has shown that the solution as deduced from η decay leads to a ratio $a_{3}: a_{8}$ much too large to account for the electromagnetic masses of the baryons. Recently Cicogna et al (1974) have shown that without neglecting the SU_{3} non-invariance of vacuum and the contribution of subclasses of Feynman diagrams, one can get a reasonable solution of the $\eta \rightarrow 3 \pi$ puzzle with a value of $\epsilon_{3} \simeq-0.28 m_{\pi}^{3}$. In any case we find that a U_{3} term implies $\eta \pi^{0}$ mixing and in the $(8,8)$ model, eq. (13) is more justified, so that the correct width predicted from the $(8,8)$ model is very encouraging.
In this model we have also found out the intrinsic symmetry breaking contribution to the $\eta \pi^{0}$ transition [Dittner et al (1973), Brown et al (1961) and Socolow (1968)].

$$
\langle\eta \mid \pi\rangle_{\mathrm{int}}=-3 \cdot 1 \times 10^{3} \mathrm{MeV}^{2} .
$$

This can be compared to the value obtained by Brown et al (1971).

References

Baglin C, Bezaguet A, Degrange B, Musset P, Bingham H H et al 1969 Phys. Lett. 29B 445
Bardeen W, Brown L S, Lee B W and Nieh H T 1967 Phys. Rev. Lett. 181170
Barnes K and Isham C 1970 Nucl. Phys. B17 267
Bell J S and Sutherland D 1968 Nucl. Phys. B4 315
Bose S and Zimerman A 1966 Nuovo Cimento 43A 1165
Brehm J J 1971 Nucl. Phys. B34 269
Browman A et al July 1973 CLNS 242
Brown L M, Deshpande N G and Conntanzi, Fronk A 1971 Phys. Rev. D4 146
Cantor A 1971 Phys. Rev. D3 3205
Cicogna G, Strocchi F and Caffarelli V R 1974 Lett. Nuovo Cimento 1025
Chiu Y, Schecter J and Ueda Y 1967 Phys. Rev. 1621612
Dashen R 1969 Phys. Rey. 1831245
Dittner P, Dondi P H and Eliezer S 1973 Phys. Rev. D8 2253.
Dolgov A D, Vainstein A I and Zakharov V I 1967 Phys. Lett. 24B 425
Dutt R and Eliezer S 1971 Phys. Rev. D4 180
Gell-Mann M, Oakes R J and Renner B 1968 Phys. Rev. 1752195
Genz H, Katz J and Steiner H 1973 Phys. Rev. D7 2100
Graham R, Raifeartaigh L O and Pakvasa S 1967 Nuovo Cimento 48 A 830
Kanazaw A and Kariya T 1968 Progr. Theor. Phys. 40842
Kondo H and Noda H 1970 Progr. Theor. Phys. 431614
Oakes R J 1969 Phys. Lett. 30B 262
Socolow R H 1968 Phys. Rev. 1681534
Sutherland D 1967 Nucl. Phys, $B 2433$

ERRATUM

' The structure of bis-(L-threonine) copper (II). $\mathrm{H}_{2} \mathrm{O}$ ' by V Amirthalingam and K V Muralidharan in Vol. 4, No. 2, February 1975, pp. 83-94.

1. The statement in Sec. 4:

For $\mathrm{Cu}-\mathrm{O}$ distances $[1.975(5)$ and $1.979(5)]$ read as $[1.957(5)$ and 1.979 (5) A]
2. In figure 3 read $\mathrm{Cu}-\mathrm{O}_{1}=1.957$ (5) and $\mathrm{Cu}-\mathrm{O}_{4}=1.979(5) \AA$

