Skip to main content
Log in

Microalgal biotechnology: Carotenoid production by the green algaeDunaliella salina

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Unicellular green algae of the genusDunaliella thrive in extreme environmental conditions such as high salinity, low pH, high irradiance and subzero temperatures. Species ofDunaliella are well known in the alga biotechnological industry and are employed widely for the production of valuable biochemicals, such as carotenoids. Some strains ofDunaliella are cultivated commercially in large outdoor ponds and are harvested to produce dry algal meals, such as polyunsaturated fatty acids and oils for the health food industry, and coloring agents for the food and cosmetic industries. During the past decade, the advances in molecular biology and biochemistry of microalgae, along with the advances in biotechnology of microalgal mass cultivation, enabled this microalga to become a staple of commercial exploitation. In particular, the advent of molecular biology and mutagenesis inDunaliella has permitted enhancements in the carotenoids content of this green alga, making it more attractive for biotechnological applications. Accordingly, the present review summarizes the recent developments and advances in biotechnology of carotenoid production inDunaliella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jin, E. S., J. W. E. Polle, H. K. Lee, S. Hyun, and M. Chang (2003) Xanthophylls is microalgae: from biosynthesis to biotechnological mass production and application.J. Microbiol. Bioechnol. 13: 165–174.

    CAS  Google Scholar 

  2. Apt, K. E. and P. W. Berhrens (1999) Commercial developments in microalgal biotechnology.J. Phycol. 35: 215–226.

    Article  Google Scholar 

  3. Ben-Amotz, A. (1999) Production of β-carotene fromDunaliella. pp. 196–204. In: Z. Cohen (ed.)Chemicals from Microalgae. Tayler & Francis, London, UK.

    Google Scholar 

  4. Ben-Amotz, A. and M. Avron (1989) The biotechnology of mass culturingDunaliella for products of commercial interest. pp. 91–114. In: R. C. Cresswell, T. A. V. Rees, and N. Shah (eds.)Algal and Cyanobacterial Biotechnology, Longman Scientific & Technical, London, UK.

    Google Scholar 

  5. Borowitzka, M. A. and L. J. Borowitzka. (1988)Dunaliella. pp. 27–58. In: M. A. Borowitzka and L. J. Borowitzka (eds.).Micro-algal Biotechnology Cambridge University Press, Cambridge, UK.

    Google Scholar 

  6. Borowitzka, M. A. (1988) Vitamins and fine chemicals from microalgae. pp. 153–196. In: M. A. Borowitzka and L. J. Borowitzka (eds.).Micro-algal Biotechnology Cambridge University Press, Cambridge, UK.

    Google Scholar 

  7. Fan, L., A. Vonshak, and S. Boussiba (1994) Effect of temperature and irradiance on growth ofHaematococcus pluvialis (Chlorophyceae).J. Phycol. 30: 829–833.

    Article  Google Scholar 

  8. Grünewald, K., J. Hirschberg, and C. Hagen. (2001) Ketocarotenoid biosynthesis outside of plastids in the unicellular green algaHaematococcus pluvialis.J. Biol. Chem. 276: 6023–6029.

    Article  Google Scholar 

  9. Del campo, J. A., H. Rodríguez, J. Moreno, M. A. Vargas, J. Rivas, and M. G. Guerrero. (2001) Lutein production byMuriellopsis sp. in an outdoor tubular photobioreactor.J. Biotechnol. 85: 289–295.

    Article  Google Scholar 

  10. Del Campo, J. A., J. Moreno, H. Rodríguez, M. A. Vargas, J. Rivas, and M. G. Guerrero. (2000) Carotenoid content of chlorophycean microalgae. Factors determining lutein accumulation inMuriellopsis sp. (Chlorophyta).J. Biotechnol. 76: 51–59.

    Article  Google Scholar 

  11. Jin, E. S., B. Feth, and A. Melis (2003). A mutant of the green algaDunaliella salina constitutively accumulates zeaxanthin under all growth conditions.Biotechnol. Bioeng. 81: 115–124.

    Article  CAS  Google Scholar 

  12. Hagen, C., W. Braune, K. Vogel, and P. P. Häder (1993). Functional aspects of secondary carotenoids inHaematococcus lacustris (Giröd) Rostafinski (Volvocales): V. Influences on photo movement.Plant Cell Environ. 16: 991–995.

    Article  CAS  Google Scholar 

  13. Landrum, J. T. and R. Bone (2001) Lutein, zeaxanthin and the macular pigment.Arch. Biochem. Biophys. 385: 28–40.

    Article  CAS  Google Scholar 

  14. Bone, R. A., J. T. Landrum, L. Fernandez, and S. L. Tarsis. (1988) Analysis of the macular pigment by HPLC: Retinal distribution and age study.Invest. Ophthalmol. Vis. Sci. 29: 843–849.

    CAS  Google Scholar 

  15. Daun, H. (1988) The chemistry of carotenoids and their importance in food.Clin. Nutr. 7: 97–100.

    Google Scholar 

  16. Handelman, G. J., E. A. Dratz, C. C. Reay, and F. J. G. M. van Kuijk (1988) Carotenoids in the human macula and whole retina.Invest. Ophthalmol. Vis. Sci. 29: 850–855.

    CAS  Google Scholar 

  17. Krinsky, N. I., M. D. Russett, G. J. Handelman, and D. M. Snodderly (1990) Structural and geometric isomers of carotenoids in human plasma.J. Nutr. 120: 1654–1662.

    CAS  Google Scholar 

  18. Yeum, K. J., A. Taylor, G. Tang, and R. M. Russell (1995) Measurement of carotenoids, retinoids, and tocopherols in human lenses.Invest. Ophthalmol. Vis. Sci. 36: 2756–2761.

    CAS  Google Scholar 

  19. Le Marchand, L., J. H. Hankin, L. N. Kolonel, G. R. Beecher, L. R. Wilkens, and L. P. Zhao (1993) Intake of specific carotenoids and lung cancer risk.Cancer Epidemiol. Biomarkers Prev. 2: 183–187.

    Google Scholar 

  20. Richmond, A. (1990) Large scale microalgal culture and applications. pp. 269–330. In: M. Round and S. Chapman (eds.).Progress in Phycological Research 7, Biopress, Bristol, UK.

    Google Scholar 

  21. Seddon, J. M., U. A. Ajani, R. D. Sperduto, R. Hiller, N. Blair, T. C. Burton, M. D. Farber, E. S. Gragoudas, J. Haller, D. T. Miller, L. A. Yannuzzi, and W. Willett (1994) Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration.J. Am. Med. Assoc. 272: 1413–1420.

    Article  CAS  Google Scholar 

  22. Jacques, P. F., L. T. Chylack, R. B. McGandy, and S. C. Hartz (1988) Antioxidant status in persons with and without senile cataract.Arch. Ophthalmol. 106: 337–340.

    Article  CAS  Google Scholar 

  23. Rock, C. L., R. A. Jacob, and P. E. Bowen (1994) Update on the biological characteristics of the antioxidant micronutrients: Vitamin C, vitamin E and the carotenoids.J. Am. Diet. Assoc. 96: 693–702.

    Article  Google Scholar 

  24. Snodderly, M. D. (1995) Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins.Am. J. Clin. Nutr. 62: 1448–1461.

    Google Scholar 

  25. Gann, P. H., J. Ma, E. Giovannucci, W. Willett, F. M. Sacks, C. H. Hennekens, and M. J. Stampfer (1999) Lower prostate cancer risk in men with elevated plasma lycopene levels: results of a prospective analysis.Cancer Res. 59: 1225–1230.

    CAS  Google Scholar 

  26. Giovannucci, E., A. Ascherio, E. B. Rimm, M. J. Stampfer, G. A. Colditz, and W. C. Willett (1995) Intake of carotenoids and retinol in relation to risk of prostate cancer.J. Natl. Cancer Inst. 87: 1767–1776.

    Article  CAS  Google Scholar 

  27. Ziegler, R. G., E. A. Colavito, P. Hartge, M. J. McAdams, J. B. Schoenberg, T. J. Mason, and J. F. Fraumeni Jr. (1996) Importance of α-carotene, β-carotene and other phytochemicals in the etiology of lung cancer.J. Natl. Cancer Inst. 88: 612–615.

    Article  CAS  Google Scholar 

  28. Foss, P. (1987) Natural occurrence of enantiomeric and meso astaxanthin in crustaceans including zooplankton.Comp. Biochem. Physiol. 86: 313–314.

    Google Scholar 

  29. Kitahara, T. (1984) Carotenoids in the Pacific salmon during the marine period.Comp. Biochem. Physiol. 78: 859–862.

    Google Scholar 

  30. Lorenz, R. T. and G. R. Cysewski (2000) Commercial potential forHaematococcus microalgae as a natural source of astaxanthin.Trends Biotechnol. 18: 160–167.

    Article  CAS  Google Scholar 

  31. Margalith, P. Z. (1999) Production of keto carotenoids by microalgae.Appl. Microbiol. Biotechnol. 51: 431–438.

    Article  CAS  Google Scholar 

  32. Ben-Amotz, A. and M. Avron (1990) The biotechnology of cultivating the halotolerant algaDunaliella.Trends Biotechnol. 8: 121–126.

    Article  CAS  Google Scholar 

  33. Avron, M. and A. Ben-Amotz (1992)Dunaliella: Physiology. Biochemistry, and Biotechnology. CRC Press, Boca Raton, USA.

    Google Scholar 

  34. Ben-Amotz, A., A. Katz, and M. Avron (1982) Accumulation of beta-carotene in halotolerant algae: Purification and characterization of beta-carotene-rich globules fromDunaliella bardawil (Chlorophyceae).J. Phycol. 18: 529–537.

    Article  CAS  Google Scholar 

  35. Ben-Amotz, A., A. Shaish, and M. Avron (1989). Mode of action of the massively accumulated β-carotene ofDunaliella bardawil in protecting the alga against damage by excess irradiation.Plant Physiol. 91: 1040–1043.

    Article  CAS  Google Scholar 

  36. Shaish, A., M. Avron, U. Pick, and A. Amotz. (1993) Are active oxygen species involved in induction of beta-carotene inDunaliella bardawil?.Planta 190: 363–368.

    Article  CAS  Google Scholar 

  37. Orset, S. C. and A. J. Young (1999) Low-temperature-induced synthesis of α-carotene in the microalgaeDunaliella salina (chlorophyta).J. Phycol 35: 520–527.

    Article  CAS  Google Scholar 

  38. Shaish, A., M. Avron, U. Pick, and A. Amotz. (1993) Are active oxygen species involved in induction of betacarotene inDunaliella bardawil?.Planta 190: 363–368.

    Article  CAS  Google Scholar 

  39. Borowitzka, M. A. (1999) Commercial production of microalgae: pond, tank, tubes and fermenters.J. Biotechnol. 70: 313–321.

    Article  CAS  Google Scholar 

  40. Borowitzka, M. A. (1992) Comparing carotenogenesis inDunaliella andHaematococcus: Implications for commercial strategies. pp. 301–310. In: T. G. Villa, and J. Abalde, (eds.),Profiles on Biotechnology. Servicio de Publicaciones, Universidad de Santiago, Santiago de Compostela, Spain.

    Google Scholar 

  41. Orset, S. C. and A. J. Young (2000) Exposure to low irradiances favors the synthesis of 9-cis beta, beta-carotene inDunaliella salina (Teod.).Plant Physiol. 122: 609–618.

    Article  CAS  Google Scholar 

  42. Armstrong, G. A. (1997) Genetics of eubacterial carotenoid biosynthesis: A colorful tale.Ann. Rev. Microbiol. 51: 629–659.

    Article  CAS  Google Scholar 

  43. Pogson, B. J., K. K. Niyogi, O. Björkman, and D. DellaPenna (1998) Altered xanthophyll compositions adversely affect chlorophyll accumulation and non-photochemical quenching inArabidopsis mutants.Proc. Natl. Acad. Sci. USA. 95: 13324–13329.

    Article  CAS  Google Scholar 

  44. Pogson, B. J., K. A. McDonald, M. Truong, G. Britton, and D. DellaPenna (1996)Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants.Plant Cell 8: 1627–1639.

    Article  CAS  Google Scholar 

  45. Ben-Amotz, A. (1995) New mode ofDunaliella biotechnology two-phage growth for β-carotene production.J. Appl. Phycol. 7: 65–68.

    Article  CAS  Google Scholar 

  46. Marin, E., L. Nussaume, A. Quesada, M. Gonneau, B. Sotta, P. Hugueney, A. Frey, and A. Marion-Poll (1996) Molecular identification of zeaxanthin epoxidase ofNicotiana plumbaginifolia, a gene involved in abscic acid biosynthesis and corresponding to ABA locus ofArabidopsis thaliana.EMBO J. 15: 2331–2342.

    CAS  Google Scholar 

  47. Misawa, N. and H. Shimada (1998) Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeast.J. Biotechnol. 59: 169–181.

    Article  CAS  Google Scholar 

  48. Misawa, N., S. Kajiwara, K. Kondo, A. Yokoyama, and Y. Satomi (1995) Canthaxanthin biosynthesis by the conversion of methylene to keto groups in a hydrocarbon β-carotene by a single gene.Biochem. Biophys. Res. Comm. 209: 867–76.

    Article  CAS  Google Scholar 

  49. Yokoyama, A., Y. Shizuri, and N. Misawa (1998) Production of new carotenoids, astaxanthin glucosides, byE. coli. transformations carrying carotenoid biosynthetic genes.Tetrahedron Lett. 39: 3709–3712.

    Article  CAS  Google Scholar 

  50. Lagarde, D., L. Beuf, and W. Vermaas (2000) Increased production of zeaxanthin and other pigments by application of genetic engineering techniques toSynechocystis sp. strain PCC 6803.Appl. Environ. Microbiol. 66: 64–72.

    Article  CAS  Google Scholar 

  51. Stevens, D. R. and S. Purton (1997) Genetic engineering of eukaryotic algae: progress and prospects.J. Phycol. 33: 263–270.

    Article  Google Scholar 

  52. Dawson, H. N., R. Burlingame, and A. C. Cannons (1997) Stable transformation ofChlorella: Rescue of nitrate reductase-deficient mutants with the nitrate reductase gene.Cur. Microbiol. 35: 356–362.

    Article  CAS  Google Scholar 

  53. Kim, D. H., Y. T. Kim, J. J. Cho, J. H. Bae, S. B. Hur, I. Hwang, and T. J. Choi (2002) Stable integration and functional expression of flounder growth hormone gene in transformed microalga,Chlorella ellipsoidea.Mar. Biotechnol. 4: 63–73.

    Article  CAS  Google Scholar 

  54. Apt, K. E. and P. G. Kroth-Pacific. (1996) Stable nuclear transformation of diatomPhaeodactylum tricornutum.Mol. Gen. Gene. 252: 572–579.

    CAS  Google Scholar 

  55. Dunahay, T. G., E. E. Jarvis, and P. G. Rossler (1995) Genetic transformation of the diatomsCyclotella cryptica andNavicula saprophila.J. Phycol. 31: 1004–1012.

    Article  CAS  Google Scholar 

  56. Falciatore, A., R. Casotti, C. Leblanc, C. Abrescia, and C. Bowler (1999) Transformation of nonselectable reporter genes in marine diatoms.Mar. Biotechnol. 1: 239–51.

    Article  CAS  Google Scholar 

  57. Zaslavskaia, L. A., J. C. Lippmeier, C. Shih, D. Ehrhardt, A. R. Grossman, and K. E. Apt. (2001) Trophic conversion of an obligate photoautotrophic organism through engineering.Science 292: 2073–2075.

    Article  CAS  Google Scholar 

  58. Zaslavskaia, L. A., J. C. Lippmeier, P. G. Kroth, A. R. Grossman, and K. E. Apt. (2000) Transformation of the diatomPhaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes.J. Phycol. 36: 379–386.

    Article  CAS  Google Scholar 

  59. Jin, E. S., J. W. E. Polle, and A. Melis (2001) Involvement of zeaxanthin and of the Cbr protein in the repair of photosystem-II from photoinhibition in the green algaDunaliella salina.Biochim. Biophys. Acta 1506: 244–259.

    Article  CAS  Google Scholar 

  60. Walker, T., D. Becker, and C. Collet (2003) Developing nuclear transformation system for the unicellular green algaDunaliella tertiolecta. Proceedings of 7th ISPMB. June 22–29. Barcellona, Spain.

  61. Chitnis, V. P., A. Ke, and P. R. Chitnis (1997) The PsaD subunit of photosystem I: Mutations in the basic domain reduce the level of PsaD in the membranes.Plant Physiol. 115: 1699–1705.

    Article  CAS  Google Scholar 

  62. Hippler M., K. Redding, and J.-D. Rochaix (1998) Chlamydomonas genetics, a tool for the study of bioenergetic pathways.Biochim. Biophys. Acta 1367: 1–62.

    Article  CAS  Google Scholar 

  63. Sun, J., A. Ke, P. Jin, V. P. Chitnis, and P. R. Chitnis (1998) Isolation and functional study of photosystem I subunits in the cyanobacteriumSynechocystis sp. PCC 6803.Methods Enzymol. 297: 124–39.

    Article  CAS  Google Scholar 

  64. Baroli, I., D. D. An, T. Yamane, and K. K. Niyogi (2003) Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protectsChlamydomonas reinhardtii from photooxidative stress.Plant Cell 15: 992–1008.

    Article  CAS  Google Scholar 

  65. Woitsch, S., V. Reiser, T. Gots, A. Feyel, T. Wagner, and S. Romer (2003) Alteration of stress resistance by modification of carotenoid biosynthesis in higher plants.Proceedings of 7th ISPMB. June 22–29. Barcellona, Spain.

  66. Albrecht, M., N. Misawa, and G. Sandmann. (1999) Metabolic engineering of the terpenoid biosynthetic pathway ofEscherichia coli for production of the carotenoids β-carotene and zeaxanthin.Biotechnol. Lett. 21: 791–795.

    Article  CAS  Google Scholar 

  67. Ruther, A., N. Misawa, P. Boger, and G. Sandman (1997) Production of zeaxanthin inEscherichia coli transformed with different carotenogenic plasmid.Appl. Miocrobiol. Biotechnol. 48: 162–167.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eon Seon Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, E.S., Melis, A. Microalgal biotechnology: Carotenoid production by the green algaeDunaliella salina . Biotechnol. Bioprocess Eng. 8, 331–337 (2003). https://doi.org/10.1007/BF02949276

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02949276

Keywords

Navigation