
M e s s a g e - P a s s i n g P e r f o r m a n c e o f P a r a l l e l
C o m p u t e r s

Vladimir Getov 1'2, Emilio Hern£ndez 3, Tony Hey 2

1 School of Computer Science
University of Westminster, Harrow Campus, London, UK

Department of Electronics and Computer Science,
University of Southampton, Southampton, UK

3 Departamento de Computacion,
Universidad Simon Bolivar, Apartado 89000, Caracas, Venezuela

Abs t r ac t . In this paper we investigate some of the important factors
which affect the message-passing performance on parallel computers.
Variations of low-level communication benchmarks that approximate
realistic cases are tested and compared with the available Parkbench
codes and benchmarking techniques. The results demonstrate a substan-
tial divergence between message-passing performance measured by low-
level benchmarks and message-passing performance achieved by real pro-
grams. In particular, the influence of different data types, the memory
access patterns, and the communication structures of the NAS Parallel
Benchmarks are analysed in detail, using performance measurements on
the Cray-T3D in Edinburgh and the IBM-SP2 in Southampton.

1 I n t r o d u c t i o n

Generally speaking, the t ime taken for communicat ions represents a substantial
part of the performance penalty that one has to pay when using message-passing
parallel computers. In most cases, the communicat ion subsystems on such ma-
chines work in a pipeline fashion, and therefore, the communicat ion t ime can be
modelled as a simple linear function of the message length [9]:

tcom = to +ttra n (1)

where to is the message s tar tup time, ttrans is the transmission t ime per byte,
and n is the message length in bytes.

Perhaps the simplest measure of message-passing performance is the ping-
pong or echo benchmark between a pair of nodes, which has been described by
several authors [9,5,2]. In this test one node sends a message to the other, which
in turn, receives the message and sends it back immediately to the first node. Half
the t ime for this test is recorded as the t ime to send a message of the given length.
The message-passing performance can be characterised by extending Hockney's
performance description for vector pipelined processors over the above model

1010

using the asymptotic performance, r~ , and the half-performance length, n½,
parameters [5].

n~ + n
tcorn = (2)

Although the communication subsystems of tightly coupled parallel computers
have been improving very quickly over the last few years, this same simple model
is also valid for multistage interconnection networks based on high-speed com-
munication switches [10].

Different sets of low-level benchmarks may be defined, depending on the aims
of the particular evaluation exercise. If the benchmarking goal is to compare the
performance of different parallel computers, the low-level benchmarks are neces-
sary to mark off the bounds of calculation and message-passing performance. The
communication patterns which outline the message-passing performance bounds
may be grouped into four categories [4]: single point-to-point messages; sin-
gle broadcasts; point-to-point transmissions from all nodes; broadcasts from all
nodes (multibroadcasting). If, however, the benchmarking goal is to est imate the
application performance, the low-level benchmarks must provide much more ac-
curate and sometimes application-specific time measurements. There have been
attempts to relate message-passing performance of real applications to the re-
sults of the existing low-level communication Parkbenchmarks [8]. However, it is
difficult to predict the performance of a particular communication pattern, for
instance, a circular shift, by the currently available low-level Parkbenchmarks, as
they have been designed for performance comparisons and not for performance
predictions. One of the main reasons for this is the fact that the communication
time depends not only on the message length, but also on the current work-
load of the interconnection network [2], because the network itself cannot be
considered as a single resource. It has input and output ports for each node in
the distributed memory system, all of which may operate simultaneously, and it
is therefore fallacious to draw conclusions about the aggregate message-passing
performance from simple ping-pong measurements. Such tests highlight only
the case of a single message in isolation and could not be useful as a basis for
performance predictions of higher level benchmarks and application codes.

In order to tackle this problem, a list of performance models for frequently
used communication patterns can be employed to estimate the message-passing
performance of an application, but such a list may be very large. A more prag-
matic alternative is to extract the communication structure from the application
kernel and to evaluate the asymptotic communication parameters by varying
the message length for different numbers of processors. In this article we follow
the latter approach in order to demonstrate the substantial divergence between
message-passing performance measured by the existing low-level benchmarks
and message-passing performance achieved by real programs. The next section
shows results related to transmitting data elements other than bytes, which is
a common requirement in scientific computing. Section 3 focuses on the per-
formance effects of data movements associated with message-passing, while sec-
tion 4 presents results related to real communication structures, extracted from

1011

the NAS parallel benchmarks [1]. Finally, section 5 discusses the conclusions to
the study.

2 A l t e r n a t i v e d a t a t y p e s

Modern processors can load/store a 64-bit word with a single instruction. The
memory access speed depends on the data type and is usually optimised for
double precision (64-bit) words. In order to investigate how the choice of data
type affects the message-passing performance, the COMMS1 low-level bench-
mark was modified to send contiguous and non-contiguous double precision el-
ements, rather than bytes. Such performance figures are closer to those a real
scientific application would yield. Table 1 shows measurements made with the
original COMMS1 and a version of COMMS1 modified to send double precision
data type elements. The experiments were conducted on a Cray T3D and an IBM
SP2. The T3D used for the experiments has 150MHz 21064 Alpha processors,
each with 64MB local memory, 8KB instruction cache and 8KB data cache, while
the operating system was UNICOS 8.0.4 with a cf77 6.2.1 Fortran compiler. The
compiler directives used were "-dp -Oscalar3". Meanwhile, the IBM SP2 nodes
used were "thin 1" type nodes, each with a 66MHz Power2 processor, 128MB
RAM (64bit memory bus), 32KB instruction cache and 64KB data cache, with
an AIX 4.1.4 operating system and a xlf 3.2.5 Fortran compiler. The codes were
compiled with "-03 -qstrict" compiler directives.

c c (MB/s) c c (Bytes) r~ roo rtl[2 ~tl[2
Orig. (SP2) 28.592 MB/s 28.592 2844.935 B 2844.935

Startup Time
99.501 psec

Modif. (SP2) 4.188 Mdp/s 33.504 897.039 dp 7176.312 214.174 psec
Orig. (T3D) 28.466 MB/s 28.466 1966.929 B 1966.929 69.098 psec
Modif. (T3D) 3.709 Mdp/s 29.672 387.048 dp 3096.384 104.359 psec

Table 1. Bandwidth, n~/2, and startup time reported by COMMS1, using bytes (B)
and double precision elements (alp). The modified version transmits double precision
elements.

Even though the bandwidth measured when transmitt ing bytes is similar on
the T3D and the SP2, there is a key difference in message-passing performance
between these two machines when the ping-pong benchmark uses double preci-
sion elements. Normalised measures of both r ~ and ncl]2, in Mbyte/s and bytes
respectively, change when 64-bit words are transmitted.

3 M e m o r y A c c e s s P a t t e r n s

Data movements related to message-passing are very common in distributed-
memory parallel applications. For instance, da ta are frequently moved from non-
contiguous locations to the communication buffer when a row of a matr ix stored

1012

by columns is transmitted, and vice versa. In order to test the communication
bandwidth when the data are non-contiguous, several variants of the COMMS1
benchmark were created. These variants use either DO loops to explicitly trans-
fer data from the original non-contiguous location to the message buffer, or the
proper message-passing library support in order to make such data transfers. In
this way, we are not only testing the impact of the data movements themselves,
but also the ability of different message-passing library implementations to per-
form such operations efficiently. The stride used in all examples was 16 double
precision elements - a stride big enough to load a different cache line into cache
for every element copy, in the architectures under consideration.

The Message-Passing Interface (MPI) provides a mechanism to specify non-
contiguous data on the basis of derived data types [7] and the user can declare
the shape and size of the object to be transferred using data type constructors.
A data type descriptor of the object must have been previously created, so that
when an MPI_SEND or an MPI_RECV is executed, the data is taken from
the specified location according to the data type descriptor information. The
software/hardware implementation may have to copy the original object into a
buffer before sending it out, relying on the information provided in the data type
descriptor. The variants of the MPI version of COMMS1 used to conduct the
experiments are sketched in the following boxes:

(i)

(2)

(3)

(4)

(5)

Non-contiguous data in master and slave (MPI_Datatype solution)[
/* Master */ /* Slave */ [
MPI_TYPE_VECTOR(stride= 16) MPI _TYPE_VECTO 1% (stride= 16)

M'PI_SEND(BUFFER) M'PI_RECV(BUFFER)
MPI-RECV(BUFFER) MPI_SEND(BUFFER)
Non-contiguous data in master and slave (DO-loop solution)
/* Master */ /* Slave */
DO I = 1,N M P I _ R E C V (B U F F E R)

BUFFE1%(I) = MAT1%IX(16,I) DO I = 1,N
ENDDO MAT1%IX(16,I) = BUFFER(I)
M P I _ S E N D (B U F F E R) ENDDO
M P I . . R E C V (B U F F E R) DO I = 1,N
DO I = 1,N BUFFE1%(I) = MATRIX(16,I)

MAT1%IX(16,I) = BUFFE1%(I) ENDDO
ENDDO M P I _ S E N D (B U F F E R)
Non-contiguous data in master only (MPIA)atatype solution)[
/* Master */ /* Slave */ [
MPI_TYPE_VECTOR(stride= 16) I
M'PI_SEND (B U F F E R) M P I _ R E C V (B U F F E R) I
MPI- - -~ECV(BUFFER) M P I _ S E N D (B U F F E R " I
Non-cont iguous d a t a in m a s t e r only (DO-loop solut ion)
/* Master */ /* Slave */
DO I = 1,N

BUFFE1%(I) = MAT1%IX(16,I)
ENDDO
M P I _ S E N D (B U F F E R) M P I _ R E C V (B U F F E R)
M P I _ R E C V (B U F F E R) M P I _ S E N D (B U F F E R)
DO I = I,N
MAT1%IX(16,I) = BUFFER(I)

ENDDO
Cont iguous d a t a in m a s t e r a n d slave
/* Master */ /* Slave */
M P I _ S E N D (B U F F E R) M P I _ R E C V (B U F F E R)
M P I - R E C V (B U F F E R) M P I _ S E N D (B U F F E R)

1013

ed 0.05
1o
g
~, 0.04
E

0.03

8,

0.02

0.01

Variations on COMMS1 (Comm. library: MPI, Machine: CRAY-T3D, Compiler: cf77 -Oscalar3)

(1) Noncontiguous data in master and slave (MPl_Datatype,stdde=16) --a--
(2) Noncontiguous data in master and slave (DO-loop transfer, stride=16)

(3) Noncontiguous data in master (MPl_Datatype,stdde=16) -a--.
(4) Noncontiguous data in master (DO-loop transfer,stdde=16) -A--.

(5) Contiguous data in master and slave -~---

I

10000 20000 40000 80000

Number of double precision elements per message

Fig. 1. COMMS1 on CRAY-T3D

The standard COMMS1 benchmark with MPI calls as provided in the Park-
bench suite follows the implementation scheme of variant 5. The results obtained
from all of the MPI variants on the Cray T3D and the IBM-SP2 are shown in
Figures 1 and 2, respectively. The general conclusion that can be drawn from
these results is that there is a very significant difference between the raw com-
munication bandwidth and the communication bandwidth with associated data
movements. On the SP2, the ratio between the raw communication bandwidth
and the slowest version which performs data movements is 5.43, while on the
T3D, the same ratio is 2.42. Meanwhile, the ratio between the best implementa-
tion of the non-contiguous case and the best implementation of the contiguous
case is 4.50 on the SP2 and 2.00 on the T3D. It is interesting that on the SP2,
the best option for transmitt ing non-contiguous data is by means of a DO loop
(a performance ratio equal to 1.20), while on the T3D the fastest COMMS1
implementation was the one which uses library calls (here the same performance
ratio was 0.83). This demonstrates the importance of the quality of the commu-
nication library in terms of performance.

4 C o m m u n i c a t i o n S t r u c t u r e s

We have used the NAS parallel benchmarks (NPB), version 2.0 [1], in order to
verify the validity of the ping-pong benchmark for predicting which communi-
cation pattern will execute faster on different machines. The NPB suite consists
of two kernels (FT and MG) and three compact applications (LU, BT ans SP).

1014

0.15

¢n

8, o.1

E

8,
0.05

Variations on COMMS1 (Comm. library: MPI, Machine: IBM-SP2, Compiler: xlf -O3 -qstrict)

(1) Noncontiguous data in master and slave (MPl_Datatype,stride=16)
(2) Noncontiguous data in master and slave (DO-loop transfer,stride=16)

(3) Noncontiguous data in master (MPl_Datatype,stride=16) -~--.
(4) Noncontiguous data in master (DO-loop transfer,stride=16) -=--.

(5) Contiguous data in master and slave -~--.

/ / _A

10000 20000 40000 80000

Number of double precision elements per message

Fig. 2. COMMS1 on IBM-SP2

Our experiments were based on the compact applications, in which the com-
munication skeletons were extracted by commenting out the computation codes
of these benchmarks, leaving only the communication functions and the data
movements associated with message-passing.

The LU benchmark is a compact application which finds a finite difference
solution of the 3-D compressible Navier-Stokes equations. The implementation
utilises a block-lower-triangular block-upper-triangular approximate factorisa-
tion of the original scheme. A particular characteristic of the algorithm is that it
sends a relatively large number of small messages (40 bytes each). Consequently,
this benchmark would penalise machines whose interconnect subsystem has a
high startup time. The BT benchmark solves three sets of uncoupled systems of
equations which are block tridiagonal with 5x5 blocks, while the SP benchmark
is similar to BT, but solves a scalar pentadiagonal system. The code structures
of the BT and the SP benchmarks are so similar because the systems of equa-
tions are solved using Gaussian elimination, without pivoting, in both cases. In
contrast to LU, these programs have a coarse-grained communication scheme.
In other words, the LU communication kernel should benefit from low latency
interconnect subsystems, while the BT and SP communication kernels would
execute faster on networks with a greater bandwidth.

Several experiments concerning the communication structure of the NPB
kernels were performed on the Cray T3D and the IBM SP2. Figure 3 compares
the communication overhead on the T3D and the SP2 for LU, BT and SP by
dividing the communication times shown into the "pure" communication time
and time spent by explicit data movements related to message-passing. The

1015

NAS Appl icat ion Benchmarks (Class A size)

T i m e

LU ~ D)

BT C~3D:*

S~ ~3D)

LU IS~)

~V (SI~Z)

Sp ¢~P2)

m C o m . ~ M o v e ,

Fig. 3. Comparison of communications in T3D and SP2 (16 processors).

communication skeleton of LU runs marginally faster on the SP2 than on the
T3D, while the SP and BT communication skeletons execute faster on the T3D.

The measurements shown in Table 1 were obtained on the same platforms
and these COMMS1 results seem to contradict the observed behaviour of the
LU, BT and SP communication skeletons on the T3D and the SP2. Apart from
the bandwidth and startup time, many other factors not measured by COMMS1,
play an important role in message-passing performance. These include the net-
work contention, the presence of collective communication functions, the fact
that messages are sent from different memory locations, etc. The execution of
the communication skeletons indicates that there is not a substantial difference
in message-passing performance between the SP2 and the T3D. The main fea-
ture in favour of the T3D, however, is the shorter time spent in data movements
associated with message-passing, rather than the communication time itself.

5 C o n c l u s i o n s

The performance analysis of communication subsystems, based on the perfor-
mance reported by ping-pong benchmarks, has been of great value for compar-
isons of the message-passing performance across different machines. However,
predicting communication performance in terms of performance parameters pro-
vided by existing Parkbench codes is not just a function of low-level parameters,
measured by simple communication benchmarks. Previous studies have shown
that the analytic expression (2) fits well into parallel performance data [6,3].
Unfortunately, the fitted values of parameters turn out to be very different from

1016

those determined by the low-level benchmarks. Therefore, in most cases the
existing low-level communication benchmarks are not suitable for performance
estimation.

Clearly, the low-level message-passing parameters (r~ , t~) do not represent
only the communicat ion bandwidth and latency of the message-passing chan-
nels, but as our analysis and measurement results show, they are also aggre-
gate parameters for memory- to-memory transfers between different nodes of a
distributed memory computer. The message-passing performance, therefore, de-
pends upon such factors as the data type of the message elements and the mem-
ory access patterns, as well as the storage location of the da ta to be transferred
within the memory hierarchy, in addition to the hardware parameters of the
communicat ion subsystem. Hence, the trade-off between efficiency and porta-
bility, as well as the implementat ion level of the message-passing paradigm are
also of significant importance. A broader spectrum of low-level benchmarks and
parameters has to be considered if more accurate performance predictions are
to be made.

6 Acknowledgments

Special thanks go to the staff of the Edinburgh Parallel Computer Centre and
Comput ing Services at the University of Southampton, for their assistance in
operating the Cray-T3D and the IBM-SP2 installations.

References

1. D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and M. Yarrow.
The NAS Parallel Benchmarks 2.0. TR-NAS-95-020, NASA Ames RC, Dec. 1995.

2. T. Dunigan. Performance of the Intel iPSC/860 and Ncube 6400 Hypercubes.
Parallel Computing, 17:1285-1302, 1991.

3. V. Getov. 1-Dimensional Parallel FFT Benchmark on SUPRENUM. Lecture Notes
in Computer Science, 605:163-174, 1992.

4. V. Getov and C. Jesshope. Simulation Facility of Distributed Memory System with
'Mad Postman' Communication Network. Lecture Notes in Computer Science,
487:224-233, 1991.

5. R. Hockney. Performance Parameters and Benchmarking of Supercomputers. Par-
allel Computing, 17(10/11):1111-1130, 1991.

6. R. Hockney. Computational Similarity. Concurrency: Practice and Experience,
7(2):147-166, 1995.

7. Message Passing Interface Forum. MPh A Message-Passing Interface Standard.
International J. Supercomputer Applications, 8(3/4):169-414, 1994.

8. Parkbench Committee. Report - 1: Public International Benchmarks for Parallel
Computers. Scientific Programming, 3(2):101-146, 1994.

9. D. Reed and D. Grunwald. The Performance of Multicomputer Interconnection
Networks. IEEE Computer, 20:63-73, June 1987.

10. Z. Xu and K. Hwang. Modeling Communication Overhead: MPI and MPL Per-
formance on the IBM SP2. IEEE Parallel and Distributed Technology, 4(1):9-23,
1996.

