Skip to main content
Log in

Nitric Oxide as an Inflammatory Mediator in Insulin-Dependent Diabetes Mellitus

A New Therapeutic Target?

  • Leading Article
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

Summary

Recent studies in vitro and in vivo have demonstrated that the cellular mediator nitric oxide (NO) is involved in the destruction of insulin-producing pancreatic β-cells during the autoimmune pathogenesis of insulin-dependent diabetes mellitus. The primary source of islet cell toxic NO seems to be the inducible NO synthase of activated macrophages infiltrating the islets. NO rapidly induces the formation of DNA strand breaks in the islet cells. Consequently, the DNA repair enzyme poly(adenosine diphosphoribose) [poly(ADP-ribose)] polymerase (PARP) is activated to form ADP-ribose polymers from nicotinamide adenine dinucleotide (NAD+), thereby depleting the intracellular NAD+ pool to lethal levels.

These findings give rise to the development of strategies aiming at the protection of islet cells from NO toxicity in diabetes-susceptible individuals. However, general suppression of NO formation has only limited effects and acute systemic adverse effects cannot be excluded. At present the most promising approach seems to be the reduction of islet PARP activity by well-tolerated inhibitory agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43: 109–34

    PubMed  CAS  Google Scholar 

  2. Moncada S, Higgs A. Mechanism of disease: the L-argininenitric oxide pathway. N Engl J Med 1993; 329: 2002–12

    Article  PubMed  CAS  Google Scholar 

  3. Moncada S, Higgs EA. Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest 1991; 21: 361–74

    Article  PubMed  CAS  Google Scholar 

  4. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–6

    Article  PubMed  CAS  Google Scholar 

  5. Ignarro LJ, Buga GM, Wood KS, et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987; 84: 9265–9

    Article  PubMed  CAS  Google Scholar 

  6. Kolb H, Kolb-Bachofen V. Nitric oxide: a pathogenetic factor in autoimmunity. Immunol Today 1992; 13: 157–60

    Article  PubMed  CAS  Google Scholar 

  7. Miesel R, Zuber M. Reactive nitrogen intermediates, antinuclear antibodies and copper-thionein in serum of patients with rheumatic diseases. Rheumatol Int 1993; 13: 95–102

    Article  PubMed  CAS  Google Scholar 

  8. Zielasek J, Tausch M, Toyka KV, et al. Production of nitrite by neonatal rat microglial cells/brain macrophages. Cell Immunol 1992; 141: 111–20

    Article  PubMed  CAS  Google Scholar 

  9. Lin RF, Lin TS, Tilton RG, et al. Nitric oxide localized to spinal cords of mice with experimental allergic encephalomyelitis: an electron paramagnetic resonance study. J Exp Med 1993; 178: 643–8

    Article  PubMed  CAS  Google Scholar 

  10. Kolb H, Kolb-Bachofen V. Type 1 (insulin dependent) diabetes mellitus and nitric oxide. Diabetologia 1992; 35: 796–7

    PubMed  CAS  Google Scholar 

  11. Eisenbarth GS. Type I diabetes mellitus: a chronic autoimmune disease. N Engl J Med 1986; 314: 1360–8

    Article  PubMed  CAS  Google Scholar 

  12. Corbett JA, McDaniel ML. Does nitric oxide mediate autoimmune destruction of β-cells? Diabetes 1992; 41: 897–903

    Article  PubMed  CAS  Google Scholar 

  13. Yamada K, Otabe S, Inada C, et al. Nitric oxide and nitric oxide synthase mRNA induction in mouse islet cells by interferongamma plus tumor necrosis factor-alpha. Biochem Biophys Res Commun 1993; 197: 22–7

    Article  PubMed  CAS  Google Scholar 

  14. Eizirik DL, Welsh N, Hellerström C. Predominance of stimulatory effects of interleukin-1 beta on isolated human pancreatic islets. J Clin Endocrinol Metab 1993; 76: 399–403

    Article  PubMed  CAS  Google Scholar 

  15. Corbett JA, Sweetland MA, Wang JL, et al. Nitric oxide mediates cytokine-induced inhibition of insulin secretion by human islets of Langerhans. Proc Natl Acad Sci USA 1993; 90: 1731–5

    Article  PubMed  CAS  Google Scholar 

  16. Welsh N, Sandler S. Interleukin-1β induces nitric oxide production and inhibits the activity of aconitase without decreasing glucose oxidation rates in isolated mouse pancreatic islets. Biochem Biophys Res Commun 1992; 182: 333–40

    Article  PubMed  CAS  Google Scholar 

  17. Corbett JA, Wang JL, Sweetland MA, et al. Interleukin 1β induces the formation of nitric oxide by β-cells purified from rodent islets of Langerhans. J Clin Invest 1992; 90: 2384–91

    Article  PubMed  CAS  Google Scholar 

  18. Bendtzen K, Mandrup-Poulsen T, Nerup J, et al. Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans. Science 1986; 232: 1545–7

    Article  PubMed  CAS  Google Scholar 

  19. Rabinovitch A, Sumoski W, Rajotte RV, et al. Cytotoxic effects of cytokines on human pancreatic islet cells in monolayer culture. J Clin Endocrinol Metabol 1990; 71: 152–6

    Article  CAS  Google Scholar 

  20. Kolb H, Burkart V, Appels B, et al. Essential contribution of macrophages to islet cell destruction in vivo and in vitro. J Autoimmunity 1990; 3 Suppl.: 117–20

    Article  Google Scholar 

  21. Tschöpe D, Schwippert B, Schettler B, et al. Increased GPIIB/IIIA expression and altered DNA-ploidy pattern in megakaryocytes of diabetic BB-rats. Eur J Clin Invest 1992; 22: 591–8

    Article  PubMed  Google Scholar 

  22. Böhmer K, Kolb H, Kuglin B, et al. Linear loss of insulin secretory capacity during the last six months preceding insulin-dependent diabetes (IDDM): no effect of antiedematous therapy with ketotifen. Diabetes Care 1994; 17: 138–41

    Article  PubMed  Google Scholar 

  23. Welsh N, Eizirik DL, Bendtzen K, et al. Interleukin-1β-induced nitric oxide production in isolated rat pancreatic islets requires gene transcription and may lead to inhibition of the Krebs cycle enzyme aconitase. Endocrinology 1991; 129: 3167–73

    Article  PubMed  CAS  Google Scholar 

  24. Corbett JA, Wang JL, Hughes JH, et al. Nitric oxide and cyclic GMP formation induced by interleukin 1 beta in islets of Langerhans: evidence for an effector role of nitric oxide in islet dysfunction. Biochem J 1992; 287: 229–35

    PubMed  CAS  Google Scholar 

  25. Xie Q-W, Cho HJ, Calaycay J, et al. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 1992; 256: 225–8

    Article  PubMed  CAS  Google Scholar 

  26. Lysons CR, Orloff GJ, Cunningham JM. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem 1992; 267: 6370–4

    Google Scholar 

  27. Hibbs Jr JB, Taintor RR, Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 1987; 235: 473–6

    Article  PubMed  CAS  Google Scholar 

  28. Hibbs Jr JB, Taintor RR, Vavrin Z, et al. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 1988; 157: 87–94

    Article  PubMed  CAS  Google Scholar 

  29. Lee K-U, Amano K, Yoon J-W. Evidence for initial involvement of macrophage in development of insulitis in NOD mice. Diabetes 1988; 37: 989–91

    Article  PubMed  CAS  Google Scholar 

  30. Hanenberg H, Kolb-Bachofen V, Kantwerk-Funke G, et al. Macrophage infiltration precedes and is a prerequisite for lymphocytic insulitis in pancreatic islets of prediabetic BB rats. Diabetologia 1989; 32: 126–34

    Article  PubMed  CAS  Google Scholar 

  31. Kleemann R, Rothe H, Kolb-Bachofen V, et al. Transcription and translation of inducible nitric oxide synthase in the pancreas of prediabetic BB rats. FEBS Lett 1993; 328: 9–12

    Article  PubMed  CAS  Google Scholar 

  32. Appels B, Burkart V, Kantwerk-Funke G, et al. Spontaneous cytotoxicity of macrophages against pancreatic islet cells. J Immunol 1989; 142: 3803–8

    PubMed  CAS  Google Scholar 

  33. Kröncke K-D, Kolb-Bachofen V, Berschick B, et al. Activated macrophages kill pancreatic syngeneic islet cells via arginine-dependent nitric oxide generation. Biochem Biophys Res Commun 1991; 175: 752–8

    Article  PubMed  Google Scholar 

  34. Kröncke K-D, Rodriguez M-L, Kolb H, et al. Cytotoxicity of activated rat macrophages against syngeneic islet cells is arginine-dependent, correlates with citrulline and nitrite concentrations and is identical to lysis by the nitric oxide donor nitroprusside. Diabetologia 1992; 36: 17–24

    Article  Google Scholar 

  35. Malaisse WJ, Malaisse-Lagae F, Sener A, et al. Determinants of the selective toxicity of alloxan to the pancreatic B cell. Proc Natl Acad Sci USA 1982; 79: 927–30

    Article  PubMed  CAS  Google Scholar 

  36. Burkart V, Koike T, Brenner H-H, et al. Oxygen radicals generated by the enzyme xanthine oxidase lyse pancreatic islet cells in vitro. Diabetologia 1992; 35: 1028–34

    Article  PubMed  CAS  Google Scholar 

  37. Kröncke K-D, Brenner H-H, Rodriguez M-L, et al. Pancreatic islet cells are highly susceptible towards the cytotoxic effects of chemically generated nitric oxide. Biochim Biophys Acta 1993; 1182: 221–9

    Article  PubMed  Google Scholar 

  38. Wiegand F, Kröncke K-D, Kolb-Bachofen V. Macrophage generated nitric oxide as cytotoxic factor in destruction of alginate-encapsulated islets: protection by arginine analogs and/or coencapsulated erythrocytes. Transplantation 1993; 56: 1206–12

    Article  PubMed  CAS  Google Scholar 

  39. Laychock SG, Modica ME, Cavanaugh CT. L-arginine stimulates cyclic guanosine 3′,5′-monophosphate formation in rat islets of Langerhans and RINm5F insulinoma cells: evidence for L-arginine-nitric oxide synthase. Endocrinology 1991; 129: 3043–52

    Article  PubMed  CAS  Google Scholar 

  40. Green IC, Delaney CA, Cunningham JM, et al. Interleukin-1β effects on cyclic GMP and cyclic AMP in cultured rat islets of Langerhans: arginine-dependence and relationship to insulin secretion. Diabetologia 1993; 36: 9–16

    Article  PubMed  CAS  Google Scholar 

  41. Southern C, Schulster D, Green IG. Inhibition of insulin secretion by interleukin 1β and tumour necrosis factor-α via an L-arginine-dependent nitric oxide generating mechanism. FEBS Lett 1990; 276: 42–4

    Article  PubMed  CAS  Google Scholar 

  42. Corbett JA, Lancaster JR, Sweetland MA, et al. Interleukin-1β-induced formation of EPR-detectable iron-nitrosyl-complexes in islets of Langerhans. J Biol Chem 1991; 266: 21351–4

    PubMed  CAS  Google Scholar 

  43. Fehsel K, Jalowy A, Sun Q, et al. Islet cell DNA is a target of inflammatory attack by nitric oxide. Diabetes 1993; 42: 496–500

    Article  PubMed  CAS  Google Scholar 

  44. Delaney CA, Green MHL, Green IC. Endogenous nitric oxide induced by interleukin-1β in rat islets of Langerhans and HITT15 cells causes significant DNA damage as measured by the ‘comet’ assay. FEBS Lett 1993; 333: 291–5

    Article  PubMed  CAS  Google Scholar 

  45. Yamamoto H, Uchigata Y, Okamoto H. Streptozotocin and alloxan induce DNA strand breaks and poly(ADP-ribose) synthetase in pancreatic islets. Nature 1981; 294: 284–6

    Article  PubMed  CAS  Google Scholar 

  46. Uchigata Y, Yamamoto H, Kawamura A, et al. Protection by Superoxide dismutase, catalase, and poly(ADP-ribose) synthetase inhibitors against alloxan- and streptozotocin-induced islet DNA strand breaks and against the inhibition of proinsulin synthesis. J Biol Chem 1982; 257: 6084–8

    PubMed  CAS  Google Scholar 

  47. Satoh MS, Lindahl T. Role of poly(ADP-ribose) formation in DNA repair. Nature 1992; 356: 356–8

    Article  PubMed  CAS  Google Scholar 

  48. Radons J, Heller B, Bürkle A, et al. Nitric oxide toxicity in islet cells involves poly(ADP-ribose) polymerase activation and concomitant NAD+ depletion. Biochem Biophys Res Commun 1994; 199: 1270–7

    Article  PubMed  CAS  Google Scholar 

  49. Kallmann B, Burkart V, Kröncke K-D, et al. Toxicity of chemically generated nitric oxide towards pancreatic islet cells can be prevented by nicotinamide. Life Sci 1992; 51: 671–8

    Article  PubMed  CAS  Google Scholar 

  50. Zhang J, Dawson VL, Dawson TM, et al. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 1994; 263: 687–9

    Article  PubMed  CAS  Google Scholar 

  51. Burkart V, Kolb H. Protection of islet cells from inflammatory cell death in vitro. Clin Exp Immunol 1993; 93: 273–8

    Article  PubMed  CAS  Google Scholar 

  52. Imai Y, Kolb H, Burkart V. Nitric oxide production from macrophages is regulated by arachidonic acid metabolites. Biochem Biophys Res Commun 1993; 197: 105–9

    Article  PubMed  CAS  Google Scholar 

  53. Burkart V, Imai Y, Kallmann B, et al. Cyclosporin A protects pancreatic islet cells from nitric oxide-dependent macrophage cytotoxicity. FEBS Lett 1992; 313: 56–8

    Article  PubMed  CAS  Google Scholar 

  54. Bergmann L, Kröncke K-D, Suscheck C, et al. Cytotoxic action of IL-1β against pancreatic islets is mediated via nitric oxide formation and is inhibited by N G-monomethyl-L-arginine. FEBS Lett 1992; 299: 103–6

    Article  PubMed  CAS  Google Scholar 

  55. Kolb H, Kiesel U, Kröncke K-D, et al. Suppression of low dose streptozotocin induced diabetes in mice by administration of a nitric oxide synthase inhibitor. Life Sci 1991; 25: PL213–7

    Article  Google Scholar 

  56. Lukic ML, Stosic-Grujicic S, Ostojic N, et al. Inhibition of nitric oxide generation affects the induction of diabetes by streptozotocin in mice. Biochem Biophys Res Commun 1991; 178: 913–20

    Article  PubMed  CAS  Google Scholar 

  57. Corbett JA, Mikhael A, Shimizu J, et al. Nitric oxide production in islets from nonobese diabetic mice: aminoguanidine-sensitive and -resistant stages in the immunological diabetic process. Proc Natl Acad Sci USA 1993; 90: 8992–5

    Article  PubMed  CAS  Google Scholar 

  58. Kröncke K-D, Funda J, Berschick B, et al. Macrophage cytotoxicity towards isolated rat islet cells: neither lysis nor its protection by nicotinamide are beta-cell specific. Diabetologia 1991; 34: 232–8

    Article  PubMed  Google Scholar 

  59. Yamamoto H, Okamoto H. Protection by picolinamide, a novel inhibitor of poly(ADP-ribose) synthetase, against both streptozotocin-induced depression of proinsulin synthesis and reduction of NAD content in pancreatic islets. Biochem Biophys Res Commun 1980; 95: 474–81

    Article  PubMed  CAS  Google Scholar 

  60. Uchigata Y, Yamamoto H, Nagai H, et al. Effect of poly(ADP-ribose) synthetase inhibitor administration to rats before and after injection of alloxan and streptozotocin on islet proinsulin synthesis. Diabetes 1983; 32: 316–8

    Article  PubMed  CAS  Google Scholar 

  61. Yonemura Y, Takishima T, Miwa K, et al. Amelioration of diabetes mellitus in partially depancreatized rats by poly(ADP-ribose) synthetase inhibitors. Diabetes 1984; 33: 401–4

    Article  PubMed  CAS  Google Scholar 

  62. Yamada K, Nonaka K, Hanafusa T, et al. Preventive and therapeutic aspects of large dose nicotinamide injections on diabetes associated with insulitis: an observation in non-obese diabetic (NOD) mice. Diabetes 1982; 31: 749–53

    Article  PubMed  CAS  Google Scholar 

  63. Kakajima H, Fujino-Kurihara H, Hanafusa T. Nicotinamide prevents the development of cyclophosphamide-induced diabetes mellitus in non-obese diabetic (NOD) mice. Biomed Res 1985; 6: 185–9

    Google Scholar 

  64. Tjälve H, Wilander E. The uptake in the pancreatic islets of nicotinamide, nicotinic acid and tryptophan and their ability to prevent streptozotocin diabetes in mice. Acta Endocrinol 1976; 83: 357–64

    PubMed  Google Scholar 

  65. Herskowitz RD, Jackson RA, Soeldner JS, et al. Pilot trial to prevent type 1 diabetes: progression to overt IDDM despite oral nicotinamide. J Autoimmunity 1989; 2: 733–7

    Article  CAS  Google Scholar 

  66. Elliott RB, Chase HP. Prevention or delay of type 1 (insulin-dependent) diabetes mellitus in children using nicotinamide. Diabetologia 1991; 34: 362–5

    Article  PubMed  CAS  Google Scholar 

  67. Elliott RB, Pilcher CC. Prevention of diabetes in normal school children. Diabetes Res Clin Pract 1991; 14 Suppl. 1: 85

    Google Scholar 

  68. Chase P, Dupre J, Mahon J, et al. Prevention of insulin-dependent diabetes mellitus. Lancet 1992; 2: 1051–2

    Article  Google Scholar 

  69. Manna R, Migliore A, Martin LS, et al. Nicotinamide treatment in subjects at high risk of developing IDDM improves insulin secretion. Br J Clin Pract 1992; 46: 177–9

    PubMed  CAS  Google Scholar 

  70. Lampeter EF. Intervention with nicotinamide in pre-type 1 diabetes: the Deutsche Nikotinamid Interventionsstudie — DENIS. Diabetes Metab 1993; 19: 105–9

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkart, V., Kröncke, KD., Kolb-Bachofen, V. et al. Nitric Oxide as an Inflammatory Mediator in Insulin-Dependent Diabetes Mellitus. Clin. Immunother. 2, 233–239 (1994). https://doi.org/10.1007/BF03258524

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03258524

Keywords

Navigation