Skip to main content
Log in

Biological control of red stele (Phytophthora fragariae var. fragariae) and crown rot (P. c a c t o r u m ) disease of strawberry with rhizobacteria

Untersuchungen zur biologischen Bekämpfung der Roten Wurzelfäule und Rhizomfäule der Erdbeere (Phytophthora fragariae var. fragariae und P. cactorum) mit Rhizosphärebakterien

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

After in vitro screening of more than 100 bacterial isolates from the rhizosphere on their antagonistic effect against Phytophthora fragariae var. fragariae and P. cactorum, the two causal agents of red stele and crown rot disease of strawberry, three bacteria out of different genera Raoultella terrigena (G-584), Bacillus amyloliquefaciens (G-V1) and Pseudomonas fluorescens (2R1-7) were found with the highest inhibitory effect on the mycelial growth of both Phytophthora spp. For the management of both fungal diseases the antagonistic bacteria were further evaluated under greenhouse and field conditions. In greenhouse all three bacteria were significantly effective in reducing red core and crown rot, exhibited a similar level of control as the chemical fungicide Aliette of up to 59%. In field trials conducted at different locations in Germany under artificially and naturally infested soil conditions in two season 2003 to 2005, different level of biocontrol was performed by the tested bacteria. In trial of the first season under artificial conditions, the three rizhobacteria showed a significant control up to 45% against both diseases and in the next season, only B. amyloliquefaciens was effective against red stele. Under natural conditions, significant effect of 37.5% was observed from a mixture of R. terrigena and B. amyloliquefaciens in first season and in second season R. terrigena showed significant effect of 45.1% in the northern part of Germany. In the south, R. terrigena and B. amyloliquefaciens were significantly efficient up to 51.5% and the overall effect were similar to Aliette.

Zusammenfassung

Nach dem in vitro-Screening von mehr als 100 bakteriellen Isolaten aus der Rhizosphäre auf ihren antagonistischen Effekt gegen Phytophthora fragariae var. fragariae und P. cac-torum, den beiden Erregern der Rhizomfäule und Roten Wurzelfäule der Erdbeere, konnten drei Bakterienstämme aus unterschiedlichen Gattungen, und zwar Raoultella terrigena (G-584), Bacillus amyloliquefaciens (G-V1) und Pseudomonas fluorescens (2R1-7) mit inhibitorischen Eigenschaften auf das Mycelwachstum der beiden Phytophthora spp. nachgewiesen werden. Anschließend wurden die antagonistischen Bakte-rien zur potentiellen Kontrolle der beiden Pilzkrankheiten unter Gewächshaus- und Freilandbedingungen überprüft. Im Gewächshaus zeigten alle drei Bakterienstämme eine signifi-kante Reduktion von Roter Wurzelfäule und Rhizomfäule und wiesen einen vergleichbaren Bekämpfungserfolg wie der che-mische Standard Alliette von bis zu 59% auf. In den Freiland-tests, die an unterschiedlichen Standorten in Deutschland unter künstlichen und natürlichen Infektionsbedingungen während der Vegetationsperioden von 2003 bis 2005 erfolgten, wurden unterschiedliche Bekämpfungseffekte von den getesteten Bakterienstämmen erzielt. Nach künstlicher Infektion zeigten die drei Rhizobakterien in der ersten Vegetations-periode einen signifikanten Bekämpfungsgrad gegen die beiden Krankheiten von bis zu 45%. In der nächsten Vegetations-periode wies nur Bacillus amyloliquefaciens einen Effekt gegen die Rote Wurzelfäule auf. Unter natürlichen Bedingungen konnte eine 37,5% Wirkung durch ein Gemisch aus R. terrigena und B. amyloliquefaciens in der ersten Vegetationsperiode und nachfolgend von 45,1% in Norddeutschland festgestellt werden. In einer Anlage in Süddeutschland war ein signifikanter Effekt von bis zu 51,1% vorhanden, der dem Alliette vergleichbar war.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Abbot, W.S., 1925: A method for computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267.

    Article  Google Scholar 

  • Anonymous, 1999: De Pflanzenschutzmittel-Verzeichnis Teil 2 1999 Gemüsebau — Obstbau — Zierpflanzenbau 47. Auflage 1999: Biologisches Bundesanstalt für Land- und Forst-wirtschaft, Braunschweig, Germany.

    Google Scholar 

  • Borowicz, J.J., Z.S. Omer, 2000: Influence of rhizobacterial culture media on plant growth and on inhibition of fungal pathogens. Biocontrol 45, 355–371.

    Article  Google Scholar 

  • Cook, R.J., 1993: Making greater use of introduced micro-organisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31, 53–80.

    Article  CAS  PubMed  Google Scholar 

  • Cook, R.J., D.M. Weller, 1987: Management of take-all in consecutive crops of wheat or barley. In: I. Chet (ed.): Innovation approaches to Plant Disease Control, pp. 41–76. John Wiley and Sons, New York.

    Google Scholar 

  • Dhingra, O.D., J.B. Sinclaire, 1985: Basic plant pathology methodes. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Dickie, G.A., C.R. Bell, 1995: A full factorial analysis of nine factors influencing in-vitro antagonistic screens for potential biocontrol agents. Can. J. Microbiol. 41, 284–293.

    Article  CAS  PubMed  Google Scholar 

  • Duffy, B., C. Keel, G. Défago, 2004: Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection. Appl. Environ. Microbiol. 70, 1836–1842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan, J.M., D.M. Kennedy, 1995: Effect of temperature and host genotype on the production of inoculum by Phytophthora fragariae var. fragariae from the roots of infected straw-berry plants. Plant Pathol. 44, 10–21.

    Article  Google Scholar 

  • Hadar, Y., G.E. Harman, A.G. Taylor, J.M. Norton, 1983: Effects of pregermination of cucumber seeds and seed treatment with Enterobactercloacae on roots by Pythium spp. Phytopathology 73, 1322–1325.

    Article  Google Scholar 

  • Harman, G.E., R.D. Lumsden, 1990: Biological disease control. In J.M. Lynch (ed.): The Rhizosphere, pp. 259–280. John Wiley and Sons, New York.

    Google Scholar 

  • Hessenmüller, A., W. Zeller, 1996: Biological control of soil-borne Phytophthora species on strawberry with bacterial antagonists. Z. Pflanzenk. Pflanzen. — J. Plant Dis. Protect. 103, 602–609.

    Google Scholar 

  • Hoffmann-Hergarten, S., M.K. Gulati, R.A. Sikora, 1998: Yield response and biological control of Meloidogyne incognita on lettuce and tomato with rhizobacteria. Z. Pflanzenk. Pflanzen. — J. Plant Dis. Protect. 105, 349–358.

    Google Scholar 

  • Izard, D., C. Ferragut, F. Gavini, K. Kersters, J. Deley, H. Leclerc, 1981: Klebsiella terrigena, a new species from soil and water. Int. J. Syst. Bacteriol. 31, 116–127.

    Article  CAS  Google Scholar 

  • Kim, B.S., S.S. Moon, B.K. Hwang, 1999: Isolation, identification and antifungal activity of a macrolide antibiotic, oligomycin A, produced by Streptomyces libani. Can. J. Bot. 77, 850–858.

    CAS  Google Scholar 

  • Kloepper, J.W., 1991: Development of in vivo assays for prescreening antagonists of Rhizoctoniasolani on cotton. Phytopathology 81, 1006–1013.

    Article  Google Scholar 

  • Koch, E., 1999: Evaluation of commercial products for micro-bial control of soilborne plant diseases. Crop Prot. 18, 119–125.

    Article  Google Scholar 

  • Koch, E., H.J. Kempf, A. Hessenmüller, 1998: Characterization of the biocontrol activity and evaluation of potential growth-promoting properties of selected rhizobacteria. Z. Pflanzenk. Pflanzen. — J. Plant Dis. Protect. 105, 567–580.

    Google Scholar 

  • Kurze, S., H. Bahl, R. Dahl, G. Berg, 2001: Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis., 85, 529–534.

    Article  Google Scholar 

  • Lin, M., K. Smalla, H. Heuer, J.D. Van Elsas, 2000: Effect of an Alcaligenes faecalis inoculant strain on bacterial communities in flooded soil microcosms planted with rice seedlings. App. Soil Ecol. 15, 211–225.

    Article  Google Scholar 

  • Mahaffee, W.F., P.A. Backman, 1993: Effects of seed factors on spermosphere and rhizosphere colonization of cotton by Bacillus subtilis GB03. Phytopathology 83, 1120–1125.

    Article  Google Scholar 

  • Mansour, M.S., M.M. Farag, 1999: Effect of volatile(s) produced by Bacillus subtilis (Cohen) on the common bean (Phaseolus vulgaris L.) wilt fungus. Egy. J. Phytopathol. 27, 47–64.

    Google Scholar 

  • Mass, J.L., 1984: Compendium of Strawberry Diseases. APS Press, St. Paul, MN, USA.

    Google Scholar 

  • Nickerson, N.L., 1998: Red stele root rot. In: J.L. Maas (ed.): Compendium of Strawberry Diseases, Second Edition, pp. 48–50. APS Press, St. Paul, MN, USA.

    Google Scholar 

  • Pierson, E.A., D.M. Weller, 1994: Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology 84, 940–947.

    Article  Google Scholar 

  • Pusey, P.L., 1990: Control of pathogens on aerial plant surfaces with antagonistic microorganisms. Special Report, Biological and Cultural Tests 5, 5–7.

    Google Scholar 

  • Raaijmakers, J.M., M. Leeman, M.M.P. Van Oorschot, I. Van der Sluis, B. Schippers, P.A.H.M. Bakker, 1995: Dose-response relationship in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology 85, 1075–1081.

    Article  Google Scholar 

  • Renwick, A., R. Campbell, S. Coe, 1991: Assessment of in vivo screening systems for potential biocontrol agents of Gaeum-annomyces graminis. Plant Pathol. 40, 524–532.

    Article  Google Scholar 

  • Schisler, D.A., P.J. Slininger, R.W. Behle, M.A. Jackson, 2004: Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94, 1267–1271.

    Article  CAS  PubMed  Google Scholar 

  • Schisler, D.A., P.J. Slininger, R.J. Bothast, 1997: Effect of antagonist cell concentration and two-strain mixtures on biological control of Fusarium dry rot of potatoes. Phytopathology 87, 177–183.

    Article  CAS  PubMed  Google Scholar 

  • Schroth, M.N., J.O. Becker, 1990: Concepts of ecological and physiological activities of rhizobacteria related to biological control and plant growth promotion. In: D. Hornby (ed.): Biological Control of Soilborne Plant Pathogens, pp. 389–414. CAB International, Wallingford, United Kingdom.

    Google Scholar 

  • Seemüller, E., 1998: Crown rot. In: J.L. Maas (ed.): Compendium of Strawberry Diseases, Second Edition, pp. 50–51. APS Press, St. Paul, MN, USA.

    Google Scholar 

  • Seemüller, E., C. Sun, 1989: Auftreten von Metalaxyl-Resistenz bei Phytophthora fragariae. Nachrichtenbl. Deut. Pflanzenschutzd. 41, 71–73.

    Google Scholar 

  • Sikora, R.A., 1992: Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annu. Rev. Phytopathol. 30, 245–270.

    Article  Google Scholar 

  • Sikora, R.A., F. Bodenstein, R. Nikolay, 1990: Einfluß der Behandlung von Rübensaatgut mit Rhizosphärebakterien auf den Befall durch Pilze der Gattung Pythium. I. Antagonistische Wirkung verschiedener Bakterienisolate gegenüber Pythium spp. J. Phytopathol. 129, 111–120.

    Article  Google Scholar 

  • Tahmatsidou, V., J. O’Sullivan, A.C. Cassells, D. Voyiatzis, G. Paroussi, 2006: Comparison of AMF and PGPR inoculants for the suppression of Verticillium wilt of strawberry (Fragaria × ananassa cv. Selva). Appl. Soil Ecol. 32, 3, 316–324.

    Article  Google Scholar 

  • Thomashow, L.S., D.M. Weller, R.F. Bonsall, L.S.P. Pierson III, 1990: Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 56, 908–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velahzazan, R., R. Samiyappan, P. Vidhyasekaran, 1999: Relationship between antagonistic activities of Pseudomonas fluorescens isolates against Rhizoctonia solani and their production of lytic enzymes. Z. Pflanzenk. Pflanzen. — J. Plant Dis. Protect. 106, 244–250.

    Google Scholar 

  • Vestberg, M., S. Kukkonen, K. Saari, P. Parikka, J. Huttunen, L. Tainio, N. Devos, F. Weekers, C. Kevers, P. Thonart, 2004: Microbial inoculation for improving the growth and health of micropropagated strawberry. Appl. Soil Ecol. 27, 243–258.

    Article  Google Scholar 

  • Weller, D.M., L.S. Thomashow, 1993: Use of rhizobacteria for biocontrol. Curr. Opin. Biotechnol. 4, 306–311.

    Article  Google Scholar 

  • Weller, D.M., 1988: Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26, 379–407.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zeller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anandhakumar, J., Zeller, W. Biological control of red stele (Phytophthora fragariae var. fragariae) and crown rot (P. c a c t o r u m ) disease of strawberry with rhizobacteria. J Plant Dis Prot 115, 49–56 (2008). https://doi.org/10.1007/BF03356238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356238

Key words

Stichwörter

Navigation