Skip to main content
Log in

The relationship of the interleukin-6 -174 G>C gene polymorphism with oxidative stress markers in Turkish polycystic ovary syndrome patients

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Objective: Interleukin-6 (IL-6) is a key pro-inflammatory and immune-modulatory cytokine of relevance for cardiovascular (CD) diseases. Cardiovascular risk factors that have been reported include oxydative stress markers [nitric oxide (NO), malondialdehyde (MDA), disulphite (SH)]. We aimed to evaluate the relation between the IL-6 G/C gene polymorphism and oxidative stress markers in polycystic ovary syndrome (PCOS) patients. Design and patients: We studied 85 PCOS patients and 115 healthy controls. PCOS was defined by the Rotterdam PCOS consensus criteria. Results: The genotype IL-6 distribution did differ between the control group (CC 9.6%, GC 63.4%, GG 27.0%) and the PCOS patients (CC 4.7%, GC 29.4%, GG 65.9%) (p<0.001). The frequency of the polymorphic G allele was also not similar for the group with PCOS as for the control group with 80.6% and 58.7%, respectively (p<0.001). No statistically significant difference was determined for MDA and NO levels in PCOS patients and control group (p>0.05). Only SH levels were found to be high in favor of patient group (p<0.05). No statistically significant difference was determined between IL-6 G/C gene polymorphism and oxidative stress markers in PCOS patients and in the control group. Conclusion: Gene polymorphism of IL-6 −174 G>C is a risk factor for PCOS in Turkish patients. IL-6 gene polymorphisms are not related to NO, MDA, and SH levels in PCOS. Our negative results in risks factors of CV disorders can probably be explained by the fact that metabolic parameters and endothelial systems of patients may not yet be affected in this short period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. King J. Polycystic ovary syndrome. J Midwifery Womens Health 2006, 51: 415–22.

    Article  PubMed  Google Scholar 

  2. Otto-Buczkowska E, Jarosz-Chobot P, Deja G. [Early metabolic abnormalities—insulin resistance, hyperinsulinemia, impaired glucose tolerance and diabetes, in adolescent girls with polycystic ovarian syndrome]. Przegl Lek 2006, 63: 234–8.

    PubMed  Google Scholar 

  3. Cibula D, Cífková R, Fanta M, Poledne R, Zivny J, Skibová J. Increased risk of non-insulin dependent diabetes mellitus, arterial hypertension and coronary artery disease in perimenopausal women with a history of polycystic ovary syndrome. Hum Reprod 2000, 15: 785–9.

    Article  PubMed  CAS  Google Scholar 

  4. Wild RA, Painter PC, Coulson PB, Carruth KB, Ranney GB. Lipoprotein lipid concentration and cardiovascular risk in women with polycystic ovary syndrome. J Clin Endocrinol Metab 1985, 61: 946–51.

    Article  PubMed  CAS  Google Scholar 

  5. Boulman N, Levy Y, Leiba R, et al. Increased C-reactive protein levels in the polycystic ovary syndrome: a marker of cardiovascular disease. J Clin Endocrinol Metab 2004, 89: 2160–5.

    Article  PubMed  CAS  Google Scholar 

  6. Orio F, Palomba S, Di Biase S, et al. Homocysteine levels and C677T polymorphism of methylenetetrahydrofolate reductase in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2003, 88: 673–9.

    Article  PubMed  CAS  Google Scholar 

  7. Diamanti-Kandarakis E, Spina G, Kouli C, Migdalis I. Increased endothelin-1 levels in women with polycystic ovary syndrome and the beneficial effect of metformin therapy. J Clin Endocrinol Metab 2001, 86: 4666–73.

    Article  PubMed  CAS  Google Scholar 

  8. Kotur-Stevuljevic J, Memon L, Stefanovic A, et al. Correlation of oxidative stress parameters and inflammatory markers in coronary artery disease patients. Clin Biochem 2006, Sep 30; doi:10.1016/j.clinbiochem.2006.09.007

  9. Landmesser U, Harrison DG, Drexler H. Oxidant stress-a major cause of reduced endothelial nitric oxide availability in cardiovascular disease. Eur J Clin Pharmacol 2006, 62: 13–9.

    Article  CAS  Google Scholar 

  10. Li H, Junk P, Huwiler A, et al. Dual effect of ceramide on human endothelial cells: induction of oxidative stress and transcriptional upregulation of endothelial nitric oxide synthase. Circulation 2002, 106: 2250–6.

    Article  PubMed  CAS  Google Scholar 

  11. Halcox JP, Schenke WH, Zalos G, et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation 2002, 106: 653–8.

    Article  PubMed  Google Scholar 

  12. Chiappelli M, Tampieri C, Tumini E, et al. Interleukin-6 gene polymorphism is an age-dependent risk factor for myocardial infarction in men. Int J Immunogenet 2005, 32: 349–53.

    Article  PubMed  CAS  Google Scholar 

  13. Liu Y, Berthier-Schaad Y, Fallin MD, et al. IL-6 haplotypes, inflammation, and risk for cardiovascular disease in a multiethnic dialysis cohort. J Am Soc Nephrol 2006, 17: 863–70.

    Article  PubMed  CAS  Google Scholar 

  14. Antonicelli R, Olivieri F, Bonafè M, et al. The interleukin-6-174 G>C promoter polymorphism is associated with a higher risk of death after an acute coronary syndrome in male elderly patients. Int J Cardiol 2005, 103: 266–71.

    Article  PubMed  Google Scholar 

  15. Yamada Y, Metoki N, Yoshida H, et al. Genetic risk for ischemic and hemorrhagic stroke. Arterioscler Thromb Vasc Biol 2006, 26: 1920–5.

    Article  PubMed  CAS  Google Scholar 

  16. Vormittag R, Hsieh K, Kaider A, et al. Interleukin-6 and interleukin-6 promoter polymorphism (−174) G>C in patients with spontaneous venous thromboembolism. Thromb Haemost 2006, 95: 802–6.

    PubMed  CAS  Google Scholar 

  17. Konukoglu D, Serin O, Turhan MS. Plasma total homocysteine concentrations in obese and non-obese female patients with type 2 diabetes mellitus; its relations with plasma oxidative stress and nitric oxide levels. Clin Hemorheol Microcirc 2005, 33: 41–6.

    PubMed  CAS  Google Scholar 

  18. Keaney JF, Larson MG, Vasan RS, et al. Obesity and systemic oxidative stress — clinical correlates of oxidative stress in the Framingham Study. Arterioscl Thromb Vasc Biol 2003, 23: 434–9.

    Article  PubMed  CAS  Google Scholar 

  19. Ruiz MC, Medina A, Moreno JM, et al. Relationship between oxidative stress parameters and atherosclerotic signs in the carotid artery of stable renal transplant patients. Transplant Proc 2005, 37: 3796–9.

    Article  PubMed  CAS  Google Scholar 

  20. Slatter DA, Bolton CH, Bailey AJ. The importance of lipid-derived malondialdehyde in diabetes mellitus. Diabetologia 2000, 43: 550–7.

    Article  PubMed  CAS  Google Scholar 

  21. Jung HH, Choi DH, Lee SH. Serum malondialdehyde and coronary artery disease in hemodialysis patients. Am J Nephrol 2004, 24: 537–42.

    Article  PubMed  CAS  Google Scholar 

  22. Duman BS, Ozturk M, Yilmazeri S, Hatemi H. Thiols, malonaldehyde and total antioxidant status in the Turkish patients with type 2 diabetes mellitus. Tohoku J Exp Med 2003, 201: 147–55.

    Article  PubMed  CAS  Google Scholar 

  23. De Caterina R, Libby P, Peng HB, et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995, 96: 60–8.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Förstermann U, Closs EI, Pollock JS, et al. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 1994, 23: 1121–31.

    Google Scholar 

  25. Joannides R, Richard V, Haefeli WE, Linder L, Lüscher TF, Thuillez C. Role of basal and stimulated release of nitric oxide in the regulation of radial artery caliber in humans. Hypertension 1995, 26: 327–31.

    Article  PubMed  CAS  Google Scholar 

  26. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993, 329: 2002–12.

    Article  PubMed  CAS  Google Scholar 

  27. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implication for the syndrome for insulin resistance. J Clin Invest 1996, 97: 2601–10.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Cook S, Scherrer U. Insulin resistance, a new target for nitric oxide-delivery drugs. Fundam Clin Pharmacol 2002, 16: 441–53.

    Article  PubMed  CAS  Google Scholar 

  29. Baron AD, Brechtel-Hook G, Johnson A, Hardin D. Skeletal muscle blood flow. A possible link between insulin resistance and blood pressure. Hypertension 1993, 21: 129–35.

    CAS  Google Scholar 

  30. Baek KJ, Thiel BA, Lucas S, Stuehr DJ. Macrophage nitric oxide synthase subunit. Purification, characterization, and role of prosthetic groups and substrate in regulating their association into a dimeric enzyme. J Biol Chem 1993, 268: 21120–9.

    PubMed  CAS  Google Scholar 

  31. The Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod 2004, 19: 41–7.

    Article  Google Scholar 

  32. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28: 412–9.

    Article  PubMed  CAS  Google Scholar 

  33. Yagi K. Lipid peroxides in hepatic, gastrointestinal and pancreatic diseases, in Armstrong D (ed): Free radicals in Diagnostic Medicine. New York, NY: Plenum Press. 1994, 165–9.

    Chapter  Google Scholar 

  34. Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001, 5: 62–71.

    Article  PubMed  CAS  Google Scholar 

  35. Sedlak J, Lindsay RH. Estimation of total, protein-bound and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 1968, 25: 192–205.

    Article  PubMed  CAS  Google Scholar 

  36. Fernandez-Real JM, Broch M, Vendrell J, Richart C, Ricart W. Interleukin-6 gene polymorphism and lipid abnormalities in healthy subjects. J Clin Endocrinol Metab 2000, 85: 1334–9.

    Article  PubMed  CAS  Google Scholar 

  37. Yarali H, Yildirir A, Aybar F, et al. Diastolic dysfunction and increased serum homocysteine concentrations may contribute to increased cardiovascular risk in patients with polycystic ovary syndrome. Fertil Steril 2001, 76: 511–6.

    Article  PubMed  CAS  Google Scholar 

  38. Paradisi G, Steinberg HO, Hempfling A, et al. Polycystic ovary syndrome is associated with endothelial dysfunction. Circulation 2001, 103: 1410–5.

    Article  PubMed  CAS  Google Scholar 

  39. Kelly CJ, Speirs A, Gould GW, Petrie JR, Lyall H, Connell JM. Altered vascular function in young women with polycystic ovary syndrome. J Clin Endocrinol Metab 2002, 87: 742–6.

    Article  PubMed  CAS  Google Scholar 

  40. Kelly CC, Lyall H, Petrie JR, Gould GW, Connell JM, Sattar N. Low grade chronic inflammation in women with polycystic ovarian syndrome. J Clin Endocrinol Metab 2001, 86: 2453–5.

    Article  PubMed  CAS  Google Scholar 

  41. Loverro G, Lorusso F, Mei L, Depalo R, Cormio G, Selvaggi L. The plasma homocysteine levels are increased in polycystic ovary syndrome. Gynecol Obstet Invest 2002, 53: 157–62.

    Article  PubMed  CAS  Google Scholar 

  42. Muneyyirci-Delale O, Nacharaju VL, Dalloul M, et al. Divalent cations in women with PCOS: implications for cardiovascular disease. Gynecol Endocrinol 2001, 15: 198–201.

    Article  PubMed  CAS  Google Scholar 

  43. Glueck CJ, Sieve L, Zhu B, Wang P. Plasminogen activator inhibitor activity, 4G5G polymorphism of the plasminogen activator inhibitor 1 gene, and first-trimester miscarriage in women with polycystic ovary syndrome. Metabolism 2006, 55: 345–52.

    Article  PubMed  CAS  Google Scholar 

  44. Escobar-Morreale HF, Villuendas G, Botella-Carretero JI, Sancho J, San Millán JL. Obesity, and not insulin resistance, is the major determinant of serum inflammatory cardiovascular risk markers in premenopausal women. Diabetologia 2003, 46: 625–33.

    PubMed  CAS  Google Scholar 

  45. Sies H. Oxidative stress: introductory remarks. In: Oxidative Stress, edited by Sies H. New York: Academic. 1985, 1–8.

    Chapter  Google Scholar 

  46. Sies H. Oxidative Stress: Oxidants and Antioxidants. London: Academic, 1991.

    Google Scholar 

  47. Walch K, Grimm C, Zeillinger R, Huber JC, Nagele F, Hefler LA. A common interleukin-6 gene promoter polymorphism influences the clinical characteristics of women with polycystic ovary syndrome. Fertil Steril 2004, 81: 1638–41.

    Article  PubMed  CAS  Google Scholar 

  48. Lieb W, Pavlik R, Erdmann J, et al. No association of interleukin-6 gene polymorphism (−174 G/C) with myocardial infarction or traditional cardiovascular risk factors. Int J Cardiol 2004, 97: 205–12.

    Article  PubMed  Google Scholar 

  49. Fleming R. The use of insulin sensitising agents in ovulation induction in women with polycystic ovary syndrome. Hormones (Athens) 2006, 5: 171–8.

    Article  Google Scholar 

  50. Chen NG, Azhar S, Abbasi F, Carantoni M, Reaven GM. The relationship between plasma glucose and insulin response to oral glucose, LDL oxidation, and soluble intercellular adhesion molecule-1 in healthy volunteers. Atherosclerosis 2000, 152: 203–8.

    Article  PubMed  CAS  Google Scholar 

  51. Nourooz-Zadeh J, Tajaddini-Sarmadi J, McCarthy S, Betteridge J, Wolff SP. Elevated levels of authentic plasma hydroperoxides in NIDDM. Diabetes 1995, 44: 1054–8.

    Article  PubMed  CAS  Google Scholar 

  52. Tsimikas S, Brilakis ES, Lennon RJ, et al. Relationship of IgM and IgG autoantibodies to oxidized low density lipoprotein and apolipoprotein B100-immune complexes with angiographically determined coronary artery disease and cardiovascular events. J Lipid Res 2006, Nov 8; doi: 10.1194/jlr.M600361-JLR200

  53. Kokić AN, Stević Z, Stojanović S, et al. Biotransformation of nitric oxide in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Redox Rep 2005, 10: 265–70.

    Article  PubMed  CAS  Google Scholar 

  54. Kenyon NJ, Last MS, Eiserich JP, Morrissey BM, Temple LM, Last JA. Differentiation of the roles of NO from airway epithelium and inflammatory cells in ozone-induced lung inflammation. Toxicol Appl Pharmacol 2006, 215: 250–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Essah PA, Nestler JE. The metabolic syndrome in polycystic ovary syndrome. J Endocrinol Invest 2006, 29: 270–80.

    Article  PubMed  CAS  Google Scholar 

  56. Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation 2005, 111: 1448–54.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Erdogan MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdogan, M., Karadeniz, M., Berdeli, A. et al. The relationship of the interleukin-6 -174 G>C gene polymorphism with oxidative stress markers in Turkish polycystic ovary syndrome patients. J Endocrinol Invest 31, 624–629 (2008). https://doi.org/10.1007/BF03345614

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345614

Key-words

Navigation