contri- 
bution is showing that if a language L has an Arthur-Merlin (i.e. public 
coins) honest-verifier statistical SZK proof system then L has an (any- 
verifier) SZK proof system when we use a non-uniform simulation model 
of SZK (where the simulation view and protocol view can be made sta- 
tistically closer than any given polynomial given as a parameter). Three 
basic questions regarding statistical zero-knowledge (SZK) are solved in 
this model: 

- If L has a honest-verifier SZK proof then L has an any-verifier non- 
uniform simulation SZK proof. 

- If L has an SZK proof then L has an non-uniform simulation SZK 
proof. 

- If L has a private-coin SZK proof then L has a public-coin non- 
uniform simulation SZK proof. 

1 Introduction 

Statistical zero-knowledge proofs (SZK), introduced by Goldwasser, Micali and 
Rackoff [13], are an impor tan t  notion with practical as well as theoretical rele- 
vance. In practice, SZK proofs have proved very useful in the design of crypto- 
graphic protocols, such as identification schemes [8]. From a theoretical point of 
view, SZK proofs seem to capture the intrinsic properties of the zero-knowledge 
concept, since they do not need further cryptographic assumptions,  as it is the 
case for computat ional  zero-knowledge (CZK) proofs. For CZK, all languages in 
NP [11] and in IP (=PSPACE)  [17] (also [4]) are known to have a CZK proof 
system, while a precise characterization for the languages having SZK proof  sys- 
tems is not known. I t  is known tha t  the class SZK is in AM N co-AM [9, 1], 
and tha t  NP-complete  languages do not have such proofs unless the polynomial  
hierarchy collapses. Nevertheless, very few properties of SZK have been proved 
and for many  years the problem of establishing unconditional relations among, 
and properties of SZK proofs, has a t t racted much attention (see, e.g., [2, 3, 7, 20] 
and the results below). 
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The notion of  zero-knowledge achieved: non-uniform simulation. A 
few notions of zero-knowledge have been defined in the literature (see [13, 12, 
10]). One notion, called auxiliary-input zero-knowledge, requires security with 
respect to any polynomial-time adversary, having an additional auxiliary-input, 
which models information obtained by the verifier in his past history (which 
was not required originally). Most protocols in the literature achieve a stronger 
notion, called black-box simulation zero-knowledge, where a simulator treats the 
verifier as a black box. The simulator may be characterized by an additional 
parameter, e.g. a polynomial (or a constant). In [10] a black-box simulation 
was considered where the additional parameter quantifies the random bits used 
by the simulator. We employ a simulator which uses a sampling technique to 
assess the bias of the verifier, thus the simulator gets a parameter indicating 
the sampling bias (which can be made non uniformly smaller than any given 
polynomial and relaxes the simulation notion which makes the simulator's view 
smaller than all inverse polynomials). The technique builds a simulation based 
on simulation of an underlying honest-verifier protocol and preserves the "black- 
box" property. We call this model, used throughout, non-uniform (black-box) 
simulation statistical zero-knowledge. 
Public-coin honest-verifier vs. any-verifier.  We show that for any honest- 
verifier public-coin SZK proof system for a language L there exists an "any- 
verifier" non-uniform simulation SZK proof system for L. The first uncondi- 
tional construction for this result was given in [2] and worked for random self- 
reducible languages. Another such result good only for constant-round proof 
systems was given in [5] (based on techniques in [19, 22]). Later, two transfor- 
mations were shown in [6]: one unconditional, for constant-round proof systems, 
which improved the round-complexity of the transformation in [5], the other for 
unbounded-round proof systems, assuming one-way functions. 

Honest-verifier vs. any-verif ier  statistical zero-knowledge. Combining 
our theorem with results in [20], we show a transformation between a proof 
system which is non-uniform simulation SZK wrt the honest-verifier into one 
which is SZK wrt any verifier for the same language. This problem was first 
posed by [2] who solved it under the intractability of discrete log. Later, this 
problem has been solved in [22], assuming one-way permutations, and, recently, 
in [20], assuming one-way functions. 

SZK for the complemented language. Combining our theorem with results 
in [20], we show a transformation between a proof system which is SZK for L 
into one which is non-uniform simulation SZK for the complemented language 
L. The first result along these lines was the one in [9], who constructed a (non 
zero-knowledge) proof system for L, assuming an SZK proof system for L (a full 
proof of this was given in [1]). The result then followed from [17, 4] for the case 
of CZK, assuming one-way functions. Later, this problem was solved by [2] in 
the case of SZK, assuming the intractability of discrete log. Recently, in [20], an 
SZK proof system for L was given both assuming one-way functions and in the 
honest-verifier case. 

Private-coin vs. public-coin statistical zero-knowledge. Combining our 
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theorem with results in [20], we show a transformation between a proof system 
which is private-coin SZK into one which is public-coin non-uniform simulation 
SZK for the same language. The first result along these lines is due to [14], who 
proved this transformation between interactive proof systems (i.e., not zero- 
knowledge). The result then followed from [17, 4] for the case of CZK, assuming 
one-way functions. Recently, in [20], the result is shown both assuming one-way 
function, and in the honest-verifier case, for SZK. 

2 Non-uniform simulation SZK proof systems 

Interactive pro toco l s .  Let a pair (A,B) denote an interactive protocol between 
two interacting probabilistic machines A and B [13]. We denote by z an input 
common to A and B, by R the content of B's random tape and by y B's auxiliary- 
input (if any). The transcript of an execution of protocol (A,B) on input x, 
denoted by tr(A,B)(X), is the messages written by A and B during such execution. 
By OutB(tr(A,B)(X)) E {accept, reject} we denote B's output at the end of the 
execution of protocol (A,B) on common input x. We define VZCWB(y)(z), B's 
view of the interaction with A on input x, as the probability space that  assigns 
to pairs (R; tr(A,B(y;R))(x)) the probability that  R is the content of B's random 
tape and that  tr(h,B(y;R))(x) is the transcript of an execution of protocol (A,B) 
on common input x given that  R is B's random tape and y is B's auxiliary input. 

Z e r o - k n o w l e d g e  p r o o f  sy s t ems .  A zero-knowledge proof system of member- 
ship in L is an interactive protocol where the prover convinces a poly-bounded 
verifier that  x E L, without giving additional computational advantage; formally: 

Definit ion 1. Let P be a probabilistic interactive Turing machine and V a prob- 
abilistic poly-time interactive Turing machine sharing input x. Let L be a lan- 
guage. (P,V) is a SZK PROOF SYSTEM for L i f  

1. (Completeness) For all x E L, Ixl = n, for all sufficiently large n, and all 
constants c, Prob(Outv(tr(p,v)(z))  = accept) = 1 - I x l  ~. 

2. (Soundness) For any machine P', for all z q~ L, Ixl -- n, for all sufficiently 
large n, and all constants c, Prob(Outv(tr(p,v)(z))  = accept) < I~1 -~ 

3. (Non-unifor m Simulation Statistical Zero-Knowledge) 
For any probabilistic polynomial-time 7bring machine V' There exists a prob- 

abilistic 7bring machine Sv, such that for all z E L, any auxiliary-input y (of 
size polynomial in [x[), and any constant c, it holds that 

- Sv,  runs in expected polynomial time (which may depend on c); 
- ~-'~ IPr(Viewv,(y)(z) = a) - Pr(Sv,(y)(x) = a)l < I~1 -~. 

We notice that  in our definition, the running time of the simulator is expected 
polynomial time, and the statistical difference between the two spaces is smaller 
than the inverse of any polynomial, as in the usual definition of black-box sim- 
ulation SZK. However, the running time of the simulator and the statistical 
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difference between the two spaces depends also on the constant c (it is true for 
any constant so it can be made arbitrarily hard to distinguish differences). We 
will call this relaxed notion, achieving a non-uniform statistical bias based on 
an input, non-uniform simulation SZK. 

3 A u x i l i a r y - i n p u t  c r y p t o g r a p h i c  p r i m i t i v e s  

In this section we present definitions for auxiliary-input cryptographic primitives 
with point-wise security arguments (unlike the usual eventually secure notion). 
They will include distributionally one-way functions, one-way functions, pseudo- 
random generators, and bit-commitment schemes. 

A u x i l i a r y - i n p u t  o n e - w a y  f u n c t i o n s .  Let n be an integer, aux E {0, 1} n he a 
string, and fa=x : {0, 1} n --* {0, 1} n be an auxiliary-input function. Also, let D~ 
be a distribution over {0, 1} n, and Un be the uniform distribution over {0, 1} ~. 
We formalize the notion of (locally) breaking and distributionally-breaking an 
auxiliary-input function. 

D e f i n i t i o n 2 .  We say that an algorithm A ~  (t(n)e(n))-breaks the auxiliary- 
input function faux on point x i f  

prob(y = f ~ . ( x ) ;  x' ~ A ~ . ( y )  A fau.(x ' )  = y)  = e(n), 

and Aau. runs in time t(n) on input 1 n, where the probability is taken over the 
random coins used by A ~ . .  

D e f i n i t i o n  3. We say that an algorithm A ~ .  (t(n), e(n))-distributionally-breaks 
the auxiliary-input function f a ~  on x i f  

Z I pr~  o f~,~:(x) = o~ ) - prob( x o fa,,~(x) = c~ )l = e(n), 
0r 

where by a o b we denote concatenation of strings a, b, Aaux runs in time t(n) on 
input 1 n, and the probability is taken over any random coins used by Aa~:. 

A u x i l i a r y - i n p u t  p s e u d o - r a n d o m  g e n e r a t o r s .  Let n be an integer, aux E 
{0, 1) n be a string, and gau~ : {0, 1} n --* {0, 1} m, for m > n, be an auxiliary- 
input generator. We formalize the notion of breaking an auxiliary-input genera- 
tor at a point x. 

D e f i n i t i o n 4 .  We say that algorithm Aa=~ (t(n), e(n))-breaks generator g~,~ i f  

prob(yl = ga~(x);  y~ ~ Uz(n) : Aaux(1 n, Yl) (~ Aa~( l '* ,  Y2) = 1 ) = e(n), 

and Aa~,~: runs in time t(n) on input 1 n, where the probability is taken over any 
random coins used by Aau~:. 

Auxillary-input blt-commitment schemes. 
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D e f i n i t i o n  5. Let a pair of  interacting 7bring machines be Alice which can be an 
infinitely powerful machine and Bob which is poly-time bounded. An auxiliary- 
input bit-commitment scheme { ( Alice~u~:, Boba,,~(t(n)e(n) ) ) } for Alice's input 
x of size n, is a two-phase interactive protocols (commit and reveal): 

- After the commit phase, any probabilistic polynomial time Bob~aux(t(n), e(n)) 
which works t(n) time can compute the bit committed by Alicea~x only with 
probability < 1/2 + e(n). 

- In the reveal phase, Aliceau, can reveal one value (by releasing x). For any 
Alice'~, ,  i f  it tries to reveal a bit different from the one committed in the 
first phase, then Boba~, rejects with overwhelming probability. 

3.1 E x t e n s i o n s  to  t h e  a u x i l i a r y - i n p u t  case 

The following lemmas are simple adaptations of [21, 23, 16, 15, 18] to the 
auxiliary-input case. They employ reductions between the primitives that  re- 
latesbreaking an input in a given time with a certain probability one primitive 
to breaking another primitive on a related input with polynomially related time 
and probability. Lemma 6, due to [21], relates SZK proofs to distributionally one- 
way functions. It shows that  for an input which does not give a distributionally 
one-way function, the prover's function can be performed efficiently. 

L e m m a  6. [21] Let L be a language, (A,B) a (honest-verifier) SZK proof system 
for L where M is its simulator. Let x E {0, 1}n; for all sufficiently large n, there 
exists an auxiliary-input distributionally one-way function f~,~: such that: I f  
there exists an algorithm A which, on input x, prefi,  (l(n), e(n) )-distributionally- 
breaks faun, where aux = x, then there exists an algorithm A r which, on input x 
of size n, runs in time t(n)-poly(n) and with overwhelming probability computes 
r such that M(r, x) = (pref  o sur f ) ,  and B(x, p re f  o sull) = 1, where pref and 
surf are prefix and suffix of M's output, respectively. 

Lemma 7 gives an auxiliary-input one-way function evaluated at a point as- 
suming the existence of an auxiliary-input distributionally one-way function. It 
follows from a result by Impagliazzo and Luby. 

L e m m a  7. [16] Let aux E {0, 1} n and let {DFau~} be an auxiliary-input distri- 
butionally one-way functions. Then there exists an auxiliary-input one-way func- 
tions {Faux} such that the following holds. For all sufficiently large n, i f  there 
exists an algorithm A a ~  which (t(n),e(n))-breaks Fa~  on input x of  size n, 
then there exists an algorithm Baux which (t'(n), e'(n))-distributionally-breaks 

o n  w h e r e  = poZy(t( )) a n d  = 

Lemma 8 gives an auxiliary-input pseudo-random generators assuming the exis- 
tence of an auxiliary-input one-way function with pointwise translation of hard- 
ness. It follows from a result by Hs lmpagliazzo, Levin and Luby. 
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L e m m a  8. [15] Let aux E {0, 1} n and let {Faun} be an auxiliary-input one- 
way functions. Then there exists an auxiliary-input pseudo-random generators 
{gaux} such that the following holds. For all suft]ciently large n, i f  there exists 
an algorithm Aaux which (t(n), e(n) )-breaks gaux on input x of  size n, then there 
exists an algorithm Bau~ which (if(n), e'(n))-breaks Fauz on x, where t ' (n) = 
poly(t(poly(n))) and e'(n) = poly(e(poly(n))). 

Lemma 9 gives an auxiliary-input bit-commitment schemes assuming the exis- 
tence of an auxiliary-input pseudo-random generators, which maintains point- 
wise hardness up to a given polynomial. It follows from a result by Naor. 

L e m m a 9 .  [18] Let aux e {0, 1} '~ and let {ga~} be an auxiliary-input pseudo- 
random generators. Then there exists an auxiliary-input bit commitment scheme 
BC~u~ =(Aliceau~,Boba~) such that for all sufficiently large n for Alice's input 
x of size n, the following two conditions hold: 

1. I f  there exists an algorithm BoUau x which guesses in time t(n) and probability 
e(n) the bit committed by Alicea~ in the first phase of (At ice~,Bob~, ,~)  
then there exists an algorithm D ~ ,  which (t'(n), e'(n))-breaks g~u, on input 

where t'(n) = poly(t(n))  and e'(n) = poly( (n)). 
2. The probability that there exists an algorithm Alice~a~ which in the second 

phase reveals a bit different from the one committed in the first phase is 
negligible. 

Let us try to summarize the above lemmas. Assuming that  L has a honest- 
verifier SZK proofs, Lemma 6 constructs a collection of auxiliary-input distri- 
butionally one-way functions. The sequence of Lemmas 7, 8, 9 transforms any 
auxiliary-input distributionally one-way function into an auxiliary-input one-way 
functions, which is in turn transformed into an auxiliary-input pseudo-random 
generators, which in turn transformed into an auxiliary-input strong-to-weak 
bit-commitment schemes. The hardness of the various primitive is polynomialty 
related locally (from input to one to the same input of the other). Moreover, 
combining Lemma 6 and Lemma 7, we have that  an algorithm which pointwise 
guesses (given some resources) a bit committed by BC~ can be used to com- 
pute an almost uniformly distributed preimage for the prefix of the output  of 
simulator M for (A,B) (for related polynomial resources). We obtain: 

T h e o r e m 1 0 .  [21, 16, 15, 18] Let L be a language, let (A,B) be a (honest- 
verifier) SZK proof system for L. For all sufficiently large n, let aux E {0, 1}'L 
there exists an auxiliary-inpu t commitment schemes BCa~  =(Aliceau~,Boba~) 
such that the following two conditions hold: 

1. / f  there exists an algorithm t Bobau ~ which guesses in time t(n) and with 
probability e(n) the bit committed by Alice~u~ in the commit phase of 
(Aliceau~,Bob~:) where x of size n is Alice's input, then there exists an 
algorithm D ~  which, on input a prefix prefi of the output of simulator 
M (prefi is a related function of the transcript of the first phase of the 
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commitment scheme), runs in time (poly(t(poly(n)))) and with probabil- 
ity poly(e(poly(n))) computes r such that M(r, z) = (prefi o su f f i ) ,  and 
B(z, pref~ o s u f f i )  = 1. Moreover, the distribution of  string r is statist/- 
cally dose to the uniform distribution over all strings r such that M(r, z) = 
(prefi o su f f i )  and S(z ,pre f i  o su f f i )  = 1 
The probability that there exists an algorithm Alice'~u ~ which in the second 
phase reveals a bit different from the one committed in the commit phase is 
negligible. 

4 T h e  t r a n s f o r m a t i o n  

In this section we will prove the following result. 

T h e o r e m  11. Let L be a language, let (A,B) be a public-coin honest-verifier 
SZK proof system for L, and let (P, V) be the protocol constructed in Section 4.1. 
Then (P,V) is an any-verifier non-uniform simulation SZK proof system for L. 

4.1 T h e  p r o t o c o l  (P ,V)  

Let L be a language and let (A,B) be a public-coin honest-verifier SZK proof 
system for L. A first step of our transformation is to construct a protocol (C,D) 
as the parallel execution of n copies of (A,B). Clearly, (C,D) is public-coin and 
honest-verifier SZK, and we call M the associated simulator (which is the parallel 
execution of the simulator for (A,B)). We denote by c(n) be the maximum (poly- 
nomial) length of a conversation of (C,D), and by s(n) the length of the random 
string used by M on inputs of size n. In order to construct protocol (P,V), we will 
construct two functions DF~, F~, a generator G~ and a bi t-commitment scheme 
BC~, where string z is the common input to protocol (P,V). At a very high level, 
protocol (P,V) can be considered as a way of compiling protocol (C,D) using the 
bit commitment  scheme BCz where x is the common input. In fact, at any time, 
protocol (P,V) will use a (single) accepting conversation of protocol (C,D); which 
we will call the inner conversation for protocol (P,V). At the end of the protocol 
(P,V), V will verify that  the inner conversation sent by P is accepting for D. 
The definition of scheme BC~, and, more precisely, the definitions of functions 
F~ and DF~, will depend on the prefix so far obtained of the inner conversation. 

T h e  f u n c t i o n  F~. We will define a function F~ in two steps. Informally, in the 
first step, we would like to construct a function DF~ which, given as input a 
s(n)-bit  string R and an index i E {0, 1} c(n), returns an / -b i t  long prefix of the 
output  of the simulator M on input (R, z) concatenated to some padding string 
ps = 1 o 0c('~) - i - z .  Formally, DF~ : {0, 1} '(n) x {0, 1} [l~ ~ {0, 1} ~(n) is 
defined as DF~(r,i) = (M(r ,  x)l ..... i) ops, where al .... i denotes the first i bits of 
string a. By now, we may think of DF~ as a distributionally one-way function. 

Now, we would like to transform function DF~ into a one-way function using 
the transformation from distributionally one-way functions to one-way functions 
given in [16]. Precisely, we obtain function Fx by applying a slightly modified 
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version of this transformation, as follows. Let us consider the mentioned trans- 
formation from [16]: it takes a function f as input and returns another function 
g; now, observe that  function g requires multiple independent applications of 
f .  Formally, we define function F~ as the function obtained by applying this 
transformation to function DF~, with the exception that  one of the applications 
of DFx (precisely, a uniformly chosen one) is replaced with the input-output 
pair ((r, i); (pref o ps)), where pref is the prefix so far in the inner conversa- 
tion for protocol (P,V), i = Iprefl, ps is some padding string, and r is uni- 
formly distributed among the strings r such that  M(r, z) = (z, pref o suf f )  and 
D(z, prefo suff)  = 1. Since the inner conversation is defined for protocol (C,D), 
a parallel repetition of (A,B), we will still be able to use the result in [16] for F~. 

T h e  b i t  c o m m i t m e n t  s cheme  BC~. In order to construct a generator G~ and 
a bit commitment scheme BCz, we adapt to the auxiliary-input case results from 
[15], [18]. Namely, let G~ be the generator that  can be constructed starting by 
the given values of function F~ using the transformation from a one-way function 
to a pseudo-random generator given in [15]. Finally, let BCz be the generator 
that  can be constructed starting by generator G~ using the transformation from 
a pseudo-random generator to a bit-commitment scheme given in [18]. 

C o n s t r u c t i n g  p r o t o c o l  (P ,V) .  Starting from the assumed public-coin protocol 
(A,B) for language L, and using scheme BC~, we construct a protocol (P,V) and 
show that  it is any-verifier SZK. 

Previous approaches. The main difficulty with proving that  (A,B) is any-verifier 
SZK is that  a dishonest B I might send messages having a distribution quite 
different from the uniform one. Given a bit commitment scheme, this problem 
can be overcome using an idea of [2]. That  is, by compiling each step in (A,B) in 
which B uniformly chooses a bit b and sends it to A, with the following flipping 
coin protocol. First P commits to a random bit a; then V replies with some 
possibly biased bit c, and finally the resulting bit b is set equal to a @ c. Clearly, 
no matter  how V behaves, if P behaves honestly the distribution of bit aOc will be 
uniform. Now, an idea in [6] is to implement the bit commitment as follows: first, 
assume that  the language L is not in AVBPP (see [23] for definitions), then use 
the assumption that  L has a honest-verifier SZK proof, and sequentially apply 
known results in the literature to obtain a bit-commitment scheme. Specifically, 
the results in [21, 23, 15, 18] give a bit commitment scheme. 

Our approach. In our protocol we do not make any assumption on the language 
L. Instead, we adapt results in [21, 24, 16, 15, 18] to the auxiliary-input setting 
and construct the following auxiliary-input primitives: distributionally one-way 
function, one-way function, pseudo-random generator and a bit commitment 
scheme, respectively. One implication of using auxiliary-input primitives in the 
context of zero-knowledge proofs is that there may exist some x's for which 
the constructed primitives are not secure. This case considerably complicates 
the proof of the zero-knowledge property of our protocol. Roughly speaking, 
we can think of some 'hard'  x's for which all primitives are secure, and some 
'easy' x's for which they are not, for various level of 'easiness'. In particular, the 
commitment scheme performed by P seems meaningless in the case of the 'easy' 



39 

z 's ,  since it becomes easy for V ~ to compute the commit ted  bit. We will overcome 
this problem with the following strategy where the simulator assesses whether 
the verifier is cheating or not! More precisely, it will make a close est imate of 
the probabil i ty that  the verifier V ~ sends a certain random bit, given tha t  he 
has received a commitment  to a certain bit. By looking at this probability, the 
simulator  will be able to compute if the dishonest V',  influences the outcome 
of the flipping-coin protocol depending on the commit ted  bit (for a given level 
of influence, where non-uniformity of bias determined by the s imulator 's  input 
is used for the sampling procedure to work). If the bias of V ~ is greater than 
the given polynomial  in n, then the simulator will use V ~ as a black box to 
break the commitment  scheme, invert the "one-way" function, and, finally, run 
the program of the prover. Here, the fact that  the construction of the function 
uses a prefix of the inner conversation so far will help in keeping the following 
invariant: the simulator always knows a random string that  generates the current 
inner conversation, no mat te r  what is the cheating behavior of the verifier. On the 
other hand, if the dishonest V' does not influence the outcome of the flipping- 
coin protocol (i.e., its level of influence is unnoticeable), then the output  bit 
will be "close enough" to the uniform distribution (it will non-uniformly be 
smaller than any given polynomial),  and therefore the simulator can simulate 
an execution of the flipping-coin protocol using the usual rewinding technique. 
Note tha t  the simulation strategy employs the verifier as a black box and thus 
maintains  "black-box simulation".  Now, we give more details. 

A m o r e  f o r m a l  d e s c r i p t i o n  o f  (P ,V) .  Let x, Ixl = n, be the common input 
to (P,V). Recall that  (A,B) is a public-coin honest-verifier SZK for L, and (C,D) 
is the parallel execution of n copies of (A,B), and M is the simulator  associated 
with (C,D). Moreover, we assume wlog that  the first message in (C,D) is sent 
by D, and that  (C,D) has r(n)  rounds; also, each message sent by D has length 
k(n),  and the simulator M uses a random string of length s(n). 
The  Pro toco l  (P~V) 

1. For i = 1 , . . . , r (n ) ,  
P and V set pref,-1 = (al, d l , .  �9 �9 a,_l, d,_l); 
P computes a string r, E {0, 1} 8(n) such that M(r,, x) = (pref,-1, a,, su f f ) ,  

for some a, and B(x,pref~_l, a,, s u f f )  = 1; 
P sends ai to V; 
for j = ] , . . . ,  k(n), 

P uniformly chooses a,,3 E {0, 1} and a seed s,,j E {0, 1}9("); 
P and V run the commit phase of BCx, 

where P uses bit a,,3 and seed s , j  as his private input; 
V uniformly chooses c,,s E {0, 1} and sends it to P; 
P and V run the reveal phase of BCz and set d,j  = a , j  @ c,j ; 

P and V set d, = di,1 o " . "  0 d , , k (n ) ;  
2. V accepts if all verifications are satisfied and 

if D accepts on input transcript (x,prefr(n)_l, a~(,O). 

4.2 P r o o f  o f  c o r r e c t n e s s  fo r  ( P , V )  

This subsection is devoted to show the following 
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L e m m a l 2 .  I f  (A,B) is a public-coin honest-verifier SZK for L, then (P,V) is 
any-verifier non-uniform simulation SZK for L. 

C o m p l e t e n e s s .  Clearly V runs in polynomial time since so do D and the receiver 
of scheme BC~. Now, assume z E L, and P,V are honest. In order to show that  
P can perform his program with high probability it will be enough to show that  
he can find a string ri E {0, 1} r(n) satisfying M(ri, x) = (x,pref~_l ,  ai, s u r f ) ,  
for some ai such that  transcript (x, prefi_ 1, ai, su//) is accepting for (C,D). We 
observe that  since (A,B) is honest-verifier SZK, so is (C,D), and by definition of 
simulator M, P can always find such a string r i .  Finally, we observe that  given 
that  P can successfully perform his program, then the acceptance probability of 
(P,V) is at least as in (A,B), which is overwhelming. 

S o u n d n e s s .  Assume that x ~ L. Then notice that the bit di, j  resulting from 
the output of the j - th  execution of the flipping coin protocol compiling round i 
of (C,D) plays the same role of bit bi,j in the i-th message from D in protocol 
(C,D). Now, we show that  for any P*, bit di,j is almost uniformly distributed. To 
see this, notice that  bit di, j  is computed as c~,j D ai,3, where bit ci,j is uniformly 
chosen by V and bit ai,j is the bit decommitted by P~, using the scheme in [18]. 
Now, from property 2 of Lemma 9, we obtain that  for any z, P~ can decommit 
two possible values for bit ai,j only with negligible probability, for any x (both 
in L or not, when not in L the commitment may be non-concealing- but we do 
not care). Following the analysis done in Claim 3.1 of [18], one can show that  the 
probability that  there exist two seeds si,j, s~,j that  can be used as decommitments 
of two distinct bits is at most 2 -g(n), which is negligible. This implies that  the 
distribution of bit ai,j is almost uniform; namely, the probability that  ai,j = b 
is different from 1/2 only by at most a negligible factor, for b = 0, 1, and the 
same holds for bit di j .  Now, since there are at most a polynomial number of 
bits di,j, the probability that  all bits di,j are not independently and uniformly 
distributed is negligible. Thus, with probability 1 -  a negligible factor, bits di,j 
are distributed exactly as bits bi,j in (C,D). This implies that,  if z ~ L, and for 
any P~, the probability that V accepts is equal to a negligible factor plus the 
error probability in the soundness of (C,D), which is negligible. 

Any-ve r i f i e r  n o n - u n i f o r m  s i m u l a t i o n  s t a t i s t i c a l  ze ro -knowledge .  We show 
that  for (P,V) for any probabilistic polynomial-time verifier V ~, there exists a 
simulator Sv,, such that, for any x E L, and for any constant c, the statisti- 
cal distance between Sv,(x) and Viewv,(z) is at most Izl -~. The simulation is 
black-box whenever the one of (A,B) is. Informally, our simulator S will try to 
simulate an accepting conversation of (P,V), as follows. First, S will generate a 
conversation of (C,D), and then will try to force the outcomes of the flipping-coin 
subprotocols executed by (P,V) consistently with the messages of the verifier D, 
in the inner conversation. In this process, the simulator S will use the rewinding 
simulation technique to obtain the desired outcome of any flipping-coin proto- 
col. Contrarily to what usually happens, this strategy may not be successful in 
this case, especially if the cheating verifier V ~ somehow is able to guess the bit 
committed by P. We will show that  such a cheating verifier can be used as a 
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black box to break the commitment  scheme BC~. Now, notice that  by L e m m a  10 
an algori thm breaking scheme BC~ can be transformed into an algori thm that  
inverts a prefix of the output  of the simulator M for (C,D). The construction of 
our proof  system (P,V) will guarantee that  the preimage thus obtained has dis- 
tance smaller than any given (input) polynomial  from the uniform distribution 
among those strings generating the given prefix of the inner conversation. This 
will allow us to generate a random string for the simulator which generates the 
inner conversation obtained so far. Thus, for any cheating verifier V ~, the simu- 
lation will always make some progress, either thanks to the rewinding technique, 
or because the cheating behavior of V ~ allows us to compute a random string 
which generates the inner conversation so far. In this way, r(n)k(n) phases are 
sufficient to guarantee that  the simulator outputs  an accepting conversation of 
protocol (P,V). Now we proceed more formally. 

T h e  p r o c e d u r e s  Estimate, Guess a n d  invert. The algorithm S will use three 
procedures. The first procedure, called Estimate will be run by S to evaluate the 
cheating behavior of V ~ in each execution of a flipping-coin protocol. Specifically, 
notice tha t  for some ( 'easy '  or 'hard ' )  x's, V ~ might be able to correctly guess 
the commit ted  bit ai,j with some probabil i ty bounded away from 1/2, and then 
influence the distribution of the bit di,j output  of the flipping-coin protocol. 
Using procedure Estimate for each execution of the flipping-coin protocol, the 
simulator  will est imate the bias 6i,j caused by V ~ on bit di,j. The est imate will 

be done as follows: on input a constant c let r (n)  = r'  n , k ( n )  = ~' n , and let 
q = max{100, 2 ( c+  r'k')+ 1}, S will t ry to est imate d i , j  with a number  ei,j such 
that  ei,j is near 1/2: eij E [1/2 - n-q, 1/2 + n-q] (i.e., be unnoticeable) with 
exponentially small probabil i ty of errors, or not (i.e., ei,j is bounded away from 
1/2, e.g. ei,j e [0, 1/2-3n-q]U[1/2+3n-q, 1]) Using a large enough polynomial-  
size sample n s , extreme assumption on the bias probability, and Chernoff bounds, 
an exponentially small error in the est imate is possible (using an appropriate  e 
in the est imation test below). Thus the accuracy error of this est imate will be 
less than  n-q, which is enough for us since we would like the distance between 
the output  of the simulator and the output  of the protocol to be smaller than 
n - c "  

Now, on input the common input to the proof system x, the constant q, the 
number  i of round and the number  j of bit in the i-th round of (C,D), procedure 
Estimate runs the following steps: 

P r o c e d u r e  Estimate: 

1. s e t  co~n~0,0  ----- c o u r t , o , 1  : c o r n e l ,  0 ----- co?2n~l,1 : 0; 
2. f o r l = l , . . . , n  s, 

uniformly choose bit al and commit to at using scheme BCx; 
get bit cl from V~; 
s e t  c o l s n t a l , c  ~ -~- c o u n t a z , c l  -}- 1; 
reveal bit az to V ~ using scheme BC~; 
rewind V ~ to the state just before running the j- th execution of protocol BCx 

in the i-th round; 
3. set Ph,k = cOUnth,k/n 2q+l, for h, k = 0, 1, and 6,,j = [p0,a + pl,0 - p1,1 - p0,o[; 
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4. if 6,,v > e then set bias = yes  else set bias = no; 
5. output (bias,po,o,pl ,o,po,l ,pl ,1) and return. 

Procedure Estimate will be used by the simulator S v ,  to distinguish whether 
the bias added by the verifier V' to the distribution of the output  of a flipping 
coin protocol is at least n-q or not. In fact, the procedure satisfies the following. 

Fac t  13. Let bias be output  by procedure Estimateon input z, i, j .  The bias ~i,j 
of bit bi,j in an execution of (P,V') is at least n -q  if bias = yes  or smaller than 
n - q  if bias = no. 

In the case bias = no, Fact 13 guarantees that  the bias 6i, j is smaller than 
n - q .  Then the simulator S v ,  is able to successfully simulate the j - th  execution 
in the i-th round of the hit commitment scheme B C ~ ,  by using the rewinding 
technique until it holds that  di,j -- bi,j. This happens in an expected number 
of steps that  is at most 2nq. In the second case, namely, when bias = yes ,  the 
simulator S v ,  is not  able to successfully simulate the j - th  execution in the i-th 
round of the bit commitment scheme B C ~ .  However, since the distribution of 
bit bi,j is far from uniform, with sufficiently high probability the value of ci,j is 
chosen by V ~ depending on that  of ai, j ,  and thus V ~ can break the commitment  
scheme with high probability. Formally, on input x, and given the transcript t r i , j  
of the commit phase of an execution of scheme BCz, procedure Guess does the 
following: 

P r o c e d u r e  Guess: 

1. Let tr,,~ be the transcript of the commit phase of an execution of BC~ with V'; 
2. get bit c,,~ from V'; 
3. if p1,1 + p0,0 > p0,1 + pl,0 then set a,,j = c,,3 else set a,,~ = 1 - c,,~; 
4. output a,,j and return. 

Procedure Guess assumed (for exposition) uniform behavior on cheating on com- 
mitment  of 1 and commitment of 0. A refinement leading to a guess in other 
behaviors is possible. The procedure satisfies the following fact 

Fac t  14. The bit a~,j output  by procedure Guess on input z ,  i, j ,  t r i , j  is equal to 
the bit committed by P in transcript tr i , j  with probability at least ~i,j. 

From Fact 14 it follows that  there exists an algorithm which breaks the com- 
mitment  scheme B C ~ .  Then, using the fact that  protocol (C,D) is the parallel 
execution of protocol (A,B), together with the reduction in Theorem 10, we ob- 
tain that  there exists an algorithm Invert which (using appropriate polynomial 
resources and success probability), given input x, p r e f ,  returns a randomly cho- 
sen string which allows the simulator M to generate the current prefix of the 
inner conversation. Formally, we obtain the following 

Fac t  15. Let r be the output  of algorithm Invert on input z , p r e f i .  Then the 
distribution of r is statistically close to the uniform distribution on the strings 
r such that  M ( r ,  z )  : ( z , p r e f i  o s u f f i ) ,  and D ( z , p r e f i  o s u f f i )  = 1. 
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T h e  s i m u l a t o r  Sv,.  On input x, and constant c, algorithm Sv, uses procedures 
Estimate and Invert, as follows. 

1. Uniformly choose an s(n)-bit string R. 
2. Run M on input R, x thus obtaining conversation 

cony -- ( (bl j . . . .  , bl,tk ), al . . . .  , a t - l ,  (br,1 . . . .  , br, t~ ), at) as output. 
3. For i = 1 , . . . , r ,  

fo r j  = 1 , . . . , t k ,  
run procedure Estimate on input x, i, 3, c, and let bias be its output; 
if bias = no then 

repeat 
rewind V' until after message a,-1 was sent to him; 
run a flipping coin protocol interacting with V' 

and let d,j be the resulting output; 
until d,j  = b,,~; 

if bias = yes then 
run a flipping coin protocol interacting with V' 

and let b,,j be the resulting output; 
rewind V' until after message a,-1 was sent to him; 
set pre f ,  = (bl, a l , . . . ,  b,-1, a,-1, (b , j , . . . ,  b,j)); 
run algorithm Invert on input x , p r e f , ,  and let R, be its output; 
set cony = (51, al . . . . .  a t - l ,  br, a,)  = M ( R , ,  x); 

send message a, to V'. 
4. Output: cony and halt. 

We observe that the expected running time of simulator S is p o l y ( n )  . n ~ 
and thus it is expected polynomial time, for any given q derived from any given 
constant c. Now we need to show that the output  of the simulator is statistically 
close to the view of the verifier. 
In the next lemma we prove that the output of the simulator is statistically close 
to the view of the verifier. 

L e m m a  16. For a n y  c o m m o n  i n p u t  x and  aux i l i a ry  i n p u t  y, for  a n y  c o n s t a n t  

c, the  s ta t i s t i ca l  d i s tance  be tween  the  o u t p u t  o f  S v ,  on i n p u t  x ,  c and the  v i e w  

o f  V in p r o t o c o l  ( P , V )  on i n p u t  x is at  m o s t  Izl -=. 

P r o o f .  All messages from V' are equally distributed in both spaces since they 
are computed in the same way. Now, we consider the messages from the prover in 
both spaces. The messages sent by the prover in the commitment phase of BC~ 
are computed almost in the same way in both spaces; here, the only difference 
is that  the output of each flipping coin protocol is uniformly distributed in the 
simulation (since it is equal to the random bit output  by M) while it has a bias 
smaller than n -q  in the view of V'. However, this contributes a factor smaller 
than n -c  to the statistical difference between the two spaces. Now, we consider 
the messages ai from the prover, for i = 1 , . . . ,  r. We observe that  in the output  
of S they are all computed in two ways: either they are taken from the output  
of M on input the uniformly distributed string R and x, or they are computed 
by first using procedure Invert to compute a random string P~ for M and then 
they are taken from the output of M on input R~ and x. In the first case it holds 
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that  in both spaces the message ai is distributed as a message output from M 
on a random string. In the second case, the distribution of this message in the 
output of the protocol is as in the first case. In the output of the simulator S, 
instead, the procedure Invert is executed. Now, notice that,  given prefix prefi  
of a conversation, procedure invert computes a string Ri which, by Fact 15, 
is chosen uniformly enough among those satisfying M(R~, z) = (pref~, s u f f i ) ,  
and D ( x , p r e f i , s u f f i )  = 1. In other words, message ai+l is computed with 
a distribution statistically close to that  of the simulator Sv,, conditioned by 
the conversation so far, which is statistically close to the prover's distribution. 
Therefore, the overall statistical distance between the two spaces is less than 
n -c. [] 

5 Impl icat ions  on non-uni form s imulat ion SZK proofs 

We combine the result in Theorem 11 with some results in the literature. This 
will show results regarding non-uniform simulation SZK. 

T h e o r e m  17. Let L be a language. I f  L has a honest-verifier SZK proof  then L 
has a non-uniform sire. SZK proof. 

Proof Assume L has a honest-verifier SZK proof system (A,B). If (A,B) is 
public-coin, applying Theorem 11 will prove the result. If (A,B) is private-coin, 
then a result in [20] allows to obtain a public-coin honest-verifier SZK proof 
system, and, then, applying again Theorem 11 will prove the result. [] 

T h e o r e m  18. Let L be a language. I f  L has a private-coin SZK proof  then L 
has a non-uniform sire. public-coin SZK proof. 

Proof. Assume L has a private-coin SZK proof system (A,B). Using a result 
in [20], (A,B) can be transformed into a honest-verifier public-coin SZK proof 
system (C,D) for L. Then, using Theorem 11, (C,D) can be transformed into an 
SZK proof system for L. [] 

T h e o r e m  19. Let L be a language. I f  L has a SZK proof  then L has a non- 
uniform sim. SZK proof. 

Proof. Assume L has a SZK proof system (A,B). Using a result in [20], (A,B) 
can be transformed into a honest-verifier SZK proof system (C,) for L. Then, 
using Theorem 17, (C,D) can be transformed into a SZK proof system for L. [] 

A c k n o w l e d g e m e n t s .  Many thanks go to Alfredo De Santis, Oded Goldreich 
and Russell Impagliazzo for valuable discussions and remarks. 



45 

References  

1. W. Aiello and J. Hs Statistical Zero Knowledge Can Be Recognized in Two 
Rounds, Journal of Computer  and System Sciences, vol. 42, 1991, pp. 327-345. 

2. M. Bellare, S. Micali, and R. Ostrovsky, The (True) Complexity of Statistical Zero- 
Knowledge Proofs, in STOC 90. 

3. M. Bellare, and E. Petrank, Making Zero-Knowledge Provers Efficient, STOC 92. 
4. M. Ben-Or, O. Goldreich, S. Goldwasser, J. Hs J. Kilian, S. Micali, and P. 

Rogaway, Everything Provable is Provable in Zero Knowledge, in CRYPTO 88. 
5. I. Damgs Interactive Hashing can Simplify Zero-Knowledge Design without 

Complexity assumptions, in CRYPTO 92. 
6. I. Damgs O. Goldreich, T. Okamoto, and A. Wigderson, Honest-Verifier vs. 

Dishonest-Verifier in Public-Coin Zero-Knowledge Proofs, in CRYPTO 95. 
7. A. De Santis, G. Di Crescenzo, P. Persiano, and M. Yung, On Monotone Formula 

Closure of SZK, in FOCS 94. 
8. U. Feige, A. Fiat ,  artd A. Shamir, Zero-Knowledge Proofs of Identity, 3ournal of 

Cryptology, vol. 1, 1988, pp. 77-94. 
9. L. Fortnow, The Complexity of Perfect Zero Knowledge, in STOC 87. 

10. O. Goldreich and H. Krawczyk, On the Composition of Zero-Knowledge Proof Sys- 
tems, SIAM Jourm~l on Computing, 1996. 

11. O. Goldreich, S. Micali, and A. Wigderson, Proofs that Yield Nothing but their 
Validity or All Languages in NP Have Zero-Knowledge Proof Systems, Journal of 
the ACM, vol. 38, n. 1, 1991, pp. 691-729. 

12. O. Goldreich and Y. Oren, Definitions and Properties of Zero-Knowledge Proof 
Systems, Journal of Cryptology, v. 7, n. 1, 1994. 

13. S. Goldwasser, S. Micali, and C. Rackoff, The Knowledge Complexity of Interactive 
Proo[-Systems, SIAM Journal on Computing, vol. 18, n. 1, February 1989. 

14. S. Goldwasser and M. Sipser, Private Coins versus Public Coins in Interactive 
Proof-Systems, in STOC 1986. 

15. J. Hs R. Impagliazzo, L. Levin, and M. Luby, Construction of a Pseudo- 
Random Generator from One-Way Function, to appear in SIAM Journal on Com- 
puting, previous versions: FOCS 89 and STOC 90. 

16. R. Impagliazzo and M. Luby, One-Way Functsons are Necessary for Complexity- 
Based Cryptography, in FOCS 90. 

17. R. Impagliazzo and M. Yung, Direct Minimum Knowledge Computations, in 
CRYPTO 87. 

18. M. Naor, Bit-Commitment Using Pseudo-Randomness, in CRYPTO 89. 
19. M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yuttg, Perfectly-Secure Zero- 

Knowledge Arguments Can be Based on General Complexity Assumptions, in 
CRYPTO 92. 

20. T. Okamoto, On Relations Between Statsstical Zero-Knowledge Proofs, STOC 96. 
21. R. Ostrovsky, One- Way Functions, Hard on Average Problems and Statistical Zero- 

Knowledge Proofs, in Structures 91. 
22. R. Ostrovsky, It. Venkatesan, and M. Yung, Interactive Hashing Simplifies Zero- 

Knowledge Protocol Design, in EUROCRYPT '93. 
23. R. Ostrovsky, and A. Wigderson, One-way Functions are Essentialfor Non-Trivial 

Zero-Knowledge, in ISTCS 93. 
24. A. Yao, Theory and Applications of Trapdoor Functions, in FOCS 81. 


