
A New Fast Algorithm for Optimal Register
Allocation in Modulo Scheduled Loops

Sylvain Lelait t, Guang R. Gao 2, and Christine Eisenbeis 3

1 Institut fiir Computersprachen, Technische Universit£t Wien,
Argentinierstrafle 8,A-1040 Wien, E-maih sylvain@complang, tuwien, ac. at

2 Department of Electrical and Computer Engineering, University of Delaware,
140 Evans Hall, Newark, DE 19716, USA, E-mail: ggao©capsl.udel.edu

3 INRIA Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France,
E-mail: Chri st ine. Eisenbeis~inria. fr

Abst rac t . In this paper, we focus on the register allocation phase of
software pipelining. We axe interested in optimal register allocation. This
means that the number of registers used must be equal to the maximum
number of simultaneously alive variables of the loop. Usually two dif-
ferent means are used to achieve this, namely register renaming or loop
unrolling. As these methods have both drawbacks, we introduce here
a solution which is a trade-off between inserting m o v e operations and
unrolling the modulo-scheduled loop body.
We present a new algorithmic framework of optimal register allocation
for modulo scheduled loops. The proposed algorithm, called U&M, is
simple and efficient. We have implemented it in MOST. An experimental
study of our algorithm on more than 1000 loops has been performed and
we report a summary of the main results. This new algorithm performs
consistently better than several other existing methods.

1 I n t r o d u c t i o n

Register allocation is very important for modulo loop scheduling in high-perfor-
mance architectures especially when an increasing level of instruction-level par-
allelism is exploited. Software pipelining is often performed in two phases: first
derive a schedule with a maximum computation throughput of a loop (i.e. min-
imize the initiation interval) under a given resource constraint, then allocate
registers for the derived schedule. In production compilers, the register alloca-
tion phase is usually performed using heuristics which a t tempt to minimize the
cost of spilling under a given number of registers.

Our objectives in this paper axe somewhat different: we are interested in
optimal register allocation, i.e. minimize the number of registers required. We
argue that this is an important problem for situations where information on the
smMlest number of registers is required. For example, when allocating registers
interprocedurally it is beneficial to allocate a minimal number of registers to
each procedure using such a solution. This reduces the amount of register saving
required at procedure call time, and can also improve interprocedural register

205

allocation [19]. When performing global register allocation, it is often useful to
do the allocation hierarchically, i.e. it is useful to know the minimum register
budget needed for a particular code section (i.e. loops) as an input to the overall
register allocation decision.

Optimal register allocation for modulo scheduled loops is known to be hard.
We have presented and analyzed the difficulty in Section 2 with the discussion of
several existing methods, e.g. Lam's Modulo Variable Expansion [11], Eisenbeis'
method involving loop unrolling [6] (EJL) and the meeting graph heuristic [7]
(MTG). In short, the optimal solution to this problem often requires the help of
the insertion of "register moves" or unrolling the modulo-scheduled loop body.
Brute force searching of the best solution has often a prohibitive cost, while
existing fast heuristics may either sacrifice the register optimality or incur large
unrolling overhead.

In this paper, we present a new method of optimal register allocation for
modulo scheduled loops called U&M (for Unroll & Move), as it is a compromise
between unrolling the scheduled loop body and the insertion of move operations.
We note that, for a modulo scheduled loop, the lifetime of a loop variable of-
ten spans several iterations, but only at the portion corresponding to the last
iteration - called the "fraction-of-an-iteration-interval" or]oai a term coined by
Altman [1] - there is an opportunity of register sharing. The rest of the life-
time can be allocated to a "buffer" - a name coined by Ning and Gao [15] -
implemented with a number of register moves or with unrolling.

We have implemented our algorithm in MOST (Modulo Scheduling Toolset
[1]). An experimental study of our algorithm on more than 1000 loops from
several benchmarks has been performed and we report a summary of the main
results. For the benchmark programs we tested so far, our method performs con-
sistently better than Lam's Modulo Variable Expansion method for the number
of registers, and than EJL, and MTG for the unrolling degree of the loop.

The rest of this paper is organized as follows. In Section 2, we present the
problem we are dealing with and the existing methods we mentioned. In Sec-
tion 3, we present our method, and the algorithms we designed to compute an
unrolling degree of the loop. In Section 4, we focus on the complexity of our al-
gorithms and show that U&M gives an optimal register allocation. In Section 5,
we present experimental results, which show the effectiveness of our method. In
Section 6, we mention some other related work, and finally we conclude.

2 A M o t i v a t i n g E x a m p l e

In this section, we illustrate the problem of loop register allocation using the ex-
ample shown in Figure l(a). Our discussion is in the context of modulo scheduling
in order to exploit parallelism between loop iterations. In Section 2.1, we will
first discuss the basic issues and trade-offs of loop register allocation using reg-
ister moves or loop unrolling techniques on the running example. In Section 2.2,
we briefly compare how the several existing loop register allocation methods per-
form on the given example and illustrate where these methods may be subject
to improvements.

206

L O O P L O O P L O O P

a[i+2] = b[i] + 1 R3 = b[i] + 1 R1 = b[i] + 1 c[i+3] = R3 + 3

b[i+2] = c[i] + 2 b[i+2] = eli] + 2 b[i+2] = c[i] + 2 R3 = b[i+2] + 1

c[i+2] = a[i] + 3 c[i+2] = R I + 3 c[i+2] = R2 + 3 b[i+4] = c[i+2] + 2

E N D L O O P R1 = R2 R2 = b[i+l] + 1 c[i+4] = R1 + 3

R2 = R3 b[i+3] = c[i+l] + 2 E N D L O O P

E N D L O O P

(a) (b) (c)

Fig. 1. (a) Original loop, (b) allocated using moves, (c) allocated using unrolling

2.1 Bas ic I ssues and Trade-Offs

We focus here on software means to deal with loop register allocation. In the
loop of Figure l(a), a[i] is alive during 3 iterations. One possibility, called register
renaming, for allocating a[i] is to use 3 registers and perform move operations
at the end of each iteration [3]: a[i] is in register R1, a[i + 1] in a2, a[i + 2] in
R3. Then you must use move operations to shift the registers at every iteration,
as shown in Figure l(b). The total registers requirement will be 9 if both b and
c are also allocated to registers this way. It is easy to see that if variable v spans
d iterations, then you have to insert d - 1 move operations at each iteration, but
sometimes, especially in the sequential case when you need to store temporary
variables like in Figure l(b), you may need one additional register and d moves.
This is likely to have a bad impact on the instruction schedule.

Another option is to perform loop unrolling. Here different registers are used
for the different instances of the variable. In our example shown in Figure 1(c),
the loop is unrolled three times, and a[i + 2] is stored in R1, a[i + 3] in R2,
a[i + 4] in R3, a[i + 5] in R1, and so on. To express this, you have to write
different code for each of the original three iterations in the unrolled loop body,
since the register assignment scheme changes. In this case we avoid inserting
extra move operations. The drawback is that the code size will be multiplied by
3 in this case, and by the unrolling degree in the general case. This can have a
dramatic impact on performance by causing unnecessary cache misses when the
code size of the loop happens to be larger than the size of the instruction cache.
Again, for simplicity, we did not expand the code to assign registers for b and c.

The impact of a loop register allocation scheme can be measured by 3 pa-
rameters. The first one is the number r of registers used. A inescapable lower
bound for r is the maximal number of simultaneously alive variables, denoted as
M a x L i v e [10]. The register allocation is said to be optimal if it uses M a x L i v e
registers. The second one is the unrolling degree u. A large unrolling degree im-
plies large code size and may cause instructions cache misses; u should therefore
be as small as possible. The third one is the number m of extra move instructions
per iteration. The impact of this parameter is hard to measure because it may
sometimes be that the move instructions can be performed in parallel with the
other operations. Analyzing this requires analyzing the loop schedule, which is
beyond the scope of this paper.

207

2.2 E x i s t i n g M e t h o d s : H o w Do T h e y P e r f o r m on Th i s E x a m p l e ?

LOOP LOOP
LOOP

R1 = R 5 + 1 R3 = R 2 + l; R2 = R3
R | = R 5 + I R l = R l + 3 R I = R 2 + 2

R 4 = R8 + 2 R5 = R l + 2 ; R l =R5
R 4 = R 8 + 2 R 4 = R S + 1 R 4 = R 4 + 3

R 7 = R 2 + 3 R7=R2+3 R7=R8+2 R 7 = R 8 + 1 R7=R2+3;R2=R7

R 2 = R 6 + t R 2 = R 6 + l R 2 = R 2 + 3 R2=R3+2 R 4 = R 1 + l ; R I = R 4

R 5 = R 9 + 2 R S = R 1 + 2 R 5 = R 6 + 1 R S = R 5 + 3 R6=R2+2;R2=R6

R 8 = R 3 + 3 R 8 = R 3 + 3 R 8 = R l + 2 R 8 = R I + I R 8 = R I + 3 ;Rl = R 8
R3 = R4 + 1 ENDLOOP

R 3 = R 4 + 1 R 3 = R 4 + 3 R 3 = R 4 + 2
R 6 = R 7 + 2

R 6 = R 7 + 2 R 6 = R 7 + 1 R 6 = R 6 + 3
R9 = RI + 3 ENDLOOP

ENDLOOP

(a) (b) (c)

Fig. 2. Loop allocated following (a) Lam's heuristic, (b) meeting graph heuristic, (c)
our U&M method

We present here several existing methods and their performance on the run-
ning example in terms of the three parameters just defined.

In her algorithm, also called Modulo Variable Expansion, Lam [11] finds
the least unrolling degree that enables coloring. To achieve this purpose she
computes the unrolling degree u by dividing the length of the longest live range
by the number of cycles of the loop. In this example, the longest live range lasts
8 cycles, and the number of cycles of the loop is 3 cycles, so u = [8] = 3 .
Then we can assign to each variable a number of registers equal to the least
integer greater than the span of the variable that divides u. For our example,
each variable a, b, c is assigned 3 registers - R1, R2, R3 for a, R4, Rh, R6 for b,
R7, R8, R9 for c and the loop is unrolled 3 times. The allocation can be seen in
Figure 2(a).[m = 0, r = 9, u = 3]

One can verify that it is not possible to allocate on less than 9 registers when
unrolling the loop 3 times. But this method does not ensure a register allocation
with MaxLive registers, and hence is not optimal. That is, as in this example
MaxLive = 8, we may be able to use only 8 registers instead of 9. As we will
see later, the round up to the nearest integer for choosing the unrolling degree
may miss an opportunity for achieving an optimal register allocation.

There are several algorithms proposed to achieve an allocation with a min-
imum number of registers equal to MaxLive. The algorithm of Eisenbeis et
al. [6] successfully allocates the minimal number of registers, that is MaxLive.
Their method, however, does not control the unrolling degree at all. Another
relevant work is by Eisenbeis et al. [7]. This approach is based on a new graph
presentation called "meeting graph" that accounts in the same framework for
r and u. The graph represents the succession of the intervals along the circle,
its decomposition into circuits gives a bound of unrolling. They are also able to
allocate on r = MaxLive registers, with a better u than EJL in general. The
main drawback of that method is its time complexity [12]. For our example the
MTG heuristic obtains the allocation shown in Figure 2(b).[m = 0, r = 8, u = 81

208

We can see that the loop unrolling degree u is much bigger in this case than
the earlier solutions although the number of registers used is optimal. This can
lead to instruction cache misses if the unrolled loop body becomes too big. Hence
you can have two extreme solutions. The first one is to use move operations
without loops unrolling. This may have a dramatic impact on the schedule. The
other one is to use only loop unrolling. That may cause spurious instruction
cache misses or even be impracticable due to some memory constraints, like in
embedded processors. Our method combines both alternatives resulting on a
lower unrolling degree and generally less move operations executed.

3 T h e U K : M M e t h o d

This section presents our new method. In Section 3.1, we introduce it intuitively
and show how it works on our example. Then in Section 3.2 we describe the
algorithm more precisely.

3 . 1 I n t u i t i v e I d e a o f O u r M e t h o d

Our goal is to avoid a large unrolling degree while still achieving the use of a
optimal number of registers. Our approach is based on two observations. First,
in the works presented in Section 2.2 that minimize the unrolling degree, the loss
of registers comes from an over-approximation of the actual number of necessary
registers. For instance, the loop we deal with is scheduled with I I = 3 cycles
and each variable is alive during 8 cycles. Under Lam's method 3 registers are
allocated to each variable. But it really needs 2 registers for the 2 full I I wrap
around plus a fraction of ~ of an iteration which may not actually need to
occupy a register during a full iteration. Therefore one very delicate point for
saving registers is how to capture and color these foais. Second, in the works
that minimize the number of registers, large unrolling degrees are induced by
the fact that a least common multiple is computed.

Based on these observations our register allocation method is performed with
three phases:

- Phase 1 : Schedule the loop using a software pipelining algorithm.
- Phase 2: Allocate the remaining foai parts of the lifetimes into registers.

Unrolling may be required in this step.
- Phase 3: Allocate the non-foai parts of all live ranges using an existing ef-

ficient method, interval graph coloring. Register moves may be used in this
step.

Phase 2 aims at coloring the foais with an optimal number of colors. Thus
unrolling may be necessary to reduce the number of registers, even if each interval
spans less than one "turn" o f l I cycles, as it is the case in our current example.
These intervals are then colored according to u, the computed unrolling degree.

The buffers are then allocated to registers in Phase 3 according to the allo-
cation of the foais during the second phase. The assignment of each buffer can

2 0 9

be performed as follows. Assume a buffer b of size d, and the last turn is a foai.
Then, we allocate (d - 1) registers for b and his copies in the u-unrolled loop.
The last foai and its instances from other iterations are be assigned the registers
derived from Phase 2.

If we apply our method to the same example as the other methods, we obtain
the following result. In all our figures, variable lifetimes are depicted by intervals
on a circle cut at the origin. Thus we have a line where the last point is equal to
the first one. The end of a lifetime is depicted by a small circle. In Figure 3(a),
each variable is alive during 8 cycles, this means 3 iterations as I I = 3. Each
variable is split into one 6 cycles interval and one 2 cycles interval with the latter
being the foai. Therefore lifetime a is cut after 6 cycles and hence gives foai a' .
The 3 foals a', b' and c' are allocated on R1 and R2, by unrolling the loop twice.
The buffer part of a, (resp. b and c) are allocated on R3 and R4 (resp. R5 and
R6, and R7 and R8). In theory 6 m o v e per iteration should be inserted. But
a simple optimization by permuting registers allows us to use only 3 m o v e per
iteration. The final register allocation is shown in Figure 3(b) and the final code
is generated as shown in Figure 2(c) , where '$1; $2' denotes that $1 and S 2 a r e

executed in parallel, which is possible with some processors, l m = 3, r = 8, u = 21

c ' 2 RI
• R8 R1 c ' c2 ,, I c ' 2

• c' c2 I
| R7 I c' 1 R2 • R8

c e l R7
c t - - cl

,, , II b' • b2 R6 • b ' 2 R2 e

b2 I R6
R l

• R5
b I bl R5 I b'l

., a ' e a b l

a ~ a2 R4 ma'2 RI e R4

a2]
I I I I ~ aU_, R2

e R3
0 1 2 3 a t I

(a) I I I I I I' ' , ~

0 1 2 3 4 5 6

(b)

Fig. 3. A lifetimes family and its register a~ocation with our method

We can then summarize the results of the different methods as follows:

- L a m : m = 0 , r = 9 , u = 3 .
- EJL and MTG: m = 0, r = 8, u = 8.
- U & M : m = 3 , r = 8 , u = 2 .

Thus we can see that our algorithm does bet ter than Lava's regarding the
number of registers and the unrolling degree, and bet ter than the loop unrolling
methods EJL and MTG with regard to the computed unrolling degree. A rea-
sonable number of m o v e operations are introduced to achieve this result.

In summary, there are two novel aspects in our approach. First, the 3-phases
strategy is new, which permits us the separation of the buffer register allocation

210

from the foais, thus reducing the overall unrolling degree in general. Second, the
method of register allocation of foals is itself novel, taking into consideration the
features of the circular-arc graphs of foais - a topic of the next subsection.

3.2 Coloring o f FOAI Lifetimes: Our Solut ion

We deal with cyclic interval families of live ranges generating circular-arc graphs
as interference graphs [9] for usual register allocation. In the sequel of this paper,
the maximal width of an interval family I will be noted rx. It corresponds to
the maximum number of lifetimes overlapping a point and is equal to MaxLive.
Circular-arc graph q-coloring is known to be a polynomial problem, whereas
finding the chromatic number of these graphs is an NP-complete problem [8]
like a general coloring problem. Fortunately some efficient heuristics exist [9].

However, we can try to unwind I into a number of u repetitions, and we may
get it colored with rx colors, the optimal we can do. So an interesting question is
how much do we need to unwind in order to get a minimum coloring. Furthermore
unrolling the loop on rl iterations does not always ensure a register allocation
with r1 registers [7]. An upper bound of unrolling for any cyclic interval family
exists equal to lcm(rl, ..r,.), where ri is the weight of a connected component of
the meeting graph, has been defined in [7].

Therefore we introduce the concept of tight interval set. The beginning and
the end of an interval i of an interval family I on a circle C are denoted by
b(i) and e(i). We have the set of the points which are not covered by interval i,
P(i) = {p E C,p ¢_ i} and the set of its endpoints E(i) = {b(i),e(i)}. So a tight
interval set T is defined as T = {i E I, Vj E T, P(i)NP(j) • ~VE(i)nE(j) ¢ 0}.
It contains intervals which either share an endpoint or do not cover at least one
common point. If we only consider intervals a and b in Figure 3(a), we have 2
tight interval sets, then if we add c we have only 1 tight interval set.

In general, it is useful to decompose the tight interval sets as much as possible
in order to reduce the total unrolling degree required to achieve optimal register
allocation. There are many different ways for such decomposing. However, our
experiments indicate that for a majority of the circular-arc graphs derived from
foais in real loops (98.13% of 1394 loops), there exists a decomposition with an
unrolling degree equal to 1 that achieves the optimal register allocation. Based
on such an observation, we present a heuristic to aggressively decompose an
interval family into subsets most of which possibly span at most one iteration.

In the following we assume that I is a set of cyclic intervals, each spanning
only a fraction of an iteration. The graph associated to the interval family I
will be colored using rI colors with at most an unwinding factor u equal to the
minimum between the Icm of the width of the tight interval subsets building
I and the lcm of the width of the tight interval sets. The number of iterations
spanned by a tight interval set T is noted w(T). A tight interval set T can be
decomposed in tight interval subsets tl,...t~, whose number of iterations spanned
are noted w(ti).

We have designed the following two-step method. First we simplify the in-
terval family by pruning intervals using the first step of the so-called fat-cover

211

heuristic of Hendren et al. [9]. A fat cover is a set of non-overlapping intervals
covering all the "fat points" of the circular-arc graph in one iteration. Hence each
fat cover built corresponds to a tight interval subset which spans one iteration.
Then we apply a greedy heuristic on the remaining intervals. By reducing the
size of the interval family, we reduce the number of choices made by the greedy
heuristic, hence leading to a bet ter result.

A l g o r i t h m 1 The Circular Register Relay Algorithm
Require : a set I of fraction of an iteration intervals of maximal width r i
Ensure : a cyclic register relay road-map C: an ordered sequence of nodes in III
1: Initialize the coloring sequence Cp = 0, C = $.
2: Starting with the smallest leftmost interval x, let I = 1 - {x}
3: while (I ¢ $) do {Main loop which visits each interval once}
4: x' = Nex t (x)
5: c ~ = c~ + {x'}
6: if (end(x) # begin(x')) t hen
7: Check if 3 y e Cp such that end(x) < begin(y) < begin(x') and such that

w(t (y , . . . ,x)) -- min~(t(z , . . . ,x)). If so remove {y, ...,x} from Cp and add it
to C.

8: else {Check if x' ends when a visited interval still in Cp begins}
9: i f (3y e Cv, end(x') = begin(y)) t hen

10: Remove {y, ..., x'} from Cp and add it to C.
11: end if
12: end if
13: I -- I - {x}
14: end while
15: i f (Cp • 0) t hen
16: ii = i
17: while (Cp # 0) do {Loop which scans the remaining intervals in Cp}
18: if (end(Cp(ii - 1)) ¢ begin(Cp(ii))) t h e n
19: Check if 3y E Cp such that end(Cp(ii - 1) < begin(y) < begin(Cp(ii))

and such that w (t (y , . . . , Cp(ii - 1)11 -- m inz (w(t (z , . . . , Cp(ii - 11111. If so
remove {y, ..., Cv(ii - 1)} from Cp and add it to C.

20: end if
21: zz -- ~ - 1
22: end while
23: if (Cp # 0) t h e n
24: Remove {Cp(1), ..., Cp(k)} from Cp and add them to C.
25: end if
26: end if
27: Build the tight interval sets and their Ti.
28: Return C

The greedy heuristic consists of two algorithms, one to find an unrolling de-
gree of the foals, another one to color the foais once they are unrolled. The
aim of the first one is to find the greatest number of tight interval subsets
spanning one iteration. This is in contrast to other algorithms such as M T G
which try to find a general optimal solution but do not focus on such special
decompositions. The principle of Algorithm 1 is the following. We build a tern-

212

porary tight interval Cp subset by adding intervals in the order they come on
the line. We break Cp in two cases, when an encountered interval ends where
an already visited interval begins, and when an already visited interval begins
in a gap in Cp. The tight interval subset found is then added to C. We do
this until C contains all the intervals, then we build the tight interval sets Ti
and compute their weights w(Ti) . Finally we can compute the unrolling degree
u -= min(Icm(w(T1), ..., w(Tm)) , l cm(w(t l) , ...W(tn))) and apply another simple
algorithm [13] to cyclically color the foals. We present in Example 1 how the
overall method works on a real loop.

Example 1. This example shows the complete process on a loop where the foal
family requires to be unrolled twice. Figure 4 shows the lifetimes produced from
the loop ucbqsort-3 of the benchmark Nasa7 of Spec92fp.

3 buffers are occupied entirely, they will be allocated to registers R1 for g,
R2 for f and R3 for d. The foal family I is composed of the following intervals:
a, b, c, d ~ (a piece of d), e, f ' (a piece of f) .

Let's describe the way the decomposition is obtained and the unrolling de-
gree is computed according to Algorithm 1. We start with the smallest interval
beginning at the origin, that is £ , thus Cp = {d'). Then we add c which follows
immediately d r, b which follows e and e which follows b, so Cp - {d', e, b, e}. As
e ends when d r begins, we can build tl = {d ~, e, b, e}, with w(t l) -- 2, we update
C, C = {£, c, b, e} and Cp, Cp = 0. Then we add a to Cp and f ' , Cp : {a, fl}.
As we had to go over the beginning of a to add f ' , we can build a tight interval
subset t2 --- {a}, with w(t2) = 1. We update C and Cp, C = {dr ,c ,b ,e ,a} and
Cp = { f r} . Finally we build the last tight interval subset, t3, and update C and
Cp. Hence t3 = (f ' } , with w(t3) = 1, C = { d ' , c , b , e , a , f ' } and Cp = 9.

Thus we obtained only one tight interval set T with w(T) = 4, which has
been divided in 3 tight interval subsets. We have the following: tl = {d r, c, b, e}
with w (t l) = 2, t2 = {a} with w(t2) = 1, t3 = { f ' } with w(t3) = 1.

Hence we have u = min(lcm(4), lcm(2, 1, 1)) = 2, so we must unroll the foal
family on 2 iterations to obtain a coloring with 4 colors using the decomposition
with the t~s as it gives the lower Icm.

The coloring of the buffers is made according to the coloring of the pieces
belonging to them. We check if a buffer and its foal can have the same color in
order to lower the number of move instructions without changing the coloring of
the other foals. We just have to insert move instructions to ensure the validity
of the live range d. For f it is obvious that we don't need to insert this move
since we can just allocate the same register for f l , f~ and f2, f~ to avoid it.
This leads to the final allocation shown in Figure 4. The move instructions are
depicted by thick dashes inside a live range. After scheduling the loop would
require the following move operations, number of registers and unrolling degree
with the indicated method:

- Buffers and register renaming [15] : m = 2, 'r = 9, u = 1.
- Modulo Variable Expansion [1t] : m = 0, r = 8, u = 2.
- U & M : m = l , r = 7 , u = 2 .
- Loop unrolling [6]: m = 0 , r = 7,u = 4.

213

- Loop unrolling [7] : m = 0, r = 7, u = 6.

g
f,

fl-

e l
d"

d~
c • c l

a { •

I I I I I
0 1 2 3 4

g2 RI ¢. g2 I RI

g l l RI s

F2 R7 • t2 [R7

f l] R2 f ' l

• eH R 5 e27R 4 •
d '2 R4 R3 • ~1 I
dt I R3 ld ' [R.'; •

c2 R5 a R4 R5 cl[• c 2 } - -
bl [R5 R4 • b2] •

I ~'- al I R6 • a2 I R6 •

5 I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

(a) (b)

Fig. 4. Allocation for the loop ucbqsort-3 from the Eqnto~t benchmark with U&M

4 S o m e T h e o r e t i c a l R e s u l t s

We present in this section some theoretical results about the complexity of our
algorithm and the efficiency of our method.

Algorithm 1 always terminates and returns a list C where each interval of
I appears exactly once. Its complexity is polynomial in O(logI I (n + logn)).
The algorithm used to finally allocate the colors has also a polynomial com-
plexity [13]. Note that there is no claim that our method will do the minimum
unfolding.

Hence the optimal coloring of any graph associated to a cyclic interval family
I made only of fraction-of-an-iteration intervals can be determined in polynomial
time. Furthermore we are able to compute the number of registers which will be
used to allocate the whole loop. The following theorem gives the total number of
registers used to allocate the whole loop, foals and buffers. Due to lack of space,
the proofs of the theorems can be found in [13].

T h e o r e m 2. The register allocation of any loop without spilling with the U~JM
method will require a number of registers r equal to:

r = buZers - 1II + r ,
i=1

This achieves an allocation with an optimal number of registers.

Finally the following theorem allows us to compute the maximum number of
move operations inserted in the u-unrolled loop.

T h e o r e m 3. The number m' of move instructions inserted in the u-unrolled
loop for a variable i spanning fully d iterations is at most :

rrt' = f d - 1 + (fi × u) if d > u
[(d - 1)(u mod d) + (fi × u) otherwise

where f i = 1 if i has a foal part, 0 otherwise.

214

In this case, we have m t = m × u, where m is the number of m o v e operations
per iteration of the original loop. For instance, if a variable spans 5 iterations
and the unrolling degree we found is 2. Then if the original loop is executed
4 times, with the register renaming method (4 × 4) 16 m o v e instructions will
be executed, whereas with the U~:M method only (2 × 4) 8 m o v e instructions
will be executed. We did not actually make any measurements on the number
of m o v e operations executed, but in some cases we should execute less and in
some cases more instructions than register renaming methods.

5 E x p e r i m e n t a l R e s u l t s

This section discusses the main experimental results. In Section 5.1, we present
the way we conducted the experiments and the main results we obtained. And
finally the whole results are presented and commented in Section 5.2.

5.1 Summary of the Experiments

We have implemented our new algorithm for loop register allocation in the
MOST testbed [18], which was implemented at McGill University. It allows to
compare several scheduling heuristics and is able to generate optimal pipelined
loops. We also implemented outside MOST the heuristics MTG, EJL, and those
of Hendren et al. [9] to use our heuristics for computing an unrolling degree and
also to test Lam's heuristic [11]. In our study, we used more than 1000 loops from
several benchmarks, namely Spec92fp, Spec92int, Livermore loops, Linpack and
Nas. We scheduled these loops with DESP [20]. In each table, we only present
results where the heuristics did find different results, complete results can be
found in [13].

We tested the efficiency of our new approach in terms of unrolling degree of
the foai family and the total number of registers needed to allocate the loops.
Our method to compute an unrolling degree is better than EJL in general, and
is almost always better than MTG for finding the optimal unrolling degree when
it is equal to 1. The unrolling degree found is always lower than if the whole loop
had to be unrolled. The overall number of registers needed is always as good as,
and sometimes better than Lam's heuristic and achieves the optimal like MTG.
Our heuristic to compute an unrolling degree is much faster than MTG, and as
fast as EJL.

In summary, at run time our method will improve the overall register usage
and introduce less spill code into loops when it is needed. Due to less unrolling
the cache behavior will also be improved.

5.2 Detailed Experiments and Analysis

We compared U&M with EJL and MTG. In Figure 5, the first column repre-
sents the test, the second one represents the number of loops and the last one
represents the percentage over the total of loops. The same for the second part
of the figure. Figure 6 shows the related performance of each heuristic for each

215

benchmark. We indicate the percentage of loops which required to be unrolled
once, twice, three times or more.

From Figure 5, we can see that our heuristic gave a better result than EJL
in 5.99% of the cases, the same result in 93.65 % of the cases and a worst result
in only 0.36 % of the cases. Our heuristic was worse than the meeting graph
heuristic in only 5 cases (0.36%), which is a very good result.

From Figure 6, we can see that between 91.84% and 100% of the loops need
only to be unrolled by one iteration, 1.3 % need to be unrolled by 2 iterations.
That is, it is always lower than the width of the foai family or the width of the
whole interval family. Our heuristic is more efficient than the others methods to
find the optimal unrolling degree when it is equal to 1. In fact, it gives a worst
result than MTG in only one benchmark, Appsp.

U&M better than EJL 83 5.99 % MTG better than U&M 5 0.36 %
U&M equal to EJL 1297193.65 %11 MTG equal to U&M 1378L99.5 %H

1t U&M worst than EJL 15 10.36 % II MTG worst than U&M 12 10"14 %I1

Fig. 5. Comparisons between the heuristics MTG, EJL and U&M

Benchmark

b l V ~ [~ l O [~

Spec92fp
Alvinn
Ear
Hydro2d
Mdljdp2
Mdljsp2
Nasa7
Spice2g6
Tomcatv
Spec92int
Eqntott
Espresso
Gcc
Nas
Applu
Appsp
Mgrid

100% 100% 94.44% 5.56%
100% 100% 95.52% 4.08%

96.91% 3.09% 97.42% 2.58% 93.3% 3.09%
100% 100% 95.12% 4.88%
100% 100% 75.00% 8.33%

97.87% 2.13% 97.87% 2.13% 85.1% 12.77%
97.09% 2.91% 98.06%1.94% 91.26% 1.94%

100% 100% 77.78% 22.22%

91.18% 8.82% 94.12% 5.88% 82.35% 11.76%
99.5% 0.5% 99.5% 0.5% 95.46% 3.03%
100% 100% E94.78% 4.02%

2.58% 1.03%

8.33% 8.33%
2.13%
2.91% 3.89%

5.88%
1.51%
0.4~, O.8%

94.81% 5.19% 94.8% 3.9% 1.3% 90.9% 3.9% 1.3% 3.9%

91.84%100% 8.16% 90.82%100~, 6.12% 1.02%]2.04% 92.68%85"72% 9.18%2.44% 4.88%1"02% 4.08%

Fig. 6. Results of the heuristics EJL, MTG and U&M for computing u

This shows once more that U&M has overall good performances over EJL,
and is a bit less efficient in general than MTG. Moreover we can see that most
of the loops do not require to be unrolled (unrolling degree equal to 1). This
is an advantage for U&M that aggressively tries to find a decomposition which
leads to an unrolling degree equal to 1. Finally, our foai based method requires a
smaller unrolling degree than the heuristics used previously in [6, 7] where they
are applied on the whole live ranges of loop variables.

216

We computed also the number of registers saved by this new method in
comparison with the method of Lam [11] and MTG. In Figure 7, we computed the
average number of registers found by each heuristic per loop for each benchmark.
We can see that U&M allocates always with the optimal number of registers like
MTG. We obtain always as good or better results than Lam's algorithm. The
gains are sometimes substantial like for Fpppp, Applu or Appsp where we gain
between 1 and 2 registers for loops which need 25.72 registers in average.

Benchmark # loops average
Livermore 28
Linpack 27
Spec92fp
Doduc 22
Ear 53
Fpppp 17
Hydro2d 241
Mdtjdp2 45
Mdljsp2 11
Nasa7 38
Spice2g6 98
Tomcatv 14
Spec92int

reg. Lam ;average
20.61

reg. MTG average # reg. U~M
19.54 19.54

10.15 9.89 9.89

13.50
9.47
23.47
9.86
9.04
17.00
16.03
9.41
13.14

Eqntott 35 8.69
Espresso 173 5.72
Gcc 256 6.80

13.32
9.28

22.47
9.55
8.87
16.64
15.32
9.18
13.00

Nas
Applu 75
Appsp 84

8.46
5.64
6.74

13.32
9.28
22.47
9.55
8.87
16.64
15.32
9.18
13.00

8.46
5.64
6.74

27.19 25.49 25.49
28.24 26.58 26.58

Fig. 7. Gains in registers with respect to Lam's heuristic and MTG

We made also some execution time comparison in order to verify the timing
of our approach, these are reported in [13]. The results show that our heuristic
is faster than MTG and as fast as the EJL heuristic.

6 R e l a t e d Work

In Section 2 we have already discussed several important contemporary works
which are most related to this paper. These are works about Modulo Variable
Expansion [11] and methods involving loop unrolling [6, 7].

Ning and Gao [15] only consider buffers to allocate the loop. Hendren et
al. [9] can not handle lifetimes which are longer than one iteration.

Mangione-Smith et al. [14], Rau [17], Eichenberger and Davidson [5] pre-
sented some work related to register allocation and instruction scheduling, but
they do not perform the allocation effectively and only predict the register re-
quirements for a given schedule.

Rau et al. [16] also present interesting work on code generation strategies with
register allocation heuristics which work very well, but they mainly use hardware

217

features like predicated execution and rotating register file [4], which are beyond
the scope of this paper. Furthermore the only method presented which do not use
these features is the Modulo Variable Expansion method. Bodik and Gupta [2]
present also a method to do the register allocation for arrays that can also lower
the number of move instructions inserted.

7 Conclusion
In this paper we proposed a novel way to optimize register allocation in loops,
when a buffer optimal schedule has already been found. The original buffers are
to greedy in registers, so we coalesce pieces of buffers into the same registers,
after a possible step of loop unrolling, to minimize register use. Loop unrolling,
another alternative to reduce register requirements, may decrease performance
due to instruction cache misses. Our method is a trade-off between unrolling the
scheduled loop body and register renaming, which still optimizes the number of
registers needed.

We designed a heuristic for this purpose, and compared it with two others
heuristics aimed at computing a loop unrolling degree. Compared to unrolling
the whole loop, the unrolling degree computed is lower, so we will have less
problems with instruction cache management. In comparison with register re-
naming [3], we use less or as many move instructions between live range pieces.
The experimental results we obtained with MOST show that our heuristic is
almost as efficient as MTG. Furthermore the number of registers used is always
equal to M a x L i v e like other methods dealing with loop unrolling [6, 7].

We plan to extend the method to compute the unrolling degree for general
loops, where live ranges are alive during several iterations, we also intend to
study the possibility of minimizing spill cost using our method. In addition we
will measure the number of move operation executed.

Acknowledgments
We would like to thank the referees for their valuable comments and remarks,
as well as David Gregg, who helped us to improve the readability of this paper.
S. Lelait was supported by a grant from the Austrian Science Foundation (FWF).

References

1. Erik R. Altman. Optimal Software Pipelining with Function Unit Register Con-
straints. PhD thesis, McGill University, Montreal, Canada, October 1995.

2. R. Bod/k and R. Gupta. Array Data-Flow Analysis for Load-Store Optimizations
in Superscalar Architectures. In Proceedings of the Eighth Annual Workshop on
Languages and Compilers for Parallel Computing, number 1033 in LNCS, pages
1-15, Columbus, Ohio, August 1995. Springer Verlag.

3. R. Cytron and J. Ferrante. What's in a Name? or the Value of Renaming for Paral-
lelism Detection and Storage Allocation. In Proceedings of the 1987 International
Conference on Parallel Processing, pages 19-27, University Park, Pennsylvanie,
August 1987. London: Penn State press.

4. J.C. Dehnert and R.A. Towle. Compiling for the Cydra 5. Journal of Supercom-
puting, 7(1/2), January 1993.

218

5. A.E. Eichenberger, E.S. Davidson, and S.G. Abraham. Minimum Register Re-
quirements for a Modulo Schedule. In Proceedings of the 27th Annual International
Symposium on Microarchitecture, pages 75-84, San Jose, California, November 30-
December 2, 1994.

6. Ch. Eisenbeis, W. Jatby, and A. Lichnewsky. Compiler techniques for optimizing
memory and register usage on the Cray-2. International Journal on High Speed
Computing, 2(2), June 1990.

7. Ch. Eisenbeis, S. Lelait, and B. Marmol. The Meeting Graph: a New Model
for Loop Cyclic Register Allocation. In Proceedings of the IFIP WG 10.3 Working
Conference on Parallel Architectures and Compilation Techniques, PA CT'95, pages
264-267, Limassol, Cyprus, June 27-29 1995. ACM Press.

8. M.R. Garey, D.S. Johnson, G.L. Miller, and C.H. Papadimitriou. The complexity
of coloring circular arcs and chords. SIAM J. Alg. Disc. Meth., 1(2):216-227, June
1980.

9. L.J. Hendren, G.R. Gao, E.R. Altman, and C. Mukerji. A register allocation frame-
work based on hierarchical cyclic interval graphs. The Journal of Programming
Languages, 1(3):t55-185, September 1993.

10. Richard A. Huff. Lifetime-Sensitive Modulo Scheduling. SIGPLAN Notices,
28(6):258-267, June 1993. Proceedings of the ACM SIGPLAN '93 Conference on
Programming Language Design and Implementation.

11. Monica S. Lain. Software Pipetining : An Effective Scheduling Technique for VLIW
Machines. SIGPLAN Notices, 23(7):318-328, July 1988. Proceedings of the ACM
SIGPLAN '88 Conference on Programming Language Design and Implementation.

12. Sylvaln Lelait. Contribution ~ l'allocation de regis~res dans les boucles. Th~se de
Doctorat, Universit~ d'Orl~ans, January 1996.

13. S. Lelait, G.R. Gao, and Ch. Eisenbeis. A New Fast Algorithm for Optimal Register
Allocation in Modulo Scheduled Loops. Research Report, INRIA, 1998.

14. W. Mangione-Smith, S.G. Abraham, and E.S. Davidson. Register Requirements
of Pipelined Processors. In Proceedings of the 1999 International Conference on
Supercomputing, pages 260-271, Washington, DC, July 19-23 1992. ACM Press.

15. Q. Ning and G.R. Gao. A Novel Framework of Register Allocation for Soft-
ware Pipelining. In Conference Record of the Twentieth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 29-42,
Charleston~ South Carolina, January 1993.

16. B.R. Rau, M. Lee, P.P. Tirumalai, and M.S. Schlansker. Register Allocation for
Software Pipelined Loops. SIGPLAN Notices, 27(7):283-299, July 1992. Proceed-
ings of the ACM SIGPLAN '92 Conference on Programming Language Design and
Implementation.

17. B.R. Rau. Iterative modulo scheduling: An algorithm for software pipelining loops.
In Proceedings of the 27th Annual International Symposium on Microarchitecture,
pages 63-74, San Jose, California, November 30-December 2, 1994.

18. J. Ruttenberg, G.R. Gao, A. Stouchinin, and W. Lichtenstein. Software pipelining
showdown: Optimal vs. heuristic methods in a production compiler. In Proceed-
ings of the ACM SIGPLAN '96 Conference on Programming Language Design and
Implementation, pages 1-11, Philadelphia, Pennsylvania, May 22-24, 1996.

19. P.A. Steenkiste and J.L. Hennessy. A simple interprocedural register allocation
algorithm and its effectiveness for Lisp. ACM Transactions on Programming Lan-
guages and Systems, 11(1):1-32, January 1989.

20. J. Wang, Ch. Eisenbeis, M. Jourdan, and B. Su: DEcomposed Software Pipelin-
ing: a New Perspective and a New Approach. International Journal on Parallel
Processing, 22(3):357-379, 1994.

