Skip to main content
Log in

Studies on secretion of catecholamine evoked by caffeine from the isolated perfused rat adrenal gland

  • Original Articles
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The influence of caffeine on secretion of catecholamines (CA) was examined in the isolated perfused rat adrenal gland. Caffeine (0.3 mM) perfused into an adrenal vein of the gland produced a marked increase in secretion of CA. This secretory effect of CA evoked by perfusion of caffeine for one minute was considerably prolonged, lasting for more than 90 minutes. The tachyphylaxis to releasing effect of CA induced by caffeine was observed by repeated perfusion of this drug. The caffeine-evoked CA secretion was markedly inhibited by pretreatment with ouabain, trifluoperazine, TMB-8 and perfusion with calcium-free Krebs solution containing 5 mM EGTA, but was not affected by perfusion of calcium-free Krebs solution without other addition. CA secretion evoked by caffeine was not reduced significantly by pretreatment with chlorisondamine but after the first collection of perfusate for 3 min was clearly inhibited. Interestingly, the caffeine-evoked CA secretion was considerably potentiated by pretreatment with atropine or pirenzepine, but after the first collection for 3 min it was markedly decreased. These experimental results suggest that caffeine causes a marked increase in secretion of CA from the isolated perfused rat adrenal gland by an extracellular calcium-independent exocytotic mechanism. The secretory effect of caffeine may be mainly due to mobilization of calcium from an intracellular calcium pool in the rat chromaffin cells and partly due to stimulation of both muscarinic and nicotinic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  1. Rall, T. W.: Evolution of the mechanism of action of methylxanthines: from calcium mobilizers to antagonists of adenosine receptors.Pharmacologist. 24, 277 (1982).

    Google Scholar 

  2. Pasmore, A. P., Kondowe, G. B. and Johnston, G. D.: Renal and cardiovascular effects of caffeine a dose-response study,Clin. Sci. 72, 249 (1987).

    Google Scholar 

  3. Robertson, D., Frolich, J. C. and Carr, R. K.,et al.: Effect of caffeine on plasma renin activity, catecholamines and blood pressure.New Engl. J. Med.,298, 181 (1978).

    PubMed  CAS  Google Scholar 

  4. Nussberger, J., Mooser, V., Maridor, G., Juillerat, L., Waeber, B. and Brunner, H. R.: Caffeine-induced diuresis and atrial natriuretic peptides.J. Cardiovas. Pharmacol. 15, 685 (1990).

    Article  CAS  Google Scholar 

  5. Snits, P., Pieters, G. and Thien, T.: The role of epinephrine in the circulatory effects of coffee.Clin. Pharmacol. Ther. 40, 431 (1986).

    Google Scholar 

  6. Peach, M. J.: Stimulation of release of adrenal catecholamine by adenosine 3′,5′-cyclic monophosphate and theophylline in the absence of extracellular Ca2+.Proc. Natl. Acad. Sci. USA. 69, 834 (1972).

    Article  PubMed  CAS  Google Scholar 

  7. Yamada, Y., Makazato, Y. and Ohga, A.: The mode of action of caffeine on catecholamine release from perfused adrenal glands of cat. Br.J. Pharmacol. 98, 351 (1989).

    CAS  Google Scholar 

  8. Poisner, A. M.: Direct stimulant effect of aminophylline on catecholamine release from the adrenal medulla.Biochem. Pharmacol. 22, 469 (1973a).

    Article  PubMed  CAS  Google Scholar 

  9. Morita, K., Dohi, T., Kitayama, S., Koyama, A. and Tsujimoto, A.: Enhancement of stimulation-evoked catecholamine release from cultured bovine adrenal chromaffine cells by forskolin,J. Neurochem. 48, 243 (1987a).

    Article  PubMed  CAS  Google Scholar 

  10. Morita, K., Dohi, T., Kitayama, S., Koyama, Y. and Tsujimoto, A.: Stimulation-evoked Ca2+ fluxes in cultured bovine adrenal chromaffine cells are enhanced by forskolin.J. Neurochem. 48, 248 (1987b).

    Article  PubMed  CAS  Google Scholar 

  11. Poisner, A. M.: Caffeine-induced catecholamine secretion: Similarity to caffeine-induced muscle contraction.Proc. Soc. Exp. Biol. Med. 142, 103 (1973b).

    PubMed  CAS  Google Scholar 

  12. Yamada, Y., Teraoka, H., Nakazato, Y. and Ohga, A.: Intracellular Ca2+ antagonist TMB-8 blocks catecholamine secretion evoked by caffeine and acetylcholine from perfused cat adrenal glands in the absence of extracellular Ca2+.Neuroscience Lett. 90, 338 (1988).

    Article  CAS  Google Scholar 

  13. Wakade, A. R.: Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland.J. Physiol. 313, 463 (1981).

    PubMed  CAS  Google Scholar 

  14. Anton, A. H. and Sayre, D. F.: A study of the factors affecting the alumina oxide trihydroxyindole procedure for the analysis of catecholamines.J. Pharmacol. Exp. Ther. 138, 360 (1962).

    PubMed  CAS  Google Scholar 

  15. Gilman, A. G., Goodman, L. S. and Gilman, A.:The Pharmacological Basis of Therapeutics, 7th ed., New York. Macmillan p. 110, 215 (1985).

    Google Scholar 

  16. Doods, H. N., Mathy, M. J., Davesko, D., Van Charldorp, K. J., Dejonge, A. and Ven Xwieten, P. A.: Selectivity of musccarinic agonists in radiologand andin vivo experiments for the putative M1, M2 and M3 receptors.J. Pharmacol. Exp. Ther. 242, 257 (1987).

    PubMed  CAS  Google Scholar 

  17. Hammer, R., Monferini, E., Deconti, L., Giraldo, E., Schiavi, G. B. and Ladinsky, H.: Distinct muscarinic receptor subtypes in the heart and in exocrine glands. InCellular and Molecular Basis of Cholinergic Function. ed., Dowdll, M. J. and Hawthorne, J. N., New York: Ellishorwood p. 56 (1987).

    Google Scholar 

  18. Dixon, W. R., Garcia, A. G. and Kirpekar, S. M.: Release of catecholamines and dopamine beta-hydroxylase from the adrenal gland of the cat.J. Physiol. 244, 805 (1975).

    PubMed  CAS  Google Scholar 

  19. Banks, P.: The effect of ouabain on the secretion of catecholamines and on the intracellular concentration of potassium.J. Physiol. 193, 631 (1967).

    PubMed  CAS  Google Scholar 

  20. Banks, P.: Involvement of calcium in the secretion of catecholamines. InCalcium and Cellular Function, ed., Cuthbert, A. W. and London: Macmillan and Co. Ltd. p. 148 (1970).

    Google Scholar 

  21. Garcia, A. G., Garcia-Lopez, E., Horga, J. F., Kirpekar, S. M., Montiel, C. and Sanchez-Garcia, F.: Potentiation of K+-evoked catecholamine release in the cat adrenal gland treated with ouabain.Br. J. Pharmacol.,74, 673 (1981b).

    PubMed  CAS  Google Scholar 

  22. Wakade, A. R.: Facilitation of secretion of catecholamines from rat and guinea-pig adrenal glands in potassium-free medium or after ouabain.J. Physiol. 313, 481 (1981).

    PubMed  CAS  Google Scholar 

  23. Nakazato, Y., Ohga, A. and Yamada, Y.: Facilitation of transmitter action on catecholamine output by cardiac glycoside in perfused adrenal gland of guinea-pig,J. Physiol. 374, 475 (1986).

    PubMed  CAS  Google Scholar 

  24. Aunis, D. and Garcia, A. G.: Correlation between catecholamine secretion from bovine isolated chromaffin cells and [3H]-ouabain binding to plasma membranes.Br. J. Pharmacol. 72, 31 (1981).

    PubMed  CAS  Google Scholar 

  25. Sorimachi, M., Nishimura, S. and Yamagami, K.: Possible occurence of Na+-dependent Ca2+ infux mechanism in isolated bovine chromaffincells.Brain. Res. 208, 442 (1981).

    Article  PubMed  CAS  Google Scholar 

  26. Pocock, G.: Ionic and metabolic requirements for stimulation of secretion by ouabain in bovine adrenal medullary cells.Mol. Pharmacol. 23, 671 (1983a).

    PubMed  CAS  Google Scholar 

  27. Pocock, G.: Ion movements in isolated bovine adrenal medullary cells treated with ouabain.Mol. Pharmacol. 23, 681 (1983b).

    PubMed  CAS  Google Scholar 

  28. Levin, R. M. and Weiss, B.: Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiestease.Mol. Pharmacol. 13, 690 (1977).

    PubMed  CAS  Google Scholar 

  29. Sugden, M. C., Christie, M. R. and Ashcroft, S. J. R.: Presence and possible role of calcium-dependent regulator (calmodulin) in rat islet of Langerhans.FEBS Lett. 105, 95 (1979).

    Article  PubMed  CAS  Google Scholar 

  30. Wakade, A. R. and Wakade, T. D.: Effects of desipramine, trifluoperazine and other inhibitors of calmodulin on the secretion of catecholamines from the adrenal medulla and postganglionic sympathetic nerves of salivary gland. Naunyn-Schmideberg'sArch. Pharmacol. 135, 320 (1984).

    Article  Google Scholar 

  31. Nakazato, Y., Yamada, Y., Tomita, U. and Ohga, A.; Muscarinic agonists release adrenal catecholamines by mobilizing intracellular Ca2+.Proc. Jap. Acad. 60, 314 (1984).

    Article  CAS  Google Scholar 

  32. Nakazato, Y., Ohga, A., Oleshansky, M., Tomita, U. and Yamada, Y.: Voltage-independent catecholamine release mediated by the activation of muscarinic receptors in guinea-pig adrenal glands.Br. J. Pharmacol. 93, 101 (1988).

    PubMed  CAS  Google Scholar 

  33. Viveros, O. H.: Mechanism of secretion of catecholaminis from adrenal medulla. InHandbook of physiology, Endocrinology. Vol. VI Sect 7. The adrenal gland. American physiological society, Washington ED, p. 389 (1975).

    Google Scholar 

  34. Viveros, O. H., Arqueros, L. C. and Kirshner, M.: Release of catecholamines and dopamine beta-hydroxylase from the adrenal medulla.Life Sci. 7, 609 (1968).

    Article  CAS  Google Scholar 

  35. Dixon, W. R., Garcia, A. G. and Kirpekar, S. M.: Release of catecholamines and dopamine beta-hydroxylase from the adrenal gland of the cat.J. Physiol. 244, 805 (1975).

    PubMed  CAS  Google Scholar 

  36. Eglen, R. M. and Whiting, R. L.: Muscarinic receptor subtypes: A critique of the current classification and a proposal for a working nomenclature.J. Auton. Phamacol. 5, 323 (1986).

    Google Scholar 

  37. Hammer, R., Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V. and Hulme, E. C.: Pirenzepine distinguishes between subclasses of muscarinic receptors.Nature 283, 90–92 (1980).

    Article  PubMed  CAS  Google Scholar 

  38. Hammer, R. and Giachetti, A.: Muscarinic receptor subtypes: M1 and M2 biochemical and functional characterization.Life Sci. 31, 1991 (1982).

    Article  Google Scholar 

  39. Baker, P. F. and Knight, D. E.: Calcium-dependent exocytosis in bovine adrenal medullary cells with leaky plasma membrane.Nature 276, 620 (1978).

    Article  PubMed  CAS  Google Scholar 

  40. Backer, P. F. and Kingt, D. E.: The relation between ionized calcium and cortical granule exocytosis in eggs of the sea urchin Echinus esculentus.Pro. R. Soc. London, Ser,207, 149 (1980).

    Article  Google Scholar 

  41. Douglas, W. W.: Stimulus-secretion coupling: The concept and clues from chromaffin and other cells.Br. J. Pharmacol. 34, 451 (1968).

    PubMed  CAS  Google Scholar 

  42. Schulz, I. and Stolze, H. H.: The exocrine pancrease: The role of secretogogues cyclic nucleotides and calcium in enzyme secretion.Ann. Rev. Physiol. 42, 127 (1980).

    Article  CAS  Google Scholar 

  43. Williams, J. A.: Regulation of pancreatic acinal cell function by intracellular calcium.Science 177, 1104 (1980).

    Google Scholar 

  44. Boxler, E.: Role of calcium in initiation of activity of smooth muscle.Am. J. Physiol. 216, 671 674 (1968).

    Google Scholar 

  45. Ohashi, H., Takewaki, T. and Okada, T.: Calcium and the contractile effect of carbachol in the depolarized guinea pig taenia caecum.Jap. J. Pharmacol. 24, 601 (1974).

    Article  CAS  Google Scholar 

  46. Casteels, R. and Raeymaekers, L.: The action of acetylcholine and catecholamines on an intracellular calcium store in the smooth muscle cells of the guinea-pig taenia cells,J. Physiol. 294, 51 (1979).

    PubMed  CAS  Google Scholar 

  47. Iion, M.: Calcium dependent inositol triphosphate-induced calcium release in the guinea-pig taenia caeci.Biochem. Biophysic. Res. Commun. 142, 47 (1987).

    Article  Google Scholar 

  48. Wakade, A. R. and Wakade, T. D.: Contribution of nicotinic and muscarinic receptors in the secretion of catecholamines evoked by endogenous and exogenous acetylcholine.Neuroscience 10, 973 (1983).

    Article  PubMed  CAS  Google Scholar 

  49. Kilpatrick, D. L., Slepetis, R. J., Corcorn, J. J. and Kirshner, N.: Calcium uptake and catacholamine secretion by cultured bovine adrenal medulla cells.J. Neurochem. 38, 427 (1982).

    Article  PubMed  CAS  Google Scholar 

  50. Kilpatrick, D. L., Slepetis, R. and Kirshner, N.: Ion channels and membrane potential in stimulus-secretion coupling in adrenal medulla cells.J. Neurochem. 36, 1245 (1981).

    Article  PubMed  CAS  Google Scholar 

  51. Knight, D. E. and Kesteven, N. T.: Evoked transient intracellular free Ca2+ changes and secretion in isolated bovine adrenal medullary cells.Proc. R. Soc. Lond. B. 218, 177 (1983).

    PubMed  CAS  Google Scholar 

  52. Wakade, A. R., Kahn, R., Malhotra, R. K., Wakade, C. G. and Wakade, T. D.: McN-A-343, a specific agonist of M1-muscarinic receptors, exerts antinicotinic and antimuscarinic effects in the rat adrenal medulla.Life Sci. 39, 2073 (1986).

    Article  PubMed  CAS  Google Scholar 

  53. Harish, O. E., Kao, L. S., Raffaniello, R., Wakade, A. R. and Schneider, A. S.: Calcium dependence of muscarinic receptor-mediated catecholamine secretion from the perfused rat adrenal medulla.J. Neurochem. 48, 1730 (1987).

    Article  PubMed  CAS  Google Scholar 

  54. Cheek, T. R. and Burgoyne, R. E.: Effect of activation of muscarinic receptors on intracellular free calcium and secretion in bovine adrenal chromaffin cells.Biochim. Biophys. Acta. 846, 167 (1985).

    Article  PubMed  CAS  Google Scholar 

  55. Kao, L. S. and Schneider, A. S.: Muscarinic receptors on bovine chromaffin cells mediate a rise in cytosolic calcium that is independent of extracellular calcium.J. Biol. Chem. 260, 2019 (1985).

    PubMed  CAS  Google Scholar 

  56. Kao, L. S. and Schneider, A. S.: Calcium mobilization and catecholamine secretion in adrenal chromaffin cells.J. Biol. Chem. 261, 4881 (1986).

    PubMed  CAS  Google Scholar 

  57. Misbahuddin, M., Isosaki, M., Houchi, H. and Oka, M.: Muscarinic receptor-mediated increase in cytoplasmic free Ca2+ in isolated bovine adrenal medullary cells.FEBS Lett. 190, 25 (1985).

    Article  PubMed  CAS  Google Scholar 

  58. Sasakawa, N., Yamamoto, S., Ishii, K. and Kato, R.: Inhibition of calcium uptake and catecholamine release by 8-(N,N-diethylamino)octhal-3,4-5-trimethoxybenzoate hydrochloride (TMB-8) in cultured bovine adrenal chromaffin cells.Biochem. Pharmacol. 33, 4063 (1984).

    Article  PubMed  CAS  Google Scholar 

  59. Yamada, Y., Nakazato, Y. and Ohga, A.: Ouabain distinguishes between nicotinic and muscarinic receptor-mediated catecholamine secretion in perfused adrenal glands of cat.Br. J. Pharmacol. 96, 470 (1989).

    PubMed  CAS  Google Scholar 

  60. Schubart, U. K., Erlichman, J. and Fleischer, N.: The role of calmodulin and the regulation of protein phosphorylation and insulin release in hamster insulinoma cells.J. Biol. Chem. 225, 4120 (1980).

    Google Scholar 

  61. Krausz, Y., Wallhein, C. B., Siegel, E. and Sharp, G. W. G.: Possible role for calmodulin inhibitor in insulin release. Studies with trifluoperazine in rat pancreatic islets.J. Clin. Invest. 66, 603 (1980).

    Article  PubMed  CAS  Google Scholar 

  62. Janjie, E., Wallheim, C. B., Siegel, E. G., Krausz, Y. and Sharp, G. W. G.: Site of action of trifluoperazine in the inhibition of glucose-stimulated insulin release.Diabetes 30, 960 (1981).

    Google Scholar 

  63. Henquin, J.: Effect of trifluoperazine and pimozide on stimulus-secretion coupling in pancreatic beta-cells: Suggestion for a role of calmodulin?Biochem. J. 196, 771 (1981).

    PubMed  CAS  Google Scholar 

  64. Karl, R. C.: Evidence for a role of calmodulin in insulin release from pancreatic islets.J. Surg. Res.,30, 478 (1981).

    Article  PubMed  CAS  Google Scholar 

  65. Douglas, W. W. and Nemeth, E. F.: On the calcium receptor activating exocytosis: Inhibitory effects of calmodulin-interacting drugs on rat mast cells.J. Physiol. 323, 229 (1982).

    PubMed  CAS  Google Scholar 

  66. Keningberg, R. L., Gote, A. and Trifaro, J. M.: Trifluoperazine, a calmodulin inhibitor, blocks secretion in cultured chromaffin cells at a step distal from calcium entry.Neuroscience 7, 2277 (1982).

    Article  Google Scholar 

  67. Iino, M., Kobayashi, T. and Endo, M.: Use of ryanodine for functional removal of the calcium store in smooth muscle cells of the guinea-pig.Biochem. Biophys. Res. Commun. 142, 47–52 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, DY., Lee, JH., Kim, WS. et al. Studies on secretion of catecholamine evoked by caffeine from the isolated perfused rat adrenal gland. Arch. Pharm. Res. 14, 55–67 (1991). https://doi.org/10.1007/BF02857816

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02857816

Keywords

Navigation