Skip to main content
Log in

Biomarkers for Osteoporosis Management

Utility in Diagnosis, Fracture Risk Prediction and Therapy Monitoring

  • Endocrine Disorders
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Osteoporosis is a systemic disease characterized by low bone mass and microarchitectural deterioration of bone tissue, resulting in an increased risk of fracture. While the level of bone mass can be estimated by measuring bone mineral density (BMD) using dual X-ray absorptiometry (DXA), its measurement does not capture all the risk factors for fracture. Quantitative changes in skeletal turnover can be assessed easily and non-invasively by the measurement of serum and urinary biochemical markers; the most sensitive markers include serum osteocalcin, bone specific alkaline phosphatase, the N-terminal propeptide of type I collagen for bone formation, and the crosslinked C- (CTX) and N- (NTX) telopeptides of type I collagen for bone resorption. Advances in our knowledge of bone matrix biochemistry, most notably of post-translational modifications in type I collagen, are likely to lead to the development of new biochemical markers that reflect changes in the material property of bone, an important determinant of bone strength. Among those, the measurement of the urinary ratio of native (α) to isomerized (β) CTX — an index of bone matrix maturation — has been shown to be predictive of fracture risk independently of BMD and bone turnover.

In postmenopausal osteoporosis, levels of bone resorption markers above the upper limit of the premenopausal range are associated with an increased risk of hip, vertebral, and nonvertebral fracture, independent of BMD. Therefore, the combined use of BMD measurement and biochemical markers is helpful in risk assessment, especially in those women who are not identified as at risk by BMD measurement alone. Levels of bone markers decrease rapidly with antiresorptive therapies, and the levels reached after 3–6 months of therapy have been shown to be more strongly associated with fracture outcome than changes in BMD. Preliminary studies indicate that monitoring changes of bone formation markers could also be useful to monitor anabolic therapies, including intermittent parathyroid hormone administration and, possibly, to improve adherence to treatment. Thus, repeated measurements of bone markers during therapy may help improve the management of osteoporosis in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Table II
Table III
Table IV
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Consensus development conference: diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 1993; 94: 646-50

    Google Scholar 

  2. Garnero P, Delmas PD. Investigation of bone: biochemical markers. In: Hochberg MC, Silman AJ, Smolen JS, et al., editors. Rheumatology. Vol. 2. 4th ed. London: Harcourt Health Sciences Ltd, 2007: 1943–53

    Google Scholar 

  3. Garnero P, Borel O, Delmas PD. Evaluation of a fully automated serum assay for C-Terminal cross-linking telopeptide of type I collagen in osteoporosis. Clin Chem 2001; 47: 694–702

    PubMed  CAS  Google Scholar 

  4. Garnero P, Vergnaud P, Hoyle N. Evaluation of a fully automated serum assay for total N terminal propeptide of type I collagen in postmenopausal osteoporosis. Clin Chem 2008; 54: 188–96

    Article  PubMed  CAS  Google Scholar 

  5. Fedarko NS, Jain A, Karadag A, et al. Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin Cancer Res 2001; 7: 4060–6

    PubMed  CAS  Google Scholar 

  6. Seibel M, Woitge H, Pecherstorfer M, et al. Serum immunoreactive bone sialoprotein as a new marker of bone turnover in metabolic and malignant bone disease. J Clin Endocrinol Metab 1996; 81: 3289–94

    Article  PubMed  CAS  Google Scholar 

  7. Garnero P, Grimaux M, Seguin P, et al. Characterization of immunoreactive forms of human osteocalcin generated in vivo and in vitro. J Bone Miner Res 1994; 9: 255–64

    Article  PubMed  CAS  Google Scholar 

  8. Ivaska KK, Hentunen TA, Vääräniemi J, et al. Release of intact and fragmented osteocalcin molecules from bone matrix during bone resorption in vitro. J Biol Chem 2004; 279: 18361–9

    Article  PubMed  CAS  Google Scholar 

  9. Srivastava AK, Mohan FR, Singer FR, et al. A urine midmolecule osteocalcin assay shows higher discriminatory power than a serum midmolecule osteocalcin assay during short-term alendronate treatment of osteoporotic patients. Bone 2002; 31: 62–9

    Article  PubMed  CAS  Google Scholar 

  10. Lenora J, Ivaska KK, Obrant KJ, et al. Prediction of bone loss using biochemical markers of bone turnover. Osteoporos Int 2007; 18: 1297–305

    Article  PubMed  CAS  Google Scholar 

  11. Gerdhem P, Ivaska KK, Alatalo SL, et al. Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res 2004; 19: 386–93

    Article  PubMed  CAS  Google Scholar 

  12. Esfandiari E, Bailey M, Stokes C, et al. TRACP influences Thl pathways by affecting dendritic cell function. J Bone Miner Res 2006; 21: 1367–76

    Article  PubMed  CAS  Google Scholar 

  13. Janckila AJ, Parthasarathy RN, Parthasarathy LK, et al. Properties and expression of human tartrate resistant acid phosphatase isoform 5a by monocyte-derived cells. J Leukoc Biol 2005; 77: 209–18

    Article  PubMed  CAS  Google Scholar 

  14. Vääräniemi J, Hallen JM, Kaarlonen K, et al. Intracellular machinary for matrix degradation in bone-resorbing osteoclasts. J Bone Miner Res 2004; 19: 1432–40

    Article  PubMed  Google Scholar 

  15. Halleen JM, Alatalo SL, Suominen H, et al. Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res 2000; 15: 1337–45

    Article  PubMed  CAS  Google Scholar 

  16. Ohashi T, Igarashi Y, Mochiuki Y, et al. Development of a novel fragments absorbed immunocapture enzyme assay system for tartrate-resistant acid phosphatase 5b. Clin Chim Acta 2007; 376: 205–12

    Article  PubMed  CAS  Google Scholar 

  17. Lhoste Y, Vergnaud P, Garnero P. A new specific immunoassay for intact serum TRACP5b demonstrates increased sensitivity in osteoporosis. J Bone Miner Res 2007; 22 Suppl. 1: S192

    Google Scholar 

  18. Nenonen A, Cheng S, Ivaska K, et al. Serum TRACP5b is a useful marker for monitoring alendronate treatment: comparison with other markers of bone turnover. J Bone Miner Res 2005; 20: 1804–12

    Article  PubMed  CAS  Google Scholar 

  19. Garnero P, Borel O, Byrjalsen I, et al. The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem 1998; 273: 32347–52

    Article  PubMed  CAS  Google Scholar 

  20. Skoumal M, Haberhauer G, Kolarz G, et al. Serum cathepsin K levels of patients with longstanding rheumatoid arthritis: correlation with radiological destruction. Arthritis Res Ther 2005; 7(1): R65–70

    Article  PubMed  CAS  Google Scholar 

  21. Meier C, Meinhardt U, Greenfield JR, et al. Serum cathepsin K concentrations reflect osteoclast activity in women with postmenopausal osteoporosis and patients with Paget’s disease of bone. Clin Lab 2006; 21: 1–10

    Google Scholar 

  22. Holzer G, Noske H, Lang T, et al. Soluble cathepsin K: a novel marker for the prediction of nontraumatic fractures? J Lab Clin Med 2005; 146: 13–7

    Article  PubMed  CAS  Google Scholar 

  23. Kearns AE, Khosla S, Kostenuik P. Receptor activator of nuclear factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 2008 Apr; 29(2): 155–92

    Article  PubMed  CAS  Google Scholar 

  24. Rogers A, Eastell R. Circulating osteoprotegerin and receptor activator for nuclear factor K B ligand: clinical utility in metabolic bone disease assessment. J Clin Endocrinol Metab 2005; 90: 6323–31

    Article  PubMed  CAS  Google Scholar 

  25. Day TF, Guo X, Garrett-Beal L, et al. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 2005; 8: 739–50

    Article  PubMed  CAS  Google Scholar 

  26. Johnson ML, Kamel MA. The Wnt signalling patwasy and bone metabolism. Curr Opin Rheum 2007; 19: 376–82

    Article  CAS  Google Scholar 

  27. Tian E, Zhan F, Walker R, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003; 349: 2483–94

    Article  PubMed  CAS  Google Scholar 

  28. Voorzanger-Rousselot N, Goehrig D, Journe F, et al. Increased dickkopf-1 (Dkk-1) expression in breast cancer bone metastases. Br J Cancer 2007; 97: 964–70

    PubMed  CAS  Google Scholar 

  29. Yamabuki T, Takano A, Hayama S, et al. Dikkopf-1 as a novel serologic and prognostic biomarker for lung and esophageal carcinomas. Cancer Res 2007; 67: 2517–25

    Article  PubMed  CAS  Google Scholar 

  30. Diarra D, Stolina M, Polzer K, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med 2007; 13: 156–63

    Article  PubMed  CAS  Google Scholar 

  31. Lane NE, Nevitt MC, Lui LY, et al. Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women. Arthritis Rheum 2007; 56: 3319–25

    Article  PubMed  CAS  Google Scholar 

  32. Viguet-Carrin S, Garnero P, Delmas P. The role of collagen in bone strength. Osteoporos Int 2006; 17: 319–36

    Article  PubMed  CAS  Google Scholar 

  33. Wang X, Shen X, Li X, et al. Age-related changes in collagen network and toughness of bone. Bone 2002; 31: 1–7

    Article  PubMed  Google Scholar 

  34. Hernandez CJ, Tang SY, Baumbach BM, et al. Trabecular microfracture and the influence of pyridinium and non-enzymatic glycation-mediated collagen crosslinks. Bone 2005; 37: 825–32

    Article  PubMed  CAS  Google Scholar 

  35. Viguet-Carrin S, Roux JP, Arlot ME, et al. Contribution of advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. Bone 2006; 39: 1073–9

    Article  PubMed  CAS  Google Scholar 

  36. Shiraki M, Kuroda T, Tanaka S, et al. Nonenzymatic collagen cross-links induced by glycoxidation (pentosidine) predicts vertebral fractures. J Bone Miner Metab 2008; 26: 93–100

    Article  PubMed  CAS  Google Scholar 

  37. Yamamoto M, Yamaguchi T, Yamauchi M, et al. Serum pentosidine levels are positively associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Endocrinol Metab 2008 Mar; 93(3): 1013–9

    Article  PubMed  CAS  Google Scholar 

  38. Fledelius C, Johnsen AH, Cloos PA, et al. Characterization of urinary degradation products derived from type I collagen: identification of a beta isomerized Asp-Gly sequence within the C-terminal telopeptides (alpha 1) region. J Biol Chem 1997; 272: 9755–63

    Article  PubMed  CAS  Google Scholar 

  39. Cloos PAC, Fledelius C. Collagen fragments in urine derived from bone resorption are highly racemized and isomerized: a biological clock of protein aging with clinical potential. Biochem J 2000; 345: 473–80

    Article  PubMed  CAS  Google Scholar 

  40. Garnero P, Fledelius C, Gineyts E, et al. Decreased β-isomerisation of C-telopeptides of type I collagen in Paget’s disease of bone. J Bone Miner Res 1997; 12: 1407–15

    Article  PubMed  CAS  Google Scholar 

  41. Leeming DJ, Delling G, Koizumi M, et al. Alpha CTX as a biomarker of skeletal invasion of breast cancer: immunolocalization and the load dependency of urinary excretion. Cancer Epidemiol Biomarkers Prev 2006; 15: 1392–5

    Article  PubMed  CAS  Google Scholar 

  42. Garnero P, Gineyts E, Schaffer AV, et al. Measurement of urinary excretion of nonisomerized and β-isomerized forms of type I collagen breakdown products to monitor the effects of the bisphosphonate zoledronate in Paget’s disease. Arthritis Rheum 1998; 41: 354–60

    Article  PubMed  CAS  Google Scholar 

  43. Alexandersen P, Peris P, Guanabens N, et al. Non-isomerized C-telopeptide fragments are highly sensitive markers for monitoring disease activity and treatment efficacy in Paget’s disease of bone. J Bone Miner Res 2005; 20: 588–95

    Article  PubMed  CAS  Google Scholar 

  44. Garnero P, Schott A, Meunier PJ, et al. Impaired type I collagen C-telopeptide isomerization in patients with osteogenesis imperfecta. J Bone Miner Res 2006; 21 Suppl.: S429

    Google Scholar 

  45. Garnero P, Cloos P, Sornay-Rendu E, et al. Type I collagen racemization and isomerization and the risk of fracture in postmenopausal women: the OFELY prospective study. J Bone Miner Res 2002; 17: 826–33

    Article  PubMed  CAS  Google Scholar 

  46. Allen MR, Gineyts E, Leeming DJ, et al. Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra. Osteoporos Int 2008 Mar; 19(3): 329–37

    Article  PubMed  CAS  Google Scholar 

  47. Byrjalsen I, Leeming DJ, Qvist P, et al. Bone turnover and bone collagen maturation in osteoporosis: effects of antiresorptive therapies. Osteoporos Int 2008; 19: 339–48

    Article  PubMed  CAS  Google Scholar 

  48. Garnero P, Bauer DC, Mareau E, et al. Effects of parathyroid hormone and alendronate on type I collagen isomerization in postmenopausal women with osteoporosis: the PaTH Study. J Bone Miner Res. Epub 2008 Apr 28

  49. Szulc P, Chapuy MC, Meunier PJ, et al. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest 1993; 91: 1769–74

    Article  PubMed  CAS  Google Scholar 

  50. Vergnaud P, Garnero P, Meunier PJ, et al. Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS study. J Clin Endocrinol Metab 1997; 82: 719–24

    Article  PubMed  CAS  Google Scholar 

  51. Luukinen H, Kakonen SM, Pettersson K, et al. Strong prediction of fractures among older adults by the ratio of carboxylated to total serum osteocalcin. J Bone Miner Res 2000; 15: 2473–8

    Article  PubMed  CAS  Google Scholar 

  52. Liu G, Peakcock M. Age-related changes in serum undercarboxylated osteocalcin and its relationships with bone density, bone quality, and hip fracture. Calcif Tissue Int 1998; 62: 286–9

    Article  PubMed  CAS  Google Scholar 

  53. Lee NK, Sowa H, Hinoi E, et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007; 130: 456–69

    Article  PubMed  CAS  Google Scholar 

  54. Hannon R, Eastell R. Preanalytical variability of biochemical markers of bone turnover. Osteoporos Int 2000; 11Suppl. 6: S30–44

    Article  PubMed  Google Scholar 

  55. Henriksen DB, Alexandersen P, Bjarnason NH, et al. Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res 2003; 18: 2180–9

    Article  PubMed  CAS  Google Scholar 

  56. Henriksen DB, Alexandersen P, Byrjalsen I, et al. Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2. Bone 2004; 34: 140–7

    Article  PubMed  CAS  Google Scholar 

  57. Johnell O, Kanis JA, Oden A, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res 2005; 20: 1185–94

    Article  PubMed  Google Scholar 

  58. Garnero P. Markers of bone turnover for the prediction of fracture risk. Osteoporos Int 2000; 11Suppl. 6: S55–65

    Article  PubMed  Google Scholar 

  59. Ivaska KK, Gerdhem P, Akesson K, et al. Bone turnover and prediction of fracture: nine year follow-up study of 1040 elderly women [presentation 1073]. 29th Annual Meeting of the American Society for Bone and Mineral Research; 2007 Sep 16–19; Honolulu. J Bone Miner Res 2007; 22Suppl. 1: S21

    Google Scholar 

  60. Garnero P, Sornay-Rendu E, Chapuy MC, et al. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 1996; 11: 337–49

    Article  PubMed  CAS  Google Scholar 

  61. Weel AEAM, Seibel MJ, Hofman A, et al. Which fractures are associated with high bone resorption in elderly women: the Rotterdam study. J Bone Miner Res 1999; 14Suppl. 1: S160

    Google Scholar 

  62. Garnero P, Sornay-Rendu E, Claustrat B, et al. Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: the OFELY study. J Bone Miner Res 2000; 15: 1526–36

    Article  PubMed  CAS  Google Scholar 

  63. Ross PD, Kress BC, Parson RE, et al. Serum bone alkaline phosphatase and calcaneus bone density predict fractures: a prospective study. Osteoporos Int 2000; 11: 76–82

    Article  PubMed  CAS  Google Scholar 

  64. Johnell O, Oden A, De Laet C, et al. Biochemical markers and the assessment of fracture probability. Osteoporos Int 2002; 13: 523–6

    Article  PubMed  CAS  Google Scholar 

  65. Robbins JA, Schott AM, Garnero P, et al. Risk factors for hip fracture in women with high BMD: EPIDOS study. Osteoporos Int 2005; 16: 149–54

    Article  PubMed  CAS  Google Scholar 

  66. Sornay-Rendu E, Munoz F, Garnero P, et al. The identification of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res 2005; 20: 1813–9

    Article  PubMed  Google Scholar 

  67. Kanis JA, Johnell O, Black DM, et al. Effect of raloxifène on the risk of new vertebral fracture in post-menopausal women with osteopenia or osteoporosis: a reanalysis of the multiple outcomes of raloxifene evaluation trial. Bone 2003; 33: 293–300

    Article  PubMed  CAS  Google Scholar 

  68. Bauer DC, Garnero P, Hochberg MC, et al. Pretreatment bone turnover and antifracture efficacy of alendronate: the Fracture Intervention Trial. J Bone Miner Res 2006; 21: 292–9

    Article  PubMed  CAS  Google Scholar 

  69. Gonnelli S, Cepollaro C, Pondrelli C, et al. The usefulness of bone turnover in predicting the response to transdermal estrogen therapy in postmenopausal osteoporosis. J Bone Miner Res 1997; 12: 624–31

    Article  PubMed  CAS  Google Scholar 

  70. Rosen CJ, Chesnut III CH, Mallinak NJ. The predictive value of biochemical markers of bone turnover for bone mineral density in early postmenopausal women treated with hormone replacement or calcium supplementation. J Clin Endocrinol Metab 1997; 82(6): 1904–10

    Article  PubMed  CAS  Google Scholar 

  71. Chesnut III CH, Bell NH, Clark GS, et al. Hormone replacement therapy in postmenopausal women: urinary N-telopeptide of type I collagen monitors therapeutic effect and predicts response of bone mineral density. Am J Med 1997; 102(1): 29–37

    Article  PubMed  CAS  Google Scholar 

  72. Civitelli R, Gonnelli S, Zacchei F, et al. Bone turnover in postmenopausal osteoporosis: effect of calcitonin treatment. J Clin Invest 1988; 82: 1268–74

    Article  PubMed  CAS  Google Scholar 

  73. Gonnelli S, Cepollaro C, Pondrelli C, et al. Bone turnover and the response to alendronate treatment in postmenopausal osteoporosis. Calcif Tissue Int 1999; 65(5): 359–64

    Article  PubMed  CAS  Google Scholar 

  74. Seibel MJ, Naganathan V, Barton I, et al. Relationship between pretreatment bone resorption and vertebral fracture incidence in postmenopausal osteoporotic women treated with risedronate. J Bone Miner Res 2004; 19: 323–9

    Article  PubMed  CAS  Google Scholar 

  75. Schousboe JT, Bauer DC, Nyman JA, et al. Potential for bone turnover markers to cost-effectively identify and select post-menopausal osteopenic women at high risk of fracture for bisphosphonate therapy. Osteoporos Int 2007 Feb; 18(2): 201–10

    Article  PubMed  CAS  Google Scholar 

  76. Chen P, Satterwhite JH, Licata AA, et al. Early changes in biochemical markers of bone formation predict BMD response to teriparatide in postmenopausal women with osteoporosis. J Bone Miner Res 2005; 20: 962–70

    Article  PubMed  CAS  Google Scholar 

  77. Delmas PD, Licata AA, Reginster JY, et al. Fracture risk reduction during treatment with teriparatide is independent of pretreatment bone turnover. Bone 2006; 39: 237–43

    Article  PubMed  CAS  Google Scholar 

  78. Cremers S, Garnero P. Biochemical markers of bone turnover in the clinical development of drugs for osteoporosis and metastatic bone disease: potential uses and pitfalls. Drugs 2006; 66: 2031–58

    Article  PubMed  CAS  Google Scholar 

  79. Garnero P, Gineyts E, Arbault P, et al. Different effects of bisphosphonate and estrogen therapy on free and peptide-bound bone cross-links excretion. J Bone Miner Res 1995; 10: 641–9

    Article  PubMed  CAS  Google Scholar 

  80. Bjarnason NH, Christiansen C, Sarkar S, et al., for the MORE Study Group. 6 months changes in biochemical markers predict 3-year response in vertebral fracture rate in postmenopausal, osteoporotic women: results from the MORE study. Osteoporos Int 2001; 12: 922–30

    Article  PubMed  CAS  Google Scholar 

  81. Reginster JY, Sarkar S, Zegels B, et al. Reduction in PINP, a marker of bone metabolism, with raloxifene treatment and its relationship with vertebral fracture risk. Bone 2004; 34: 344–51

    Article  PubMed  CAS  Google Scholar 

  82. Sarkar S, Reginster JY, Crans GG, et al. Relationship between changes in biochemical markers of bone turnover and BMD to predict vertebral fracture risk. J Bone Miner Res 2004; 19: 394–401

    Article  PubMed  Google Scholar 

  83. Eastell R, Barton I, Hannon RA, et al. Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate. J Bone Miner Res 2003; 18: 1051–6

    Article  PubMed  CAS  Google Scholar 

  84. Bauer DC, Black DM, Garnero P, et al. Change in bone turnover and hip, non-spine, and vertebral fracture in alendronate-treated women: the Fracture Intervention Trial. J Bone Miner Res 2004; 19: 1250–8

    Article  PubMed  Google Scholar 

  85. Eastell R, Hannon RA, Garnero P, et al. Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate: review of statistical analysis. J Bone Miner Res 2007; 22: 1656–60

    Article  PubMed  Google Scholar 

  86. de Papp AE, Bone HG, Caulfield MP, et al. A cross-sectional study of bone turnover markers in healthy premenopausal women. Bone 2007; 40: 1222–30

    Article  PubMed  Google Scholar 

  87. Glover SJ, Garnero P, Naylor K, et al. Establishing a reference range for bone turnover markers in young, healthy women. Bone 2008 Apr; 42(4): 623–30

    Article  PubMed  CAS  Google Scholar 

  88. Bauer DC, Garnero P, Bilezikian JP, et al. Short-term changes in bone turnover markers and bone mineral density response to parathyroid hormone in postmen-opausal women with osteoporosis. J Clin Endocrinol Metab 2006; 91: 1370–5

    Article  PubMed  CAS  Google Scholar 

  89. Meunier PJ, Roux C, Seeman E, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 2004; 350: 459–68

    Article  PubMed  CAS  Google Scholar 

  90. Bruyere O, Roux C, Detilleux J, et al. Relationship between bone mineral density changes and fracture risk reduction in patients treated with strontium ranelate. J Clin Endocrinol Metab 2007; 92: 3076–81

    Article  PubMed  CAS  Google Scholar 

  91. Chapurlat RD, Cummings SR. Does follow-up of osteoporotic women treated with antiresorptive therapies improve effectiveness? Osteoporos Int 2002 Sep; 13(9): 738–44

    Article  PubMed  Google Scholar 

  92. Clowes JA, Peel NF, Eastell R. The impact of monitoring on adherence and persistence with antiresorptive treatment for postmenopausal osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab 2004; 89: 1117–23

    Article  PubMed  CAS  Google Scholar 

  93. Delmas PD, Vrijens B, Eastell R, et al. Effect of monitoring bone turnover markers on persistence with risedronate treatment of postmenopausal osteoporosis. J Clin Endocrinol Metab 2007; 4: 1296–304

    Article  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Garnero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garnero, P. Biomarkers for Osteoporosis Management. Mol Diag Ther 12, 157–170 (2008). https://doi.org/10.1007/BF03256280

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256280

Keywords

Navigation