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Abstract. In this paper, we introduce an experimental software tool called CASCH 
(Computer Aided SCHeduling) for automatic paraUelization and scheduling of 
applications to parallel processors. CASCH transforms a sequential program to a parallel 
program through automatic task graph generation, scheduling, mapping, communication, 
and synchronization primitives insertion. The major strength of CASCH is its extensive 
library of state-of-the-art scheduling and mapping algorithms reported in the recent 
literature. Using these algorithms, a practitioner can choose the most suitable one for 
generating the shortest schedule for the application at hand. Furthermore, the scheduling 
algorithms can be interactively analyzed, tested and compared using real data on a 
common platform with various performance objectives. CASCH with its graphical 
interface is useful for both novice and expert programmers of parallel machines, and can 
serve as a teaching and learning aid for understanding scheduling and mapping algorithms. 

1 Introduction 
The lack of automated parallel programming tools is one of the major problems faced by 

the programmers of parallel computers. The burden of coding a parallel algorithm is almost 
entirely on the programmer who must extract parallelism by deciding as to how to partition the 
data as well as control and coordinate inter-processor communication. An appropriate software 
development environment should allow an average programmer to write a parallel program 
without paying much attention to the characteristics of the underlying hardware. Even when 
parallelism is extractable in a compute-intensive application, its parallel code in the absence of 
efficient mapping and scheduling tools is not optimized and thus fails to yield a meaningful 
speedup. This problem is particularly serious for applications with irregular structures. 
Numerous such applications from the areas of digital signal processing, fluid dynamics, solution 
of linear and partial differential equations, and computer vision, etc., can run much faster if their 
codes are optimized through proper scheduling and mapping. 

There are many experimental software tools for computer-aided parallel programming 
reported in the literature. Some of these tools are commercial products which are essentially 
parallel programs debugger [6], [7], [14], [15], [22], [29]. Some other tools, which are research 
prototypes, provide a more integrated program development environment which consists of 
program tracing and performance tuning facilities [3], [5], [9], [10], [12], [24], [25]. There have 
been a few advanced tools which include program transformation and restructuring facilities 
[16], [20], [21], [27], [30], [31], [32]. However, most of these advanced tools lack an easy-to-use 
user interface for designing and testing parallel applications interactively. Furthermore, these 
tools have only a limited applicability as they do not provide an extensive library of scheduling 
and mapping tools suitable for different environments. 

In this paper, we describe a graphical software tool called CASCH (Computer Aided 
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SCHeduling) for parallel processing on distributed-memory multiprocessors. CASCH is aimed 
to be a complete parallel programming environment including parallelization, partitioning, 
scheduling, mapping, communication, synchronization, code generation, and performance 
evaluation. Parallelization is performed by a compiler that automatically converts sequential 
applications into parallel codes. The parallel code is optimized through proper scheduling and 
mapping, and is executed on a target machine. CASCH can be considered to be a super set of 
tools such as PAWS [24], Hypertool [31], PYRROS [32], and Parallax [20], since it includes the 
major functionalities of these tools at a more advanced and comprehensive level and also offers 
additional useful features. 

CASCH is a unique tool in that it provides all of the important ingredients for developing 
parallel programs. It frees the user from carrying out several tedious chores and can significantly 
improve the performance of a parallel program. It is useful for a novice parallel programmer due 
to its automatic parallelization and code generation facilities, It can also help an experienced 
researcher since it provides various facilities to fine-tune and optimize a parallel program. 
CASCH includes from the recent literature an extensive library of state-of-the-art scheduling 
algorithms which are organized into different categories suiting different architectural 
environments. These scheduling and mapping algorithms are used for scheduling the task graph 
generated from the user program. The weights on the nodes and edges of the task graph are 
inserted using a database that contains the benchmark timing of various computation, 
communication, and I/O operations for different machines. An attractive feature of CASCH is its 
graphical user interface which provides a flexible and easy-to-use interactive environment for 
analyzing various scheduling and mapping algorithms, using task graphs generated randomly, 
interactively, or directly from real programs. Multiple windows can be opened to show the 
schedules of task graphs generated by different scheduling algorithms for a given machine. 

This paper is organized as follows. Section 2 gives an overview of CASCH and describes it 
major functionalities. We briefly introduce the graphical user interface of CASCH in Section 3. 
Section 4 includes some preliminary results of the experiments conducted on the Intel Paragon 
using CASCH. We provide some concluding remarks in the last section. 

2 Overview of CASCH 
The system organization of CASCH is shown in Figure 1. Using the CASCH tool, the user 

first writes a sequential program from which a DAG To facilitate the automation of program 
development, we use a programming style in which a program is composed of a set of 
procedures called from the main program. A procedure is an indivisible unit of computation to 
be scheduled on one processor. The grain sizes of procedures are determined by the 
programmer, and can be modified with CASCH. 

Figure 2(a) shows an example, a sequential fast Fourier transform algorithm, in which the 
data matrix is partitioned by columns across processors. The procedures InterMult and 
lntraMult are called several times. The control dependencies can be ignored, so that a procedure 
call can be executed whenever all input data of the procedure are available. Data dependencies 
are defined by the single assignment of parameters in procedure calls. Communications are 
invoked only at the beginning and the end of procedures. In other words, a procedure receives 
messages before it begins execution, and it sends messages after it has finished the computation. 

The lexer and parser analyze the data dependencies and user defined partitions. For a static 
program, the number of procedures are known before program execution. Such a program can be 
executed sequentially or in parallel. It is system independent since communication primitives are 
not specified in the program. Data dependencies among the procedural parameters define a 
macro dataflow graph. 

The weights on the nodes and edges of the DAG are inserted with the help of an estimator 
that provides timings of various instructions as well as the cost of communication on a given 
machine. The estimator uses actual timings of various computation, communication, and I/O 
operations on various machines. These timings have been obtained through benchmarking using 
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an approach similar to [24]. Communication estimation, which is obtained experimentally, is 
based on the cost for each communication primitive, such as send, receive, and broadcast. The 
current version of the computation estimator is a symbolic estimator. The estimation is based on 
reading through the code without running the code. Its symbolic output is in the form of a 
function of input parameters of a code. 

A macro dataflow graph, which is generated directly from the main program, is a directed 
graph with a start and an end point. Each node in the graph corresponds to a procedure, and the 
node weight is represented by the procedure execution time. Each edge corresponds to a 
message transferred from one procedure to another procedure, and the weight of the edge is 
equal to the transmission time of the message. When two nodes are scheduled to a single PE 
(processing element) in the target machine, the weight of the edge connecting them becomes 
zero. In static scheduling, the number of nodes is known before program execution. The 
execution time of a node is obtained by using the estimator. The transmission time of a message 
is estimated by using the message start-up time, message length, and communication channel 
bandwidth. 

A common approach to distribute workload to processors is partitioning a problem into P 
tasks and performing a one-to-one mapping between the tasks and the processors. Partitioning 
can be done with the "block", "cyclic", or "block-cyclic" pattern [11]. Such partitioning 
schemes are suitable for problems with regular structures. Simple scheduling heuristics such as 
the "owner compute" rule work for certain problems but could fail for many others, especially 
for irregular problems, as it is difficult to balance load and minimize dependencies 
simultaneously. The way to solve irregular problems is to partition the problem into many tasks 
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Figure 2(b): The parallel code 
for fast Fourier transform. 

Figure 2(a): A sequential program for fast Fourier transform. 
which are scheduled for a balanced load and minimized communication. In CASCH, a DAG 
generated based on this partitioning is scheduled using a scheduling algorithm. However, one 
scheduling algorithm may not be suitable for a certain problem on a given architecture. 
Currently, CASCH includes three classes of algorithms [2]: the UNC (unbounded number of 
clusters), the BNP (bounded number of processors), and the APN (arbitrary processor network) 
scheduling algorithms. The reader is referred to [2] for a qualitative and quantitative comparison 
of different classes of scheduling algorithms. After applying different algorithms to the task 
graph, the user can choose the best one which generates the shortest schedule. 

Synchronization among the tasks running on multiple processors is carried out by 
communication primitives. The basic communication primitives for exchanging messages 
between processors are send and receive. They must be used properly to ensure a correct 
sequence of computation. These primitives can be inserted automatically, reducing a 
programmer's burden and eliminating insertion errors. The procedure for inserting 
communication primitive is as follows. After scheduling and mapping, each node in a macro 
dataflow graph has been allocated to a PE. If an edge leaves from a node to another node which 
belongs to a different PE, the send primitive is inserted after the node. Similarly, if an edge 
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comes from another node in a different PE, the receive primitive is inserted before the node. 
However, if  a message has already been sent to a particular PE, the same message does not need 
to be sent to the same PE again. If a message is to be sent to many PEs, broadcasting or 
multicasting can be applied instead of separate message. 

The insertion method described above does not ensure a correct communication sequence. 
Thus, we use a send-first strategy for a reordering of communication primitives. That is, we 
reorder receives according to the order of sends. Reordering of sends and receives may not be 
necessary for a system supporting typed messages. However, even for such systems, message 
transmission reordering may reduce the message waiting time and the demand for 
communication buffers. 

We use the example of Figure 2(a) to illustrate our code generation method. Figure 2(b) 
shows the generated parallel code for three PEs (assuming N= 8). Note that only the main 
program for each PE is shown. The data structure is the same as in Figure 2(a). The initial data is 
loaded to PEs such that each PE obtains the portion of data required for its computation. 
Consequently, the memory space is compacted. In this example, the initial data is loaded to PE 
0. To reduce the number of message transfers and, consequently, the time to initiate messages, 
several messages can be packed and sent together. For example, the first four messages can be 
packed into one message and sent to PE 0. Finally, the fourth data partition of the result is 
unloaded from PE 0, the third from PE 1, and the first and the second from PE 2. 

3 Graphical User Interface 
The graphical capabilities of CASCH provide the user with a an easy-to-use window-based 

interactive interface (the main menu of this interface is shown in Figure 3(a)). The graphical 
interface includes the facilities following: 

• Source: The user can create, edit, or browse through sequential programs. The source 
button also includes a sub-menu for generating a DAG from the user program. 

• DAGs: This includes facilities to display a DAG generated from the user program 
(Figure 3(b) shows the task graph for the FFT program). Other options include 
displaying a randomly generated DAG or creating a DAG interactively. The editing 
facilities include node and edge insertion; node IDs as well as weights on the node and 
edges can be labelled with numbers. 

• TIGs:  This facility is similar to DAGs except that edges in task graphs are not directed 
but are undirected, that is, task graphs are TIGs. 

• Processor Network:  This facility allows the user to display a processor architecture 
(including the processors and the network topology). The editing facilities, similar to 
DAGs, allow the user to interactively create various network topologies. An example 
processor graph is illustrated in Figure 3(c). 

• Scheduling: This facility includes a sub-menu from which the user must first select one 
of the three classes of the scheduling algorithms, i.e., BNP, UNC, and APN. Within each 
class, the user needs to select one of the scheduling algorithms. The algorithm, for its 
execution, then requires the user to enter a number of parameters. 

• Show Schedule: The schedule generated as the results of invoking a scheduling 
algorithm can be displayed using this facility (Figure 3(d) shows the schedule of the 
FbT example). The schedule is displayed using a Gantt chart showing the start and 
finish times of tasks on various processors. Clicking on any task in the Gantt chart 
displays its start and finish times; the total schedule length is shown in the right comer of 
the window. A schedule also includes communication messages on the network 
(displayed through another window which is invoked by clicking on any two 
processors). The scale of the display can be changed to zoom the Gantt chart. An 
important features of this facility is the trace option which shows a step-by-step 
scheduling of each task. 

- Code generation: Clicking on this button simply generates a parallel code for a given 
program according to a schedule/map generated by a scheduling/mapping algorithm. 
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Figure 3: The graphical interface of CASCH. 
• Performance:  The performance facilities include processors utilization, time spent m 

computation and communication, and speedup. 
• Data Part i t ioning: ,  This. facility includes tools for displaying structured and 

unstructured meshes as well as partitioning of data across different processors. 

4 Results 
CASCH runs on a SUN workstation that is linked through a network to an Intel Paragon. 

We have parallelized several applications, including FFF, Gaussian elimination, Laplace 
equation solver, matrix multiplication and N-body problem, on CASCH by using all of the 
scheduling algorithms described above. Due to space limitations, we describe the results for the 
FFT application only. The objective of including these results is to demonstrate the viability and 
usefulness of CASCH as well as to make a comparison among various scheduling algorithms. 
For reference, we have also included the results obtained with manually generated code. A 
manual code is generated by first partitioning the data among processors in a fashion that 
reduces the dependencies among these partitions. Based on this partitioning, an SPMD-based 
code is generated for each processors. The performance measures include the program execution 
time (the maximum finish time out of all processors) measured on the Intel Paragon, the number 
of target processors used and the running time of the scheduling algorithm. 

The results shown in Table 1 are for the ~ example discussed earlier with four different 
sizes of input data: 8, 32, 128, and 512 points. The first four columns of Table 1 show the 
execution times for various data sizes using different algorithms. We observe that the execution 
times vary considerably with different algorithms. Among the UNC algorithm, the DCP 
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algorithm yields the best performance due to its superior scheduling method. Among the BNP 
algorithms, MCP and DLS are in general better, primarily because of their better task priority 
assignment methods. Among the APN algorithms, BSA and MH perform better, due to their 
proper allocations of tasks and messages. All algorithms perform better than manually generated 
code: Compared to the manual scheduling, the level of performance improvement is up to 400%. 
The numbers of processors used by the algorithms are shown in the middle four columns of 
Table 1. The times taken by various scheduling algorithms for generating the schedules for the 
FFT example are included in the last four columns of Table 1. As can be seen, these times vary 
drastically. The MD and DLS algorithms take considerably longer time to generate solutions 
(due to their dynamic calculation of priorities) while DSC and MCP are much faster (due to their 
simple priority calculation mechanism). 

Table 1: Execution times, number of processors used and scheduling times for the FFT application. 
Execution Times (sec.) on th~ Number of processors used Schedulinz times (sec.) on a 
lntel paragon SPARC Station 2. 

Number of Points Number  of Points Number  of Tasks 

Algorittm 8 32 128 512 8 32 128 512 14 34 82 194 

Manual 0.07 0.47 1.76 2.65 3 6 9 12 

DCP 0.06 0.11 0.63 0.64 3 5 10 18 6.24 6.26 7.06 15.80 
DSC 0.06 0.15 0.66 0.71 3 7 12 30 0.08 0.04 0.06 0.09 
EZ 0.07 0.16 0.72 0.78 3 13 34 64 6.22 6.27 7.00 15.37 
LC 0.06 0.14 0.72 0.81 4 8 16 32 0.05 0.05 0.05 0.09 
MD 0.06 0.14 0.68 0.73 3 4 12 21 6.20 6.30 8.74 69.78 

ETF 0.07 0.14 0.69 0.76 3 6 10 14 0.04 0.06 0.07 0.16 
HLFET 0.07 0.15 0.79 1.40 3 6 10 16 0.03 0.05 0.09 0.15 
ISH 0.07 0.15 0.77 0.73 3 7 14 24 0.05 0.03 0.05 0.13 
LAST 0.07 0.17 0.74 0.86 2 4 8 14 0.03 0.07 0.08 0.30 
MCP 0.07 0.17 0.68 0.72 3 6 10 14 0.05 0.03 0.08 0.14 
DLS 0.07 0.15 0.66 0.73 3 6 10 14 0.08 0.08 0.12 0.29 

BSA 0.07 0.14 0.72 0.74 3 5 5 5 0.60 0.95 2.15 5.38 
BU 0.06 0.36 0.79 0.86 10 22 37 26 0.34 0.35 0.37 0.41 
DLS 0.07 0.24 0.77 0.79 3 5 5 5 1.00 3.79 18.20 93.35 
MH 0.07 0.27 0.74 0.72 3 5 5 5 0.58 0.94 1.93 4.58 

We can make a number of conclusions based on the above results. 
• In general, the UNC algorithms generate shorter schedules but uses more processors 

than BNP and APN algorithms. Thus, UNC algorithms are more suitable for MPPs. 
• The BNP algorithms require less time for scheduling than UNC and APN algorithms 

and therefore are more suitable for scheduling under time constraint. 
• The APN algorithms tend to use less processors, due to its consideration of link 

contention, but generate slightly longer schedules for the Intel Paragon which has a fast 
network. Thus, APN algorithms are more suitable for distributed systems such as a 
network of workstations (NOW). 

5 Conclusions 
The design objectives of CASCH are automatic parallelization and scheduling of 

applications to parallel processors so that performance of applications is optimized. CASCH 
achieves these objectives by providing a unified environment for various existing and 
conceptual machines. An attractive feature of CASCH is that it provides an easy-to-use 
graphical framework for users to compare various scheduling algorithms from its extensive 
library. Users can generate schedules using different scheduling algorithms and, by visualizing 
the quality of the schedules displayed in the graphical windows, choose the best one for final 
code generation. 
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