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Abstract

In this paper we first show that the gains achievable by integrating pricing and inventory control
are usually small for classical demand functions. We then introduce reference price models and
demonstrate that for this class of demand functions the benefits of integration with inventory control
are substantially increased due to the price dynamics. We also provide some analytical results for
this more complex model. We thus conclude that integrated pricing/inventory models could repeat the
success of revenue management in practice if reference price effects are included in the demand model
and the properties of this new model are better understood.
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1 Introduction

1.1 Problem Statement

In the basic price-optimization problem, the only
internal factor affecting the price of a monopo-
list is incremental cost, i.e. profit-optimal price
p" is given by p* = en(’)/(n(p’) - 1), where
n(p") is the price elasticity and ¢ > 0, incre-
mental cost (see, e.g., Phillips (2005), Chapter 1).
In the case of linear demand D(p) = Bo + Bip
with By > 0,6; < 0, optimizing (p — ¢)D(p) yields
p" = (Bic—Po)/2p: asthe optimal price. This result
is valid if enough inventory (capacity) is in place
to satisfy the resulting demand D(p") or if demand
is deterministic and D(p") is produced/procured
after the pricing decision before the selling pro-
cess starts. Inventory/capacity enters the pricing
problem if the available inventory is smaller than
D(p"): in this case the optimal price is the run out
price p”, D(p") = x, where x is the available inven-
tory (capacity). Profit can be improved if different
prices are charged to different market segments.
This is done by either adjusting price over time

* This research was supported by the Vienna Science and
Technology Fund (WWTF) under grant “Integrated Demand
and Supply Chain Management” (Call “Mathematics and ...”).
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(so-called price-based revenue management) or
by dynamically closing booking classes (so-called
quantity-based revenue management) depending
on the inventory/capacity remaining for the rest of
the selling period (see e.g. Talluri and van Ryzin
(2004)). This kind of integrated pricing and inven-
tory (capacity) management has a profound impact
on profitability and revenue management is ac-
cepted industry practice in the service sector (yield
management for airlines, hotel, logistics service
providers etc.) and retailing (markdown manage-
ment of high-tech/fashion goods or sell-off items).
In this paper we investigate the situation where
inventory is adjustable, i.e. the inventory decision
is made after or jointly with the pricing decision
before demand materializes. Demand is uncertain,
i.e. D(p, €) = PBo + B1p + &, where ¢ follows a distri-
bution function F(-) with mean 0 and variance o2
This is typically the case in manufacturing or in
retailing of goods with long life cycles and short
procurement/production lead times®.

In many firms, pricing and inventory control is
done sequentially in such situations. At first, mar-

1 We will thus only use the term inventory in the following,
although the findings also hold for suitable settings in service
industries, where the analogous concept is capacity.
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keting/sales autonomously determines a price that
maximizes expected profit based on incremental
costs ¢ only. This is then passed on to logistics
(procurement or production) together with infor-
mation on the demand distribution. Logistics then
adds a safety stock to expected demand E[D(p", £)]
to account for risk depending on shortage, holding
and backlogging cost and salvage value. However,
while computationally simple and well adapted to
the usual division of labor in firms, in general the
resulting prices and inventory policies are not opti-
mal. As it was already shown in Whitin (1955), the
optimal price resulting from a joint optimization
of a price-setting Newsvendor Problem with lost
sales differs from p". It seems natural to accelerate
demand through a price discount in the case of
overstocking in a multi-period setting. However,
these gains have the prize of added complexity and
intra-organizational coordination cost and practice
will only adopt more elaborate models and busi-
ness processes if the expected benefits outweigh
this overhead. Classical works on integrated pric-
ing and inventory control indicate profit increases
through integration of only up to 2% for typical
cases, which might be an explanation of why —
contrary to revenue management — such models
are not widely implemented in IT-based planning
systems so far.
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1.2 Existing Literature and Contribution
of the Paper

Yano and Gilbert (2004) and Elmaghraby and
Keskinocak (2003) survey the literature on com-
bined pricing/inventory control. Regarding the de-
mand model, two streams of literature can be
distinguished: the works in the operations man-
agement/logistics area assume classical demand
models, where demand is influenced by the cur-
rent price only. Here, the focus is on details of the
logistic part. Inferences about the gains of integra-
tion are either done analytically (see, e.g., Petruzzi
and Dada (1999)) or via numerical simulation (see,
e.g., Federgruen and Heching (1999)). As stated
above, these results show limited benefits.

Reference price models have been popular in mar-
keting (see e.g. Mazumdar, Raj and Sinha (2005)
for a survey). Here also the pricing history influ-
ences demand, as it is the basis of the expectation
of future prices and acts as a benchmark to judge
current prices: customers respond favorably if the
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current price is less than the reference price and
unfavorably if the current price is higher than the
reference price. To the best of our knowledge, the
integration of reference price models with inven-
tory control models has not been studied so far.
We will probe into the issue of whether using a ref-
erence price model to describe demand increases
the benefits of integration with a logistic model.
Here, we study whether the base-stock list-price
policy still holds in such a setting and infer the
size of potential benefits via numerical simulation.
In the survey part at the beginning of the paper
we also complement existing literature by studying
single-period joint pricing/inventory control with
backlogging and by extending the steady-state ref-
erence price proof from Popescu and Wu (2007)
to the case of positive ordering cost.

1.3 Outline of the Paper

In Section 2, we will briefly describe the sequen-
tial method in a single- and multi-period setting
as the basis for a review of the integrated pricing
and inventory decision models developed in liter-
ature and study the benefits of an integration in
Section 3. In Section 4 we then extend the clas-
sical demand model by including reference price
effects. In Section 5 we summarize our findings
and identify areas for further research.

Generally, our focus is on linear demand models
and monopolistic pricing. While ensuring math-
ematical tractability these assumptions are not
unrealistic: price optimization by a firm is only
possible in imperfect markets and in the case of
monopolistic competition a firm faces a range of
prices where competitors do not react, i.e. the
linear demand function is a local approximation
conditional on competitors’ prices which remain
unchanged if the price stays within this permis-
sible range (see Phillips (2005), Chapter 1). For
the logistic part we only look at the determination
of the inventory/production level. Consistent with
the inventory literature we will therefore denote ¢
as ordering cost. We also focus on the backlogging
case,” where unsatisfied demand is fully satisfied
in later periods and backlogging costs are charged
and assume no fixed ordering costs.

2 A line of related research concentrates on partial backlog-
ging either for non-perishable goods (see e.g. Abad (2001)) or
perishable goods (see e.g. Dye, Hsieh and Ouyang (2007)).

107



BuR — Business Research
Official Open Access Journal of VHB

33

2 Sequential Models

Volume 1 | Issue 1 | May 2008 | 106-123

2.1 Newsvendor Models

In the case of a perishable product that becomes
obsolete at the end of a single period and where
unsatisfied demand is lost, in the sequential model
logistics solves the well-known classical Newsven-
dor Problem (see, e.g., Petruzzi and Dada (1999)).
In the first step marketing/sales determines the
profit-optimal price as

W p'= —ﬁ°2_ﬁ[j .

due to the fact that E[¢] = 0. Then, p* and infor-
mation on demand risk is passed on to logistics,
which determines the optimal inventory level y* as

p*+s—c>

. , o
(2) y =EDp,a]+F (p*+s_v

where s > 0, denotes the shortage cost and v the
salvage value (or salvage costif v < 0, respectively).
Here C, = (p" + s — ¢) represents the opportunity
cost of underestimating demand and C, = (c — v)
the cost of overestimating demand. The above ratio
C,/(Cy+C,) in equation (2) is known as the critical
fractile. Intuitively, it corresponds to the safety
factor at which the expected profit lost from being
one unit short is equal to that from being one unit
over.

Logistics employs a different model if demand in
excess of the amount stocked is backlogged. In this
case, customers will return after the end of the
period where there is one more chance to place
an order for the outstanding items, which are then
instantaneously delivered to the customers3. But,
at the same time, backlogging costs b > 0, are
charged as penalty costs for the inability to meet
consumer needs when they occur. In cases of over-
production with resultant excess of inventories at
the end of the period, holding costs h > O occur.
These could be interpreted as carrying charges un-
til the remaining items can be sold e.g. to a discount
store for some salvage value v. Holding and back-
logging costs are charged for the period when they
occur, whereas any financial flow after the end of
the period (reordering/salvaging opportunity) is
discounted by a discount factor 0 < y < 1. To in-
sure that it is not optimal to not order anything at

3 Problems like these can be found as newsvendor models with
an emergency supply option (see e.g. Montgomery, Ajit and
Keswani (1973) and Khouja (1996)).
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all and merely accumulate backlog penalty costs,
also b > (1 — y)c is assumed. Maximizing expected
profits yields the optimal order quantity
b-(1-y) >

- . = N SR Cadil
(3) vy =E[Dp,e)l+F <h+b—Y(v_c)

To see this we differentiate the expected one-period
profit

(4) E[P(y,p)]=p EDP ,e)l-cy
y-E[D(p’,e)]

— (h-y) / (y - E[D(", &)] - W)f Wdu
~(b+yo) / EIDG", )] + u - y)f Wdu
y-E[D(p",e)]

with respect to the inventory y. This leads to

8E[P(y,p)]
oy

=-c-(h-yv)F(y - E[D(p ,©)])
—(b+Yye)F(y - E[D(",&)]) + (b -yc) .

Setting this equal to zero and solving for y gives
the desired result.

The critical fractile (b — (1 = y)c)/(h+ b -y(v - ¢))
has a similar interpretation as in equation 2: it
corresponds to the order quantity at which the
expected profit lost from being one unit short
is equal to that from being one unit over. Here
C, = (b - (1 - y)c) denotes the opportunity cost
of underestimating demand and C, = (h + ¢ -
yv) the cost of overestimating demand. The above
ratio is again given by C,/(C, + C,). Note that in
the backlogging case p* does not appear in the
critical fractile. This is because the items are sold
in any case. Today, the situation characterized by
formula (3) is more prevalent in practice, as due to
competition, firms are willing to incur substantial
backlogging cost rather than lose customers in the
future due to unsatisfied demand.

(5)

2.2 Multi-Period Models

We now turn to the dynamic version of the backlog-
ging inventory model which was first introduced
and solved by Arrow, Harris and Marschak (1951).
Here the system described will be operated over T
periods. What makes the problem more compli-
cated than solving T copies of the single-period
problem is that any leftover stock at the end of
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Figure 1: Inventory Path
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one period is retained and can be offered for sale
the following period (see Figure 1 for a sample
inventory path). In this regard, each unit of posi-
tive leftover stock at the end of each period incurs
holding costs h. Demand for the product in excess
of the amount stocked will be backlogged, which
means that these customers will return the next
period for the product, in addition to the usual
random number of customers. A per-unit backlog-
ging cost b is charged as a penalty cost for each unit
that is backlogged in each period. The newly aris-
ing demands in different periods are assumed to be
statistically independent. As in the above section
a proportional per-unit ordering cost of c is in-
curred, and orders placed are essentially received
immediately (received in time to meet demand
that arises in that period). All costs are expressed
in beginning-of-period cash units, cash flows oc-
curring in subsequent time periods are discounted
by a one-period discount factor y € (0, 1]. After
the last period, the remaining inventory is salvaged
or backlogged demand is satisfied.

A convenient way to represent the state of a system
in this model is the level x of inventory before or-
dering. Positive x indicates leftover stock at the end
of the period, negative x unmet demand of the pre-
vious period (see Figure 1). The objective is to find
an optimal order-up-to level y; for each period t
in order to maximize total expected discounted
profits:

T
©) > vy max (pr[D(pﬁ, )] - c(y: - x))
t=1

- G(yt;pi)) + YTL(yTap;") )

with D(p,,&;) = Bo + Bip; + &, where B also in-
cludes the effect of demand drivers other than price
(e.g. trend, seasonality, promotions, etc.),
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Figure 2: Optimal inventory level after ordering
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Gy, p;) = E[h - max((y: - D(p;, 1)), 0)
+b - max((D(p*, &) — Y1), 0)]

are the expected inventory holding/backlogging
costsand L(yr, py) = E[v-max((yr-D(pry, er)), 0)+
¢ - max((D(py, er) — yr), 0)] the expected salvage
value (costs)/ backlogging costs in the last pe-
riod T. Note that we are only using the time-
invariant demand and inventory costs. Many re-
sults are also possible in the time variant case but
are omitted for clarity of the formulas.

This problem is mostly stated in literature in terms
of dynamic programming:

(7) Vilw) = max { piELD(p;, e0)] - ey )

- Gy, p}) + VEVe (y — D(py, e }

with Vry1 = L(yr, pr)-

Bellman, Glicksberg and Gross (1955) were the first
to show that the optimal cost function is convex
in inventory before ordering x;, which leads to
the result that a stock level independent of the
inventory level before ordering is optimal. This
level is often referred to as the base-stock level. If
the initial inventory level x; is below the base-stock
level, an order is placed to raise the inventory
level y; to the base-stock level S;, otherwise, no
order is placed (see Figure 2).4

Figure 3 shows that for the finite horizon case with
no salvage value, the optimal base-stock level is

4 E.g. Zheng (1991) extends this result to a case of additional
fixed ordering costs. Using the property of k-convexity they
show that an (s, S)-policy is optimal, where the order-up-to
level is again given by a constant, but an order is only placed
if the inventory level before ordering is below another constant
level.
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Figure 3: Base-stock path over time
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decreasing over time. That is because towards the
end of the planning horizon, since time remaining
is getting shorter, the risk of not selling the in-
ventory on stock is increasing, against which costs
the decision maker hedges by a diminishing base-
stock level. Of course no risk is observed in the
case where the per unit salvage value equals the
per unit ordering costs (v = ¢). In this case, if some
inventory on stock is not sold by the end of the
horizon, it can be salvaged by the same amount
of money as it was ordered. Here, a myopic policy
which looks only at the single-period backlogging
problem described in Subsection 2.1 is optimal in
every period, regardless of the time horizon 7. In
other words a steady-state solution for the infinite
horizon case can be simulated by setting v = c. The
steady-state base-stock is given by

This can be shown analytically by rearranging
terms and extending equation (6) to the infinite
horizon case in the following way. We replace
Xts1 = Yy — D(py) for all t = 1 and then rearrange
the sum in such a way that we are left only with
terms indexed by ¢ + 1 in the f-th summand:

b-(1-y)

. . .
8) y =E[Dp,e)]l+F ( b

(9)  Ver) =y max [p'EIDQ, er1)]
=0

— (et +%er1) = Gy, p)]
=ex;+» Y max [p*E[D(p*, &t+1)]
=0 t+1
- c((1 = Y)yee1 +yDP)) - G, p*)} :
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As we assume that we are in a steady state we re-
place the time-dependent y; by in time-invariant y.
Since the profit function V(x;) is a concave func-
tion in y, the optimal inventory level after or-
dering y* can now be obtained by differentiat-
ing V(x;) with respect to y and setting the result
equal to zero. Using Leibniz integration rule we can
differentiate the expected inventory costs to get
6%G(y,p*) =-b+(h+b)F(y - ED(p")) where F(-)
is the cumulative distribution function of the de-
mand’s random perturbation e. Hence, to find the
steady-state solution y", we solve

9

(10) 3y

V(x1)=%_y<—(1—y)c+b

- (h+ D)F(y - ED(p"))
= 0 5

which results in equation (8).

Table 1 displays the optimal steady-state base-
stock level S”, which is the optimal order-up-to
level, if the inventory before ordering is smaller
then S*. We investigate the effect on the optimal
solution for various parameter settings. The base
parameters are: o = 100, f; = =20, h = 0.005,
b=0.4,0=40,y =1, D(p,&) ~ normal. Accord-
ing to Phillips (2005) we set the pricetop” = 2.75.
Since F~!(-) is increasing in both discount fac-
tor y and backlogging costs b, the steady state
base-stock level S” is also increasing in these pa-
rameters. An intuitive explanation for the changes
in backlogging costs could be that the seller wants
to hedge against higher backlogging costs by keep-
ing higher inventory levels. Furthermore, a higher
uncertainty in demand also results in higher safety
stock levels and hence in higher base-stock lev-
els. This is illustrated in Table 1 by varying one
of the parameters in each row. Numerical results
also show that for more heavy tailed distributed
demands (like the beta or the log-normal distribu-
tion) base-stock levels are higher to prepare for the
higher risk of large demands.

Table 1: Steady-state base-stock level S”

b 0.05  0.09 0.16 0.4
S, 40 64 81 103
o 10 20 40 60
S, 59 74 103 132
% 0.75  0.85 0.95 1
S, 64 79 103 135
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Classical Joint Pricing and
Inventory Control Models

3.1 The Price Setting Newsvendor
Problem

We now look at the Newsvendor Problem when
price and inventory level are jointly optimized. We
will start with the lost sales case, which is studied
in Whitin (1955), Thomas (1974) and surveyed
in Petruzzi and Dada (1999). If we define the safety
stock z = y — E[D(p, )], the goal function is

(11) E[P(z,p)] =

/ (PEDE, )] + W) + v(z - W) ()du

- / (PEDP, )] + 2) - s(u - 2)f Wdu
- c(E[D(p, )] + 2)

As Petruzzi and Dada (1999) show, E[P(z,p)] is
concave in z for a given p and concave in p for
a given z. One can thus reduce the optimization
of (11) to an optimization problem in a single vari-
able, first solving for the optimal value of z as
a function of p and then substituting the result
into E[P(z, p)], which yields the fractile rule from
equation (2), or by first optimizing p for a given z
and then searching over the resulting optimal tra-
jectory to maximize E[P(z,p)]. In this case the
optimal price for the integrated problem is given
as (see Petruzzi and Dada (1999))

Bo - Bic N 0(2)
2p, 2B, °

where O(z) = fzw(u - z)f(w)du denotes the ex-
pected lost sales when safety stock z is chosen.
Thus, since B; < 0, the sequential method yields
a price that is higher than the optimal price for
the integrated problem and a gain can be achieved
by more closely coordinating marketing and logis-
tics. In the integrated setting the price is used to
reduce the coefficient of variation of demand, and
the difference between the optimal price set by
marketing in isolation is decreasing with increased
price sensitivity (slope of the demand function ;)
and demand uncertainty. However, as Petruzzi
and Dada (1999) show, this effect is reversed if
randomness is modelled in a multiplicative way as
D(p) = (Bo + B1p) - .

Let us now look at the backlogging case. If we fix
z = y — E[D(p, e)], the price does not influence

(12) p;=-
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holding/backlogging costs anymore. This differs
from the lost sales case, where we lose sales if
demand exceeds stock and hence revenue gets
reduced by p - (¢ - z). Differentiating the expected
profit (4) with respect to price yields

OE[P(y,p)]

(13 ap

) = E[D(p, €)1+ (p-c)E[Dy(p; €)],
where E[D,(p, €)] = %g”g)]. Setting (13) equal to
zero and solving for p leads to p” as given in (1) be-
ing optimal, i.e. in the backlogging case, we can set
the price independently of the inventory decision.
Thus, while the sequential approach is not optimal
in the lost-sales case, no gain is achieved by joint
optimization in the backlogging case.

3.2 Multi Period Joint Pricing and
Inventory Control
The multiple period joint pricing and inventory
control problem has been studied e.g. by Feder-
gruen and Heching (1999), Chen and Simchi-Levi
(2004a) and Chen and Simchi-Levi (2004b). Here
in each period the level of inventory before order-
ing x is observed and on this basis both y and p
are set, with the intuition that holding costs can be
reduced by accelerating demand via reducing p.
Let V;(x;) be the maximum expected profit from pe-
riod t onwards (profit-to-go function), with initial
inventory x;. Then the recursive Bellman equation
has the following form:

(14) Vi(xt) = max {Ji(xt,Ys, P}
Yt2Xt,Pt

(15)  Ji(xt, ys, pr) = E[P(xt, Y, Pr» €1)]

+YE [Vis1 (Yt =D(ps, €1))]
with Pi(x¢, Yt, Pt €1) = pe(Bo +B1pe +&) —c(ys —x¢) -
G(y;, pr) and the boundary condition V;(xT) =
0 for all x7. Following Federgruen and Heching
(1999), we reformulate (14) and (15) such that

Vi(x;) is reduced by cx; with G(y;, p;) being defined
asin (6):

16) Vilx) = gf);Jt(yt,pt)

(17)  J+e;pe) = (Pt = Y)E [D(py)]
= (1 =Yyt — G(Ye, pr)
+YE [V[ll(yt - D(py, St)]

and Vr(x7) = cxr for all x7.
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For this model, Federgruen and Heching (1999)
use joint concavity to show optimality of a base-
stock policy and submodularity® in y and p to show
optimality of a list-price policy. That means that
in time period t, if the current inventory level x; is
below the base-stock, inventory is increased to y;
and the price p; is charged. Otherwise, no order
is placed and a discount that increases with x; is
given. Here, p;, is called list price, as it resembles
the price level without discounting.

Similar to the steady state of model (6) one can find
a steady state for the joint pricing and inventory
control model (14) and (15). For the linear demand
case the steady states are given as follows: the
steady-state price is

Volume 1 | Issue 1 | May 2008 | 106-123

«__Po-Pic
18 = -
(18) p 2B,
while the steady-state base-stock is

b-(1-y)

09) v =BG+ (P

Note that the optimal steady-state price p* equals
the optimal price from Section 1.1. The proof works
exactly like the proof in Section 2.2. Again we
rearrange the infinite sum (compare formula (9))
and replace the time variant variables y; and p; by
their time-invariant counterparts y and p. In order
to find the steady-state base-stock y"(p”) (this time
depending on the optimal steady state price p* of
the joint pricing and inventory control model) we
follow the steps from Section 2.2 to obtain the
optimal steady-state base-stock (19). To find the
steady-state price, we use y"(p) as an input for y in
the infinite sum representation of formula (15) and
differentiate with respect to p. To find p* we have
to make y* dependent on p instead of p* and then
optimize with respect to p in order to obtain p".
It is easy to see that in this case, G(y"(p),p) is
a constant and does not depend on p anymore. As
V(x1) is concave in p, we need to solve

9E[D(p, €]

op )

(20) %V(xl) - E[D(, o)) + -

=0.

In the case of the linear demand function this
yields equation (18). Note that the optimal steady-

5 Forally; > yo,J(y1,p) — J(y2,p) is non-increasing in p.
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Figure 4: Price trajectory for time period 5, 10 and 15
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Figure 5: Base-stock and list-price evolution over time
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state price is the same as the optimal myopic price
from Phillips (2005).

Figures 4 and 5 depict numerical results for (16)
and (17) for a parameter setting similar to Fe-
dergruen and Heching (1999) with Sy 100,
B1 =-20,c=05,b=04,h=0.0050v=0,
T = 15 and a coefficient of variation of 0.44.
Figure 4 shows the price as a function of the inven-
tory before ordering for different periods. Figure 5
shows the base-stock, price and expected demand
for the last periods of the planning horizon. One
can see that while the base price stays constant over
time, the tendency to give price discounts to lower
inventory increases over time. Figure 6 depicts the
gains of applying equations (16) and (17) versus
the sequential procedure (1). We get the largest
benefits of joint optimization towards the end of,
or for a short planning horizon. In contrast to the
comparisons in Federgruen and Heching (1999),
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Figure 6: Profit increase over time
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who base all numerical results on a coefficient of
variation, we always use a constant standard devi-
ation (not depending on price). This erodes a lot of
the benefit when using a dynamic pricing model.
Figure 7 shows relatively low benefits for low stock
before ordering, which can be much higher for
substantially larger inventory levels before order-
ing. The closer we get to the end of the planning
horizon, the earlier this effect can be observed.
This is intuitive as the seller tries to reduce the risk
of being left with unsold stock at the end of the
planning horizon.

4 Joint Pricing and Inventory
Control with Reference Price
Effects

4.1 Reference Price Models

Empirical studies like e.g. Winer (1986), Greenleaf
(1995), Kopalle, Rao and Assuncao (1996), Bri-
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esch, Krishnamurthi, Mazumdar, and Raj (1997),
Fibich, Gavious and Lowengart (2003), Mazum-
dar, Raj and Sinha (2005) and Natter, Reutterer,
Mild, and Taudes (2006) show that for goods which
are repeatedly bought from a monopolist, demand
not only depends on the current price but is also
sensitive to the firm’s pricing history and thus
accounts for intertemporal demand correlations.
Since consumers have a memory, the carrier of
price is not only based on its absolute level, but
rather on its deviation from some reference level
resulting from the pricing history. As customers
revisit the firm, they develop price expectations,
which become a benchmark against which current
prices are compared. A formulation that captures
this effect is the so-called reference price which is
a standard price against which consumers evaluate
the actual prices of products they are considering.
If the price is below the reference price, the ob-
served price is lower than anticipated, resulting
in a perceived gain. This would make a purchase
more attractive and raise demand. Similarly, the
opposite situation would result in a perceived loss,
reducing the probability of a purchase (people are
less likely to buy products after prices have gone
up). To include reference price effects, our linear
demand model thus becomes (see e.g. Greenleaf
(1995) or Kopalle, Rao and Assuncao (1996)):

(21) D(p¢,1t,€1) = Bo + P1 - pr
+ B2 - max{p; - r;, 0}
+ ﬁ3 . min{pt — Tty 0} + &,

with oy = 0, B1, B2, B3 < 0 and &; being iid. accord-
ing to an arbitrary probability density function f(-)
with mean E[e;] = 0. Price and reference price r;
are restricted to an arbitrary finite interval [p, p]
and [r, 7] such that E[D(p;, 1+, )] = 0. B

If equation (21) is symmetric with respect to the
effect of gains and losses (B2 = f3), buyers are
loss-neutral and the demand function is smooth.
For loss-averse consumers the demand function is
steeper for losses than for gains (f2 < fB3). In other
words, a loss decreases expected demand more
than an equivalently sized gain would increase de-
mand (see Figure 8). This behavior is predicted by
Prospect Theory (see e.g. Winer (1986)).If B2 > B3,
consumers are loss-seeking. As Slonim and Gar-
barino (2002) show, By > 3 can also arise on the
aggregate level when in fact the consumers behave
according to Prospect Theory but stockpile when
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Figure 8: Prospect theory
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prices are low. We will focus on the loss-neutral
and loss-averse case, which yield closed-formed
steady-state solutions, while the optimal pricing
policy in the loss-seeking case cycles (see Popescu
and Wu (2007) and Figure 14).

A commonly used simple reference price updating
mechanism is

(22) re=are +(1 -a)pe-1,

where 0 < a < 1 denotes the memory parameter
and captures how strongly the reference price de-
pends on past prices® (see Figure 9). Lower values
of arepresent a shorter term memory; in particular
if a = O the reference price equals the price of the
previous period.

6 For a different, detailed exposition of reference price mecha-
nisms, see e.g. Moon, Russell, and Duvvuri (2006).

114

In such a setting, the objective is to maximize total
expected profits:

(23)

T
t-1
max ; Y (e - OE [D(pr, e 0] -
The decision which price to charge in each period
is made in stages and cannot be viewed in isolation
since one must balance the desire for high present
profits, obtained by charging relatively low prices,
against the undesirability of low future profits, re-
sulting from the formation of a low reference price
as a consequence of the earlier price discount. This
tradeoff is captured by the technique of dynamic
programming which at each stage ranks decisions
based on the sum of the present values and the
expected future values, assuming optimal decision
making for subsequent stages. As the reference
price summarizes past information which is rele-
vant for future optimization, equation (23) is often
written in terms of the Bellman equation:

(24) Vilro) = max {E[(®0- oD@, 0]
+VE [Vina(are + (1 - a)p)] }.

An important consequence of this reference price
formation is that although frequent price discounts
may be beneficial in the short run, they may be dan-
gerous in the long run when consumers get used to
these discounts and reference prices drop. The re-
duced price becomes anticipated and loses its effec-
tiveness, whereas the non-promoted price becomes
unanticipated and would be perceived as a loss.
Kopalle, Rao and Assuncao (1996) and Popescu
and Wu (2007) show for time-constant parame-
ters that if the reference level is initially high, an
optimizing firm should consistently price below
this level, which has the effect of a skimming strat-
egy. Similarly a low initial reference level leads
to the optimality of a penetration type strategy.
According to Popescu and Wu (2007) the optimal
price path converges (monotonously under certain
assumptions) to a constant steady state which they
only give for the case of zero ordering costs. Ex-
tending their results to the case ¢ > 0 leads to the
following result for the the optimal steady-state
price under the piecewise linear demand model
of equation (21) for loss neutral (8, = B3) or loss
averse (B2 < f3) customer behavior:
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(25)
* _ (Bre=Bo)(1-ap)+fo(1-y)c *
Py = T t-aypiy - i TSPy
* - * _ (Bre-Po)1-ay)+fs(1-y)c *
p (r1) bs = 125181—0Y)+,33(i—)/) if 7 2 Ps
r else.

Here, p; is the steady-state solution obtained by
a penetration type strategy (if initial price ex-
pectations are low, start with a low price and
monotonously increase it until the steady state
is reached) and p;, is the steady-state solution ob-
tained by a skimming type strategy (if initial price
expectations are high, start with a high price and
monotonously decrease it until the steady state is
reached).

Like in the steady-state proofs before, we again
use differentiation of the infinite case of equa-
tion (23). We substitute p; = p and r;1 = al(r; -
p) + p for all t, where r; is the starting reference
price. In the linear demand case, this results in
V() = YoV [0 -0)(Bo + Bip — a'fa(r1 - p))].
Differentiating V' (r;) with respect to p and setting
equal to O yields

21 ﬁ2/3
(26) _Up+ gl @p=m)
+ﬂ0—cﬁ1 _ ﬁ2/3C _
1-vy 1-ay

Using the assumption that the reference price
is in a steady state r we set r; = r for all t.
Hence, from equation (22) it follows that r; = p.
Since V(r) is concave, solving this equation yields
the steady-state price (25) for the loss neutral
case. An extension for the proof to non-linear
demand functions and the loss averse case can

be found in Popescu and Wu (2007). Note, that

if Gre-fo)l-an+f(1—y)e . . . Bic—fo)d-an+Bs(1-y)
2B (T-ay)+Pa(1-y) ! 21 (T-ay)+Ps(1-y)

we have p (1) = r;. As can be seen from equa-

tion (25), the steady-state price is the optimal price
without reference price effectsifa =0andy =0
and fy/3 = 0. Popescu and Wu (2007) also show
that the steady-state price is decreasing in a and y
and increasing in f85/3. That is, it is the lower the
smaller the reference price effect is. We use a base
scenario of the demand model given in eq. (21)
and set the parameters for loss neutral customer
behavior to By = 100,5; = -20,8; = B3 = -40
and S, 50, 3 = —30 for loss averse customers,
respectively. Unless not stated differently we as-
sume a = 0.5,y = 0.5. Table 2 shows how the

J
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Table 2: Steady-state list price level p*

B -40 -20 0
Pg, 4.3 4.38 4.5
Y 0 0.33 0.66
Py 4.25 4.28 4.33
a 0.66 033 0

D 4.29 4.31 4.33

steady-state price p’(r;) is influenced by succes-
sively varying the reference effect f, = B3, the
discount rate y and the memory parameter a.
Letting y = 0 equation (25) describes the one-
period profit-optimizing price which we denote
by p'(r1). By simple algebra and the fact that
Bo + Bic = 0 (since p = c) it is easy to see that
D (r1) < p'(r1), stating that the prices charged by
a myopic firm are oblivious of their eroding effect
on future demand, hence future profits. Denoting
the optimal price in absence of a reference price
by p’ it is also easy to show that p“(r;) < p" for any
r; = 0. This means that in the long run, strategic
firms should charge lower prices when consumers
form reference effects, than when they do not.
Bounds for the prices in Table 2 are p* = 4.25 and
P = 4.5.

From equation (25) it also becomes clear that in the
loss averse case there exists more than one steady
state, depending on the initial reference price r;.
For initial price expectations lying between the two
possible steady states p; and p;, a constant pricing
policy of the customer’s initial price expectation r;
is optimal (see Figure 10). Sample price paths for
the loss neutral, loss averse and loss seeking case

>

Figure 10: Optimal price path (loss averse)
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Figure 11: Optimal price and reference price path
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Figure 12: Optimal and myopic pricing policies

434

——optimal price (r 1=4.2)
—e—optimal price (r1=4.4)
-=-optimal myopic price (r 1=4.2)
—+-optimal myopic price (r 1=4‘4)

432

price

T

.
P __‘__,._-:_'.T.'-T:-t-a-—
a2af 7

.

I's

5 10 15 20 25
Time period

are given in figures 11 to 14. Moreover, for those
Figures we set ¢ = 4 and restrict price and reference
price to the interval p € [4.2,4.4],r € [4.2,4.4]
ensuring nonnegative demand for any p and r.
Note that in the loss seeking case (see Figure 14)
the optimal policy is cycling and not allowing for an
analytical solution (see Popescu and Wu (2007)).

4.2 Joint Pricing and Inventory Control
under Reference Price Effects

Not much is changed if reference effects are intro-
duced in the one-period backlogging case: as the
optimal inventory level is independent of the price,
r is only an additional parameter so that for the
linear demand function the optimal price changes
to

—Po +cP1 + Boys(r+c)
2(B1 + Poy3) ’

(27) pi(M) =

Figure 13: Optimal steady-state price (loss averse)
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Figure 14: Optimal price path (loss seeking case)
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which is less than p* from the joint pricing and
inventory control model without reference effects
(see equation (18)) and increasing in the reference
price r. The optimal order-up-to level y* is then
given by (3) where E[D(p", €)] is replaced by the
expected demand depending on the reference price
as well. Not surprisingly, it can be seen that p"(r) is
increasing in r, since a higher price can be charged
when the customer is expecting it.

In the multi period case we now have a state space
consisting of two variables, the initial inventory x
and the reference price r. Thus, the profit-to-go
function is specified as V; (x;, ;) and the recursive
Bellman equation has the following form:

(28) Vt*(xt, r) = y@% {J:(xt, Y, P, 70}

(29)  Ji(xt, s, Pty 1) = E[P(xXt, Yt, Pt, Tts €6)]
+YvE [Vt*+1 (y:=D(p¢, 11, 1), are+(1 —a)Pt)]
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with Pi(x¢, Y, Pt, T, €1) = Pt(Bo+B1-pe+P2-max{p;-
¢, 0+ B3 -min{p;—r, 0 +&1)—c(Yr=x:) = GYs, Pt )
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and the boundary condition V;(xr, rr) = 0 Vxr,rr.

(Note that G(y;, p;, ) is defined as in Section 2.2
with demand also depending on r;.)
Reformulating equation (28) and (29) as in Feder-
gruen and Heching (1999), such that V; (¢, x;) is
reduced by cx;, results in

(30) V:(Xt, ry) = max J¢ (Y, pr, ')
y=2x, p

(81)  Ji(ye,pt,;1e) = (pr — YOE [D(pt, T’t)]
+—=c(1 =Yyt — Gyt Pt 1)
+YE [Vi,1(are + (1 = a)pe, ye — D(pr, 7o, €0

and V;(rr,xr) = cxr for all rr, xr.

In the general theory of stochastic dynamic pro-
gramming it is well known that a model gains in
complexity very quickly if the dimension of the
state space increases. In this way, both finding the
computational as well as the analytic solution of
a model gets more complicated. However, if we
assume joint concavity of the demand and revenue
functions in all their variables, including the refer-
ence price r, an adaptation of the proof in Feder-
gruen and Heching (1999) still works and one can
show that a base-stock policy is optimal. The proof
inductively shows that profit function J;(y, p, r) is
jointly concave in y, p and r and thus the opti-
mal profit V; (x, r) is jointly concave in x and r (for
more details see Gimpl-Heersink, Rudloff, Fleisch-
mann, and Taudes (2007)). While Federgruen and
Heching (1999) can also show the optimality of
a list-price policy, due to the additional complexity
of the model in this section, a similar result has not
been achieved so far. Unfortunately, the practical
usefulness of this base-stock result is question-
able as the joint concavity assumption in all three
variables makes this proof unsuitable for many
commonly used demand functions like the linear
one. In this case joint concavity of the revenue
function does not hold any longer.

However, since joint concavity in inventory level y
and price p is sufficient for a base-stock policy,
using the results of the one-period case, Gimpl-
Heersink, Rudloff, Fleischmann, and Taudes
(2007) establish the optimality of a base-stock
policy for the two-period model with linear
demand.” Changing the order of taking expected

7 A short sketch of the proof is given here. For a complete proof
please see Gimpl-Heersink, Rudloff, Fleischmann, and Taudes
(2007).
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values and summation in equation (29) we obtain

(32) Jilx1,y1,p1,11) = E[P1(x1,Y1,P1,71,€1)
+yVo(xo(y1,p1,71), m2(P1,71),€1)] .

It turns out that the profit of the second time
period Vao(x2(yi1,p1,71),m2(P1,71),€1) is not
necessarily jointly concave for all x,. However,
the joint concavity of the first time period’s
profit Pi(x1,y1,p1,71,€1) is strong enough to
dominate the non-concavity of the future profit.
This results in joint concavity of the profit function
J1(x1,y1,p1,71), leading to the optimality of the
base-stock policy.

For the case of the linear demand model, one can
still find steady-state solutions. Assuming the loss
neutral case ff; = B3, these are given by

P = (Bic—Po)(1 —ay) + Pa(1 -y)c
2:1(1 —ay) +Bo(1 -v)

(33)

b-(1-y)
h+b ) '

Note that the optimal steady-state price p* in equa-
tion (33) is the same as in Section 4.1 and equa-
tion (34) corresponds to the optimal steady-state
base-stock level obtained in Section 3.2 for the op-
timal steady-state price p* from equation (33). The
proof is a combination of the proofs for the steady
states of the models (7) and (24) from the above
sections. As in the proof of the joint pricing and
inventory without reference effect case, we first
find the steady-state inventory. Again the infinite
sum representation of equation (28) is rearranged
as in the sections before to get

35) V(xi,r1)

(34) y' = EID(Q',p",e)] + F! (

=cx; + Y ¥ max [peED@e1, )]
=0 Yt+1:Pt+1

- (1 = Y)Y
+yeD(pe+1,Te1) = GUts1, Pre1s rt+1)] ,

where

(36) G(Yts1,Pe41,Tt41)
Yre1—E[D(pr1,7141)]

=h Y+1 — E[DDr+1, e41)] — w)f (w)du

+b (u = Yee1 = EID(Drs1, 1)) (Wdu
yt+1—E[D(pt+1 i1l
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Figure 15: Optimal pricing decision (loss neutral)
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Figure 16: Optimal ordering decision (loss neutral)
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Differentiation with respect to y and using the
same arguments as in Section 3.2, we get the
steady state base-stock equation (34) depending
on the price. Note that the reference price has
to be equal to the price as this is necessary for
the steady-state price. The steady-state price in
formula (33) is found analogously to the proof of
the steady state for the reference price model (24)
after substituting y* (p) for y in the infinite sum (35)
and differentiating with respect to the price p.
Interestingly, this yields exactly the same steady-
state price p" as in Section 4.1.

In the following we present the results for the
loss neutral (loss averse) base example with o =
100, B1 = =20, B2 = B3 = =40 (B2 = -50,PB3 =
-30),c =05, a=05y=05>b=04,h-=
0.005, T = 15 and a standard deviation o = 20.
Figures 15 to 18 show that a base-stock/list price
policy is optimal for all reference prices. From
figures 15 and 17 one can see that the optimal
price is always increasing in reference price, no
matter if we consider loss neutral or loss averse
customer behavior. This is true in any time period.
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Figure 17: Optimal pricing decision (loss averse)
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Figure 18: Optimal ordering decision (loss averse)
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However, the optimal ordering quantity is only
increasing in reference price in the loss neutral
case (see Figure 16). In contrast Figure 18 shows
that the optimal inventory after ordering is not
monotonous in reference price in the case of loss
aversion. Due to this added complexity we will
concentrate on the loss neutral case for the rest of
the paper.

Similar to Figure 4, one can see from Figure 19 that
price discounts for high inventory levels before
ordering are also given in the reference price case.
However, due to the negative carry-over effects,
these are generally smaller than in the classical
setting. Also note the generally lower price level in
the model including reference price effects.

In the model of Section 3.2 price discounts are
given at a higher inventory level, the more time is
left in the planning horizon (see Figure 4). In the
model from this section price discounts are gener-
ally smaller and are given as soon as the inventory
level before ordering is higher than the base-stock
level (see Figure 19). Since we give smaller dis-
counts, we have to react earlier in time in order to



BuR — Business Research
Official Open Access Journal of VHB

Verband der Hochschullehrer fiir Betriebswirtschaft e.V.

Volume 1 | Issue 1 | May 2008 | 106-123

Figure 19: Price trajectories in inventory level xg
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move the inventory level before ordering below the
steady-state level and thus reach a possible steady
state.

The model in Section 3.2 aims at reducing base-
stocks over time and thus list prices are increasing
over time (see Federgruen and Heching (1999)). If
variance is independent of price, list prices tend to
be constant over time (see Figure 5). In contrast
the model in this section behaves qualitatively
completely different. Here, similar to Figure 11,
list prices are decreasing over time in order to
benefit from the reference price effects (see Fig-
ure 20). With decreasing prices and also the result-
ing reference price effect, expected demands are
increasing necessitating higher base-stock levels
(see Figure 21).

As in sections 2.2 and 4.1 one can study the be-
havior of the steady-state solutions for our com-
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Figure 21: Base-stock trajectories in reference price
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bined model. Using the steady-state formulas (33)
and (34) we can describe the behavior of the
steady states in the memory parameter a, the
discount factor y and the reference effect |5s].
Note here that f» < 0. For examples of the be-
havior with respect to these parameters see ta-
ble 3. Differentiating p* with respect to a and*ﬂg,

. _ _ yBo(1-y)(Bo+Bic) o’ _
we get 35 = @i (rapmiyy < 0 and gp =

(1-y)(1-ay)(Bo+B1c) ;

QB Fa(l7 0. Since we .do not ‘auow for
prices below ordering costs, the inequalities hold
as thus fo + Bic > Bo + B1p > O for all p. Hence,

p is decreasing in a and |B;]. As F~! (%

is independent of both a and B, and demand is
decreasing in price, E[D(p", )] is increasing in a
and |B,]. As a consequence, y is increasing in a

ap* —Bo(1-
and |B,|. Furthermore, 3% = (2ﬂ1ﬁ(21(_a$))$‘§{3i?))2 >0

and hence, p” is increasing in the discount factor.
However, for y one cannot make a definite state-
ment about the base-stock, as the safety stock is
increasing in y while E[D(p", )] is decreasing in y.
As aresult, in cases of small uncertainty in demand

Table 3: Steady-state base-stock and
optimal price

a 0 0.33 0.66 1
D 2.70 2.67 2.61 2.00
S, 47 49 51 53
B2 0 -20 -40 -60
g, 2.75 2.65 2.55 2.47
S, 38 40 44 46
Y 0.75 0.85 0.95 1
Dy 2.38 2.49 2.65 2.75
S, 62 67 76 90
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Figure 22: Sequential optimization versus joint optimization

Sequential Optimization:

Joint Optimization:

Marketing:
max, 37 o [(pes1 — ) ED(pes1,res1)]

= p*(r) = [pi(r), ... pi(r7)]

= t* = 1§, 78]

Production:
T . [y -
max, 3,07 [(pF 1) EID (B0, 1))+
+e(yes1 — Ter1))
~G(ye+1,P¢ 1))

=yt (@) = [p1(=1), s wr (o))

maxyp Yoieo 1 (Pe 1) ED(Pes1,7es 1))

=y (2,7) = [yi(z1,71), e, w3 (2T, PT)]

=p*(z,7) = [pi(z1,71) ey 23 (2T, 7T))

+e(per1 — xe41))
G(ye+1,e41,Te41)]

Optimal total expected profit: seqVi:(z1,71) l

‘ Optimal total expected profit: joi:ltl";(xlrrl)

the base-stock is decreasing in y whereas for large
uncertainty the base-stock is increasing in y.

For the rest of the paper we investigate the differ-
ences between a sequential and a joint optimiza-
tion approach (see Figure 22). In the sequential
approach first the marketing/sales department de-
termines an optimal price without considering any
inventory decisions and taking demand fulfillment
for granted. This price is then passed on to the pro-
duction unit of the company which then decides
on an optimal stocking quantity without having
the possibility to change the price. In the joint
approach both decisions are taken simultaneously.
In figures 23 and 24 we compare the optimal
base-stock and price/reference price paths for the

Figure 23: Price path (sequential vs joint optimization)
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sequential and joint approach from Figure 22. For
the time being we assume r; = p* and x; = O to
avoid having a transient phase at the beginning
of the planning horizon. Using joint optimization,
price and base-stock leave the steady state later.
This is because we have the opposing strategies of
benefitting from the reference effects by lowering
prices towards the end of the planning horizon (see
Figure 11) and aiming at a clearance of stock at the
end of the planning horizon (see Figure 5).

The question now is how such a joint optimiza-
tion of price and inventory increases the benefits
over the sequential optimization. Figure 25 shows
that similar to Figure 6 we get the largest benefits
of joint optimization towards the end of, or for

Figure 24: Inventory path (sequential vs joint optimization)
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Figure 25: Profit increase over time
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a short planning horizon. In contrast to the com-
parisons in Federgruen and Heching (1999), who
base all numerical results on a coefficient of varia-
tion, we always use a constant standard deviation
(not depending on price). As in Section 3.2 this
results in generally relatively low benefits. Again
Figure 25 shows relatively low benefits, which can
be much higher for substantially larger inventory
levels before ordering (see Figure 26 for the last
time period t = 50). Similar to Figure 7 this effect
can be observed for any time period t. However, in
comparison to the model without reference effects,
for smaller t this effect only appears for inventory
levels before ordering much higher than 200. This
is because the pricing strategy under reference
price effect enables us to clear higher stock levels
in later time periods.
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Figure 27: Profit increase in reference effect
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Figure 28: Profit increase in reference price rq
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Figure 27 shows that the benefit of the joint model
with reference effect is at least 10 times the ben-
efit of the model without reference effect, and is
considerably higher than when the reference effect
gets larger. While in the classical setting price is
only varied to control inventory, here price has its
own dynamics, and incorporating the influence of
the reference price increases the benefits of inte-
grating pricing and inventory control significantly.
Moreover, a significant difference to the model of
Section 3.2 is that while there the benefit converges
to zero for long planning horizons, here the benefit
converges to a value considerably higher than zero
(depending on the parameters chosen). This effect
is more prominent the more the starting reference
price differs from the optimal steady-state price
(see Figure 28).
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5 Conclusion and Directions for
Future Research

In this paper we surveyed the results on the gains
of integrating pricing and inventory control for
the case when inventory can be set and demand
is stochastic. Then we investigated whether using
a reference price model to describe demand in-
creases the benefits of integration with a logistic
model. Here, we studied whether the base-stock
list-price policy still holds in such a setting and
inferred the size of potential benefits via numeri-
cal simulation. We found that the benefits increase
considerably when reference effects are included,
i.e. even with a constant standard deviation we
achieved at least 10 times the benefit achieved by
the the joint model without a reference price. Also,
it turns out that the base-stock policy also holds
for the reference price model. However, except for
the two-period case with linear demand, this result
cannot be proved yet, but our conclusions are well
founded on extensive numerical simulations. We
also added details to existing literature by studying
single-period joint pricing/inventory control with
backlogging and by extending the steady-state ref-
erence price proof from Popescu and Wu (2007) to
the case of positive ordering cost. We furthermore
give a steady-state price and inventory for the joint
inventory and pricing models with and without
reference effects.

Clearly, we are only at the beginning of understand-
ing combined reference price/inventory models:
a general proof of the base-stock policy for lin-
ear demand is needed; also, the dependence of
inventory after ordering and price on the state
variables needs to be studied. Fast algorithms for
solving (30) and (31) need to be developed, same
as suitable heuristics. As in practice the parame-
ters of the demand model have to be estimated,
combined estimation and control approaches are
a fruitful area of future research, too.
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