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A b s t r a c t  

This paper adresses the problem of generating a minimal state graph from a program, without 
building first the whole state graph. The minimality is considered here with respect to bisimula- 
tion. A generation algorithm is presented and illustrated. 

1 I n t r o d u c t i o n  

Model generation consists of building a state graph from a program, a formula or any comprehensive 
expression of a transition system. It is used in program verification ("model checking" [6,11]) and 
compiling (scanner and parser generation {I], control structure synthesis [2,5],... ). A crucial problem 
with model generation is the size of the graph, which can be prohibitive. This size can be large not 
only because of the intrinsic complexity of the model, but also because the graph contains a lot of 
states which are in some sense equivalent. Some solutions have been given to this problem, by applying 
reduction algorithms [8,9,10]. However, these algorithms can only be applied once the graph has been 
entirely generated. It is often the case that a tremendous amount of time and memory is necessary 
to generate a graph, which afterward reduces to a very simple one. It even happens that an infinite 
model reduces to a finite one. So, it would be interesting to reduce the graph during the generation, 
on one hand to improve the performances of model generation, and on the other hand, to allow finite 
model generation from infinite systems. This paper presents and illustrates an algorithm performing 
this task, when the equivalence considered on states is a bisimulation. 

After fixing some terminology and notations (section 2), the algorithm is presented (section 3) and 
illustrated on a simple example (section 4). 

2 D e f i n i t i o n s  a n d  n o t a t i o n s  

Let 8 -- (Q, ---~, q ~ t )  be a transition system, where Q is a set of states, ---~C Q × Q is a transi t ion rela- 
tion, and q~.~t is the initial state. Let -~ be an equivalence relation on Q. Our problem is to explicitely 
build the quotient of the set of reachable states from q~,,~, by the coarsest bisimulation compatible with 
~ .  Of course, this is only possible if this quotient has finitely many elements. Moreover, the method  
presented here. only works if the quotient of Q by the coarsest bisimulation is finite (notice that  Q 
itself can be infinite). The basic idea is to progressively build a parti t ion of Q, by distinguishing two 
parts of Q only when their respective elements clearly don' t  bisimulate ewch other. Henceforth, we 
shall consider partit ions instead of equivalence relations. 

Let p be a parti t ion of the set of states Q. The following notations will be used: 
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For any state q e Q, postp(q) is the set of classes in p immediately reachable from q 

postp(q) = { X  E p I 3q ~ E X such that q --* q~} 

An equivalence relation, noted L, is associated with p as follows: 

q, ~ q2 *=* post~(q,) = postAq2 ) 

A subset X of Q is said to be stable with respect to p if and only if it is included in some equivalence 
class of ~.  The partition p is said to be stable if and only if all of its classes are stable with respect to 
itself. In other words, a partition is stable if and only if it is the set of classes of a bisimulation. 

A refinement of a partition p is a partition p~ such that: VX E p~, 3Y E p such that X C_ Y 

The reduction of a transition system ,q with respect to a stable partition p is the transition system 
(p,-,~, [q,.,,]p), where 

[qi,u]p is the class of the initial state in p 

X - ~ Y  <==~ 3 q 6 X ,  q I E Y s u c h t h a t q - - * q '  

With the above terminology, given an initial partition p of Q, we axe looking for the reduction of 
8 with respect to the least stable refinement of p. 

3 A l g o r i t h m  

The algorithm consists of progressively refining the partition p. At each step, two subsets of classes 
will be distinguished: 

• The set R of reachable classes, i.e. the classes containing at least one element which has been 
found reachable from q~,it. 

• The set S of stable classes, i.e. the reachable classes which have been found to belong to ~.  

The algorithm is the following: 

n = {[q,.,,lp}; S : ~; (1) 
while R ¢ S do (2) 

choose X in R - S; (3) 

let N = X /L;  (4) 
if N = {X} then (5) 

S := S U {X}; R :-- R U {postp(q) [ q E N}; (6) 

else (7) 

n : :  n - { x } ;  (a) 

if 3Y E N such that q;..  E Y then R := R O {Y}; (9) 

S := S -  { r  6 S I X  E post.(Y)}; (10) 

p := (p - {X}) U N; (11) 

fi (z2) 
od (13) 
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P r o o f  : Let Rea be the set of reachable states, that  is the least subset X of Q containing qi~a, and 
such that  

(qe X Aq.-,  ¢) ~ q' E X 

Then,  

(i) x ~ s ~ x e ~  
since a subset X is only put  into $ if X = X / ~  (line 6), and as soon as a refinement of p can 
involve a refinement of X / £ ,  X is extracted from S (line 10). 

( ii) X e R ~ X N Rea ~ ~b 
since a subset X is only put  into R if either it contains qi,,u (line 9), or it contains successor 
states of a stable sub#et belonging to R (llne 6). 

(ii~) When R = S, all the reachable classes are in R: If X E S, all the classes directly reachable from 
X have been put  in R (line 6). 

(iv) So, when R = S, R defines a stable part i t ion of Rea. 

(v) The finiteness of the set of classes insures that  the algorithm terminates. 

S p l i t t i n g  a c l a s s  : Line 4 of the algorithm splits a reachable class X into a part i t ion N = X/L ,  
whose elements are stable with respect to the current p. Let us detail the computat ion of this partit ion. 
Let pre denote the precondition function ~Y.{q E Q [ 3q' E Y such that  q - ,  q'}. Then,  

N = {X n M zy  1 z y  e {p,e(r ) ,  Q - P '4Y)}  } 
YEp 

Instead of considering such an exponential number  of intersections, most of which are generally empty, 
we propose to compute N as follows: 

N = {x}; 
for each Y E p do 

M : = ¢ ;  

for each W in N do 

let W1 = W M pre(Y); 

if W1 = W or W1 = ¢ then M := M U {W} 

else M := M U {W1, W - W1}; 

od; 

N:=M;  
od 

4 Example 

Let us consider the following program, which could be a boolean abstraction of a more realistic program: 

x := true; y : -  false; read(a); 
loop 

write(x or y); 
Z := a; read(a); 
w : = x ; x : =  n o t y ; y : =  w o r z ;  

end; 
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We want to examine all the possible input/output behaviours of this program. So, we consider it 
as a transition system, whose states are the values of the variables when the output is written. Now, 
since we are only interested in the output, we may consider as equivalent all the states which produce 
the same output. So, we start with the initial partition: 

{ ( . ,  ~ ,  ~, y, ~-) I • v y = t,,,,..,e}, { (a ,  ~ ,  ~, y, ~.) I • V ~ = .false} 

In the following, classes are represented by their characteristic formulas. The initial partition will be 
noted: 

Standard rules of weakest precondition provide the precondition of a class X, with respect to the body 
of the loop: 

p~(X )  = X[~, V zlz,]l-~Ylzllzl,~] ~ a la /z ]  

where X ~ ~ = 3~oXlaola] = X~atse/a] V Xlt,',,~/a] 

So, p ~ c ~ )  = • v -~y v ~ ,  p , ~ ( c 2 ) . =  - ~  A y A - ~  

The successive partitions built by the algorithm axe illustrated on figure 1. 

Step 1: The only reachable class is C1, since z is initially true. For splitting it, we compute: 

C 1 A ~lPe(Cl) = (x V ~) A (x V -n~ V o,) = ~ V (~ A a) 

Cl A pre(C,) A pre(C2) = false 

C 1 A "npre(Cl) A pr~C2) = C1 A "- '~(CI) 

So, 671 is split into: 

and only Cu is reachable. We have: pre(Cll) = z V -,y V a ,  pre(C12) = y ^ (z V a) 

Step 2: For splitting C13, we compute: 

C11 A P~(C11) : (z V (y ̂ a)) A (-~y V z V a) ---- C11 

c~, ̂ p~(c~) ^ p~(c~) = (~ v (y ̂  a)) ̂  (y ̂  (~ v a)) = y ̂  (~ v a) 

C11 A pre(C l l )  A "~pre(012) A p~(C2) ----- false 

So, 011 is split into: 

and only Cl12 is reachable. We have: pre(Cm) = z V a ,  pre(Cllz) = -~z ̂  ~y A -,a 
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Step  3: When splitting Cn2, we get only: 

cm ^ p~(c~) ^ ~p~(c~) ̂  ~p,~(c~) ̂ ~p~e(c~) = • ^ ~ = c112 

So Cn2 is stable, and leads to Ol11- So, Olll is reachable. 

S t ep  4: C m  is also found stable since: 

cln = cm ^ p~(c~u) ^ ~p~(C.2) ^ p~(c~2) ^ ~p,~(c~) 

It leads to itself and to C12, which is found reachable. 

S t ep  5: C,2 is stable, and leads to 6'2, since: 

c~ = c~ ̂  ~p,~(c~1~) ̂ ~p~(c~) ̂  ~p,~(c~) ̂  p,e(C~) 

Step  6: C2 is split into: 

C21 = 02 A p r e ( C n l )  = -~z A -~y A a 

C2z = C2 A pre(Cn2) = -~z A -~y A -~a 

So 6',2 is removed from stable classes. We have: p r e ( C 2 , )  = pre(C22)  = -~z A y A -~a 

Step  7: C12 is again found stable, since: 

c~2 ̂  p~(c21) ^ p,~(c22) = c.2 

It leads to 021 and 022. 

S t e p  8 and  9: Prom 

C22 = C22 ̂  pre(CH2) 

we get that 021 and C22 are stable, and respectively lead to Oll I and Oll 2. 

We get a graph with 5 vertices (Fig. 2), instead of 10, which would be produced by standard generation 
(Fig. 3). 

5 C o n c l u s i o n  

We have presented an algorithm combining generation and reduction methods. In our opinion, this 
algorithm is interesting for program verification: a state graph with several thousands (or even infinitely 
many) states may be reduced to one with a few number of states by considering an equivalence relation. 

Of course, one must be capable to compute the function pre and intersections of classes, and to 
decide the inclusion of classes. Such a symbolic computation is achievable in the boolean case, with 
reasonable average cost [3,7]. 

Applying our algorithm to program verification appears very close to formal proof (in the 
Floyd/Hoare sense) or to what is now called "symbolic model checking" [4]. Concerning other ap- 
plications, the algorithm is being implemented in the new version of the LUSTRE compiler. 

We have not presented complexity measures. A comparison with classical reduction methods is 
difficult, mainly because the complexity of these methods is evaluated as a function of the size of the 
initial graph, whereas the cost of our method obviously depends on the size of the reduced graph. 
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Initial partition Result of step 1 Result of step 2 

Result of step 3 Result of step 4 Result of step 5 

Result of step 6 Result of step 7 Final result 

Figure 1: The successive partitions built by the algorithm 

Figure 2: The reduced graph of the example 
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Figure 3: The complete graph of the example 
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