Skip to main content
Log in

Correlation between porcinePPARGC1A mRNA expression and its downstream target genes in backfat andlongissimus dorsi muscle

  • Original Article
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Knowledge of in vivo relationship between the coactivatorPPARGC1A and its target genes is very limited, especially in the pig. In this study, a real-time PCR experiment was performed onlongissimus dorsi muscle (MLD) and backfat with 10 presumedPPARGC1A downstream target genes, involved in energy and fat metabolism, to identify possible relationships withPPARGC1A mRNA expression in vivo in the pig (n = 20). Except forUCP3 andLPL, a very significant difference in expression was found between MLD and backfat for all genes (P < 0.01). Hierarchical cluster analysis and the significant pairing of mRNA expression data between sampling locations suggested a genetic regulation of the expression of several target genes. A positive correlation withPPARGC1A was found forCPT1B, GLUT4, PDK4, andTFAM (P < 0.0001). A negative correlation was found forUCP2, FABP4, LEP (P < 0.0001), andTNF (P = 0.0071). No significant correlation was detected forUCP3 andLPL. This study provides evidence for a clear difference in mRNA expression of crucial genes in fat and energy metabolism between 2 important tissues. Our data suggest a clear impact ofPPARGC1A on energy and lipid metabolism in vivo in the pig, through several of these downstream target genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Carey AL, Petersen EW, Bruce CR, Southgate RJ, Pilegaard H, Hawley JA, et al.2006. Discordant gene expression in skeletal muscle and adipose tissue of patients with type 2 diabetes: effect of interleukin-6 infusion. Diabetologia 49: 1000–1007.

    Article  CAS  PubMed  Google Scholar 

  • Cawthorn WP, Sethi JK, 2008. TNF-α and adipocyte biology. FEBS Lett 582: 117–131.

    Article  CAS  PubMed  Google Scholar 

  • Damon M, Vincent A, Lombardi A, Herpin P, 2000. First evidence of uncoupling protein-2 (UCP-2) and -3 (UCP-3) gene expression in piglet skeletal muscle and adipose tissue. Gene 246: 133–141.

    Article  CAS  PubMed  Google Scholar 

  • Dulloo AG, Samec S, 2001. Uncoupling proteins: their roles in adaptive thermogenesis and substrate metabolism reconsidered. Br J Nutr 86: 123–139.

    Article  CAS  PubMed  Google Scholar 

  • Erkens T, Bilek K, Van Zeveren A, Peelman LJ, 2008. Two new splice variants in porcine PPARGC1A. BMC Research Notes 1: 138

    Article  PubMed  Google Scholar 

  • Erkens T, Van Poucke M, Vandesompele J, Goossens K, Van Zeveren A, Peelman LJ, 2006. Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnol 6: 41.

    Article  PubMed  Google Scholar 

  • Fischer H, Gustafsson T, Sundberg CJ, Norrbom J, Ekman M, Johansson O, Jansson E, 2006. Fatty acid binding protein 4 in human skeletal muscle. Biochem Bioph Res Co 346: 125–130.

    Article  CAS  Google Scholar 

  • Fleury C, Sanchis D, 1999. The mitochondrial uncoupling protein-2: current status. Int J Biochem Cell Biol 31: 1261–1278.

    Article  CAS  PubMed  Google Scholar 

  • Handschin C, Spiegelman BM, 2006. Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27: 728–735.

    CAS  PubMed  Google Scholar 

  • Jacobs K, Rohrer G, Van Poucke M, Piumi F, Yerle M, Barthenschlager H, et al. 2006. Porcine PPARGC1A (peroxisome proliferative activated receptor gamma coactivator 1A): coding sequence, genomic organization, polymorphisms and mapping. Cytogenet Genome Res 112: 106–113.

    Article  CAS  PubMed  Google Scholar 

  • Jung K, Park HJ, Kim YH, Hong JP, 2007. Expression of tumor necrosis factor-α and cyclooxygenase-2 mRNA in porcine split-thickness wounds treated with epidermal growth factor by quantitative real-time PCR. Res Vet Sci 82: 344–348.

    Article  CAS  PubMed  Google Scholar 

  • Kageyama H, Hirano T, Okada K, Ebara T, Kageyama A, Murakami T, et al. 2003. Lipoprotein lipase mRNA in white adipose tissue but not in skeletal muscle is increased by pioglitazone through PPAR-γ. Biochem Bioph Res Co 305: 22–27.

    Article  CAS  Google Scholar 

  • Kakuma T,Wang Z-W, Pan W, Unger RH, Zhou Y-T, 2000. Role of leptin in peroxisome proliferator-activated receptor gamma coactivator-1 expression. Endocrinology 141: 4576–4582.

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Kim SK, Shim WS, Lee JH, Hur KY, Kang ES, et al. 2008. Rosiglitazone improves insulin sensitivity with increased serum leptin levels in patients with type 2 diabetes mellitus. Diabetes Res Clin Pr 81: 42–49.

    Article  CAS  Google Scholar 

  • Kim MS, Sweeney TR, Shigenaga JK, Chui LG, Moser A, Grunfeld C, Feingold KR, 2007. Tumor necrosis factor and interleukin 1 decrease RXRα, PPARα, PPARγ, LXRα, and the coactivators SRC-1, PGC-1α, and PGC-1β in liver cells. Metabolism 56: 267–279.

    Article  CAS  PubMed  Google Scholar 

  • Lago R, Gómez R, Lago F, Gómez-Reino J, Gualillo O, 2008. Leptin beyond body weight regulation — current concepts concerning its role in immune function and inflammation. Cell Immunol 252: 139–145.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Beauchamp MC, Renier G, 2002. Peroxisome proliferator-activated receptor α and γ agonists upregulate human macrophage lipoprotein lipase expression. Atherosclerosis 165: 101–110.

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Wu H, Tarr PT, Zhang C-Y, Wu Z, Boss O, et al. 2002. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418: 797–801.

    Article  CAS  PubMed  Google Scholar 

  • McGarry JD, Brown NF, 1997. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 244: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Merkel M, Eckel RH, Goldberg IJ, 2002. Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res 43: 1997–2006.

    Article  CAS  PubMed  Google Scholar 

  • Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, et al. 2001. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci USA 98: 3820–3825.

    Article  CAS  PubMed  Google Scholar 

  • Miura S, Kai Y, Ono M, Ezaki O, 2003. Overexpression of peroxisome proliferator-activated receptor γ coactivator-1α down-regulates GLUT4 mRNA in skeletal muscles. J Biol Chem 278: 31385–31390.

    Article  CAS  PubMed  Google Scholar 

  • Moore ML, Park EA, McMillin JB, 2003. Upstream stimulatory factor represses the induction of carnitine palmitoyltransferase-1α expression by PGC-1. J Biol Chem 278: 17263–17268.

    Article  CAS  PubMed  Google Scholar 

  • Oberkofler H, Esterbauer H, Linnemayr V, Strosberg AD, Krempler F, Patsch W, 2002. Peroxisome proliferator-activated receptor (PPAR) γ coactivator-1 recruitment regulates PPAR subtype specificity. J Biol Chem 277: 16750–16757.

    Article  CAS  PubMed  Google Scholar 

  • Oberkofler H, Klein K, Felder TK, Krempler F, Patsch W, 2006. Role of peroxisome proliferator-activated receptor-γ coactivator-1α in the transcriptional regulation of the human uncoupling protein 2 gene in INS-1E cells. Endocrinology 147: 966–976.

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos GA, Erkens T, Maes DG, Peelman LJ, van Kempen TA, Buyse J, Janssens GP, 2009. Peripartal feeding strategy with different n-6:n-3 ratios in sows: effect on gene expression in backfat white adipose tissue postpartum. Br J Nutr 101: 197–205.

    Article  CAS  PubMed  Google Scholar 

  • Peffer PL, Lin X, Jacobi SK, Gatlin LA, Woodworth J, Odle J, 2007. Ontogeny of carnitine palmitoyltransferase I activity, carnitine-Km, and mRNA abundance in pigs throughout growth and development. J Nutr 137: 898–903.

    CAS  Google Scholar 

  • Pelton PD, Zhou L, Demarest KT, Burris TP, 1999. PPARγ activation induces the expression of the adipocyte fatty acid binding protein gene in human monocytes. Biochem Biophys Res Commun 261: 456–458.

    Article  CAS  PubMed  Google Scholar 

  • Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM, 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829–839.

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran B, Yu G, Gulick T, 2008. Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits. J Biol Chem 283: 11935–11946.

    Article  CAS  PubMed  Google Scholar 

  • Ramsay TG, Richards MP, 2005. Leptin and leptin receptor expression in skeletal muscle and adipose tissue in response to in vivo porcine somatotropin treatment. J Anim Sci 83: 2501–2508.

    CAS  PubMed  Google Scholar 

  • Samulin J, Berget I, Lien S, Sundvold H, 2008. Differential gene expression of fatty acid binding proteins during porcine adipogenesis. Comp Biochem Physiol B Biochem Mol Biol 151: 147–152.

    Article  PubMed  Google Scholar 

  • Soyal S, Krempler F, Oberkofler H, Patsch W, 2006. PGC-1α: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes. Diabetologia 49: 1477–1488.

    Article  CAS  PubMed  Google Scholar 

  • Spiegelman BM, Puigserver P, Wu Z, 2000. Regulation of adipogenesis and energy balance by PPARγ and PGC-1. Int J Obesity 24: S8–10.

    CAS  Google Scholar 

  • Stachowiak M, Szydlowski M, Cieslak J, Switonski M, 2007. SNPs in the porcine PPARGC1a gene: interbreed differences and their phenotypic effects. Cell Mol Biol Lett 12: 231–239.

    Article  CAS  PubMed  Google Scholar 

  • Terada S, Tabata I, 2004. Effects of acute bouts of running and swimming exercise on PGC-1α protein expression in rat epitrochlearis and soleus muscle. Am J Physiol Endocrinol Metab 286: E208–216.

    Article  CAS  PubMed  Google Scholar 

  • Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, et al. 1999. Housekeeping genes as internal standards: use and limits. J Biotechnol 75: 291–295.

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F, 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: 0034.1–0034.11.

    Article  Google Scholar 

  • Villarroya F, Iglesias R, Giralt M, 2007. PPARs in the control of uncoupling proteins gene expression. PPAR Res 2007: 74364.

    PubMed  Google Scholar 

  • Wang MY, Orci L, Ravazzola M, Unger RH, 2005. Fat storage in adipocytes requires inactivation of leptin’s paracrine activity: implications for treatment of human obesity. Proc Natl Acad Sci USA 102: 18011–18016.

    Article  CAS  PubMed  Google Scholar 

  • Wende AR, Huss JM, Schaeffer PJ, Giguère V, Kelly DP, 2005. PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol 25: 10684–10694.

    Article  CAS  PubMed  Google Scholar 

  • Willson TM, Lambert MH, Kliewer SA, 2001. Peroxisome proliferators-activated receptor γ and metabolic disease. Annu Rev Biochem 70: 341–367.

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115–124.

    Article  CAS  PubMed  Google Scholar 

  • Yoon JC, Puigserver P, Chen GX, Donovan J, Wu ZD, Rhee J, et al. 2001. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413: 131–138.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Erkens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erkens, T., Vandesompele, J., Van Zeveren, A. et al. Correlation between porcinePPARGC1A mRNA expression and its downstream target genes in backfat andlongissimus dorsi muscle. J Appl Genet 50, 361–369 (2009). https://doi.org/10.1007/BF03195694

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03195694

Keywords

Navigation