Skip to main content
Log in

Immunohistochemical assessement of constitutive and inducible heat-shock protein 70 and ubiquitin in human cerebellum and caudate nucleus

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

The distributions of constitutive and inducible 70-kDa heatshock proteins (Hsc70 and Hsp70, respectively) and ubiquitin (Ub) were investigated in autopsy specimens from 24 adult human brains. The objectives were to verify that the milder fixation and celloidin embedding applied to those specimens preserved protein immunoreactivity in the tissue sections, even with extended intervals between death and fixation, and to determine the typical pattern of distribution of the proteins in aged human cerebellum and caudate nucleus. To achieve these objectives, the patterns of immunoreactivity in human specimens were compared with those in normal rat brain after three methods of immersion fixation:

  1. 1.

    1% Formalin;

  2. 2.

    10% Formalin;

  3. 3.

    Methacarn (a modification of Carnoy’s solution).

Additionally, some rats were left refrigerated, but unfixed for up to 24 h to mimic the postmortem interval that commonly occurs prior to fixation of human autopsy material. Tissues were embedded in celloidin, sectioned at 100 μm, and the celloidin dissolved to permit immunostaining Immunoreactivity for all antigens was greatly diminished in the rat brain by fixation in 10% formalin compared to 1% formalin or methacarn. Rat and human brain tissues fixed in the latter two solutions showed similar patterns of low levels of Hsp70 immunostaining in gray matter and other areas where neuronal somata were concentrated, whereas Hsc70 immunostaining was much greater in those same areas. Little Hsc70 or Hsp70 immunoreactivity was detected in the white matter from either source, but immunoblots of human gray and white matter suggested that white matter contained more Hsc70 and Hsp70 than apparent by tissue section immunoreactivity. Ubiquitin immunostaining in rat and human brain showed the same high levels as Hsc70 in gray matter, but unlike Hsc70, was also visible in white matter. These patterns remained the same in rat brains even if fixation was delayed for 24 h. In three human brain specimens, elevated Hsc70 staining, but not Hsp70 or Ub, was found in a ring pattern similar to that described as the ischemic penumbra in experimentally induced brain ischemia. These results indicated that dilute formalin preserved Hsc/Hsp70 and Ub antigenicity well, and that the proteins had similar distributions in human and rat brains, despite the extended postmortem delay in fixation of the former. They also suggested that evidence of premortem, localized cellular metabolic stress may be preserved in the postmortem, human brain by an alteration in the typical distribution of Hsc70.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarraberes F. A., Terlecky S. R., and Dice J. F. (1997) An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation.J. Cell Biol 137, 825–834.

    Article  PubMed  CAS  Google Scholar 

  • Barbe M. F., Tytell M., Gower D. J., and Welch W. J. (1988). Hyperthermia protects against light damage in the rat retina.Science 241, 1817–1820.

    Article  PubMed  CAS  Google Scholar 

  • Beckman R. P., Mizzen L. A., and Welch W. J. (1990) Interaction of hsp70 with newly synthesized proteins: Implications for protein folding and assembly.Science 248, 850–854.

    Article  Google Scholar 

  • Beckmann R. P., Lovett M., and Welch W. J. (1992) Examining the function and regulation of hsp 70 in cells subjected to metabolic stress.J. Cell Biol. 117, 1137–1150.

    Article  PubMed  CAS  Google Scholar 

  • Bell M. A. and Scarrow W. G. (1984) Staining for microvascular alkaline phosphatase in thick celloidin sections of nervous tissue.: morphometric and pathologic applications.Microvasc. Res. 27, 189–203.

    Article  PubMed  CAS  Google Scholar 

  • Bizzi A., Schaetzle B., Patton A., Gambetti P., and Autilio-Gambetti L. (1991) Axonal transport of two major components of the ubiquitin system: Free ubiquitin and ubiquitin carboxyl-terminal hydrolase PGP 9.5.Brain Res. 548, 292–299.

    Article  PubMed  CAS  Google Scholar 

  • Bond U. and Schlesinger M. J. (1985) Ubiquitin is a heat shock protein in chicken embryo fibroblasts.Mol. Cell. Biol. 5, 949–956.

    PubMed  CAS  Google Scholar 

  • Brown C. R., Martin R. L. Hansen W. J., Beckmann R. P., and Welch W. J. (1993) The constitutive and stress inducible forms of Hsp70 exhibit functional similarities and interact with one another in an ATP-dependent fashion.J. Cell Biol. 120, 1101–1112.

    Article  PubMed  CAS  Google Scholar 

  • Brown I. R. (1994) Induction of heat shock genes in the mammalian brain by hyperthermia and tissue injury, inHeat Shock Proteins in the Nervous System (Mayer J. and Brown I., eds.), pp. 32–53, Academic, London.

    Google Scholar 

  • Buchner J. (1996) Supervising, the fold—functional principals of molecular chaperones.FASEB J. 10, 10–19.

    PubMed  CAS  Google Scholar 

  • Chopp M., Chen H., Ho K.-L., Dereski M. O., Brown E., Hetzel F. W., et al. (1989) Transient hyperthermia protects against subsequent forebrain ischemic cell damage in the rat.Neurology 39, 1396–1398.

    PubMed  CAS  Google Scholar 

  • Chopp M., Li Y., Zhang Z. G., and Garcia J. H. (1993) Distribution of the 72-kDa heat shock protein and cell damage after experimental focal cerebral ischemia and subarachnoid hemorrhage in rat brain.Neurosci. Res. Commun. 12, 165–174.

    CAS  Google Scholar 

  • Cisse S., Perry G., Lacoste-Royal G., Cabana T., and Gauvreau D. (1993) Immunochemical identification of ubiquitin and heat-shock proteins in corpora amylacea from normal aged and Alzheimer’s disease brains.Acta Neuropathol. 85, 233–240.

    Article  PubMed  CAS  Google Scholar 

  • Craig E. A. and Gross C. A. (1991) Is Hsp70 the cellular thermometer?Trends Biochem. 16, 135–140.

    Article  CAS  Google Scholar 

  • Craig E. A., Baxter B. K., Becker J., Halladay J., and Ziegelhoffer T. (1994) Cytosolic Hsp70s ofSaccharomyces cerevisiae: roles in protein synthesis, protein translocation, proteolysis, and regulation, inThe Biology of Heat Shock Proteins and Molecular Chaperones (Morimoto R. I., Tissières A., and Georgopoulos C., eds.), pp. 31–52). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Dean D. O., Kent C. R.., and Tytell M. (1997) Heat shock protein 70 immunoreactivity in the normal, unstressed, rat eye: a comparison of constitutive and inducible forms.Soc. Neurosci. Abstracts 23, part 1, 89.

    Google Scholar 

  • Dutcher S. A., Underwood B. D., Walker P. D., Diaz F. G., and Michael D. B. (1998) Patterns of heat-shock protein 70 biosynthesis following human traumatic brain injury.J. Neurotrauma 15, 411–420.

    PubMed  CAS  Google Scholar 

  • Finley D. and Chau V. (1991) Ubiquitination.Annu. Rev. Cell Biol. 7, 25–69.

    Article  PubMed  CAS  Google Scholar 

  • Frydman J. and Hartl F.-U. (1994) Molecular chaperone functions of Hsp70 and Hsp60 in protein folding, inThe Biology of Heat Shock Proteins and Molecular Chaperones (Morimoto R. I., Tissières A., and Georgopoulos C., eds.), pp. 251–283). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Frydman J and Hartl F.-U. (1996) Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms.Science 272, 1497–1502.

    Article  PubMed  CAS  Google Scholar 

  • Gass P., Herdegen T., Bravo R., and Kiessling M. (1994) High induction threshold for transcription factor KROX-20 in the rat brain: partial co-expression with heat shock protein 70 following limbic seizures.Mol. Brain Res. 23, 292–298.

    Article  PubMed  CAS  Google Scholar 

  • Gehring W. J. and Wehner R (1995) Heat shock protein synthesis and thermotolerance inCataglyphis, an ant from the Sahara desert.Proc. Natl. Acad. Sci. USA 92, 2994–2998.

    Article  PubMed  CAS  Google Scholar 

  • Johnson A. D., Berberian P. A., Tytell M., and Bond M. G. (1995) Differential distribution of 70-kD heat shock protein in atherosclerosis—Its potential role in arterial SMC survival,Arteriosclerosis Thromb. Vasc. Biol. 15, 27–36.

    CAS  Google Scholar 

  • Kato S., Hirano A., Umahara T., Kato M., Herz F., and Ohama E. (1992) Comparative immunohistochemical study on the expression of alpha B crystallin, ubiquitin and stress-response protein 27 in ballooned neurons in various disorders.Neuropathol. Appl. Neurobiol. 18, 335–340.

    PubMed  Google Scholar 

  • Kato H., Chen T., Liu X.-H., Nakata N., and Kogure K. (1993) Immunohistochemical localization of ubiquitin in gerbil hippocampus with induced tolerance to ischemia.Brain Res. 619, 339–343.

    Article  PubMed  CAS  Google Scholar 

  • Kawagoe J., Abe K., Sato S., Nagano I., Nakamura S., and Kogure K. (1992) Distributions of heat shock protein (HSP) 70 and heat shock cognate protein (HSC) 70 mRNAs after transient focal ischemia in rat brain.Brain Res. 587, 195–202.

    Article  PubMed  CAS  Google Scholar 

  • Kida E. and Barcikowska M. (1992) Ubiquintin expression in globose tangles in the locus coeruleus in brains of patients with Alzheimer’s and Parkinson’s diseases.Neurosci. Lett. 136, 59–62.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4.Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Li Y., Chopp M., Garcia J. H., Yoshida Y., Zhang Z. G., and Levine S. R. (1992a) Distribution of the 72-kd heat-shock protein as a function of transient focal cerebral ischemia in rats.Stroke 23, 1292–1298.

    PubMed  CAS  Google Scholar 

  • Li Y., Chopp M., Yoshida Y., and Levine S. R. (1992b) Distribution of the 72-kDa heat-shock protein in rat brain after hyperthermia.Acta Neuropathol. 84, 94–99.

    Article  PubMed  CAS  Google Scholar 

  • Lowe J., Blanchard A., Morrell K., Lennox G., Reynolds L., Billett M., et al. (1988) Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and Mallory bodies in alcoholic liver disease.J. Pathol. 155, 9–15.

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein D. H., Chan P. H., and Miles M. F. (1991) The stress protein response in cultured neurons: Characterization and evidence for a protective role in excitotoxicity.Neuron 7, 1053–1060.

    Article  PubMed  CAS  Google Scholar 

  • Magnusson K. and Wieloch T. (1989) Impairment of protein unbiquitination may cause delayed neuronal death.Neurosci. Lett. 96, 264–270.

    Article  PubMed  CAS  Google Scholar 

  • Manetto V., Perry G., Tabaton M., Mulvihill P., Fried V. A., Smith H. T., et al. (1988) Ubiquitin is associated with abnormal cytoplasmic filaments characteristic of neurodegenerative diseases.Proc. Natl. Acad. Sci. USA 85, 4501–4505.

    Article  PubMed  CAS  Google Scholar 

  • Manzerra P., Rush S. J., and Brown I. R. (1993) Temporal and spatial distribution of heat shock mRNA and protein (hsp70) in the rabbit cerebellum in response to hyperthermia.J. Neurosci. Res. 36, 480–490.

    Article  PubMed  CAS  Google Scholar 

  • Massa S. M., Swanson R. A., and Sharp F. R. (1996) The stress gene response in brain.Cerebrovasc. Brain Metab. Rev. 8, 95–158.

    PubMed  CAS  Google Scholar 

  • Mayer R. J., Arnold J., Laszlo L., Landon M., and Lowe J. (1991) Ubiquitin in health and disease.Biochim. Biophys. Acta 1089, 141–157.

    PubMed  CAS  Google Scholar 

  • Migheli A., Attanasio A., Pezzulo T., Gullotta F., Giordana M. T., and Schiffer D. (1992) Age-related ubiquitin deposits in dystrophic neurites: An immunoelectron microscopic study.Neuropathol. Appl. Neurobiol. 18, 3–11.

    Article  PubMed  CAS  Google Scholar 

  • Miller E. K., Raese J. D., and Morrison-Bogorad M. (1991) Expression of heat shock protein 70 and heat shock cognate 70 messenger RNAs in rat cortex and cerebellum after heat shock or amphetamine treatment.J. Neurochem. 56, 2060–2071.

    Article  PubMed  CAS  Google Scholar 

  • Minowada G. and Welch W. J. (1995) Clinical implications of the stress response.J. Clin. Invest. 95, 3–12.

    PubMed  CAS  Google Scholar 

  • Mitchell D., Ibrahim S., and Gusterson B. A. (1985) Improved immunoshitochemical localization of tissue antigens using modified methacarn fixation.J. Histochem. Cytochem. 33, 491–495.

    PubMed  CAS  Google Scholar 

  • Moody D. M., Bell M. A., Challa V. R., Johnston W. E., and Prough D. S. (1990) Brain microemboli during cardiac surgery or aortography.Ann. Neurol. 28, 477–486.

    Article  PubMed  CAS  Google Scholar 

  • Morrison-Bogorad M., Zimmerman A. L. and Pardue S. (1995) Heat-shock 70 messenger RNA levels in human brain: Correlation with agonal fever.J. Neurochem. 64, 235–246.

    Article  PubMed  CAS  Google Scholar 

  • Nowak T. S. Jr. and Jacewicz M. (1994) The heat shock/stress response in focal cerebral ischemia.Brain Pathol. 4, 67–76.

    Article  PubMed  Google Scholar 

  • Nowak T. S. Jr., Bond U., and Schlesinger M. J. (1990) Heat shock RNA levels in brain and other tissues after hyperthermia and transient ischemia.J. Neurochem. 54, 451–458.

    Article  PubMed  CAS  Google Scholar 

  • Pappolla M. A., Omar R., and Sara B. (1989) The “normal” brain—“Abnormal” ubiquitinated deposits highlight an age-related protein change.Am. J. Pathol. 135, 585–591.

    PubMed  CAS  Google Scholar 

  • Parsell D. A. and Lindquist S. (1994) Heat shock proteins and stress tolerance, inThe Biology of Heat Shock Proteins and Molecular Chaperones (Morimoto R. I., Tissières A. and Georgopoulos C., eds.), pp. 457–494, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Riabowol K. T., Mizzen L. A., and Welch W. J. (1988) Heat shock is lethal to fibroblasts microinjected with antibodies against Hsp70.Science 242, 433–436.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M. L. and Trojanowski J. Q. (1995) Immunohistochemical detection of the effects of toxic injury on the central nervous system.Neurochem. Int. 26, 145–153.

    Article  PubMed  CAS  Google Scholar 

  • Sharp F. R., Lowenstein D., Simon R., and Hisanaga K. (1991) Heat shock protein hsp72 induction in cortical and striatal astrocytes and neurons following infarction.J. Cereb. Blood Flow Metab. 11, 621–627.

    PubMed  CAS  Google Scholar 

  • Tanguay R. M., Wu Y., and Khadjian E. W. (1993) Tissue-specific expression of heat shock proteins of the mouse in the absence of stress.Dev. Gen. 14, 112–118.

    Article  CAS  Google Scholar 

  • Towbin H., Staehelin T., and Gordon J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications,Proc. Natl. Acad. Sci. USA 76 4350–4354.

    Article  PubMed  CAS  Google Scholar 

  • Tytell M. (1994) Heat shock proteins in the retina and optic nerve, inHeat Shock Proteins in the Nervous System (Mayer J. and Brown I., eds.), pp 83–100, Academic, New York.

    Google Scholar 

  • Tytell M., Nosel E. R., and Glazier S. S. (1996) Hsc70 in hippocampus from human epilepsy patients, inMolecular Chaperones & The Heat Shock Response, p. 298. Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Vass K., Welch W. J., and Nowak T. S., Jr. (1988) Localization of 70-kDa stress protein induction in gerbil brain after ischemia.Acta Neuropathol. 77, 128–135.

    PubMed  CAS  Google Scholar 

  • Wang G. P., Khatoon S., Iqbal K., and Grundke-Iqbal I. (1991) Brain ubiquitin is markedly elevated in Alzheimer disease.Brain Res. 566, 146–151.

    Article  PubMed  CAS  Google Scholar 

  • Welch W. J. and Feramisco J. R. (1985) Rapid purification of mammalian 70,000-dalton stress proteins: Affinity of the proteins for nucleotides.Mol. Cell. Biol. 5, 1229–1237.

    PubMed  CAS  Google Scholar 

  • Welsh F. A., Moyer D. J., and Harris V. A. (1992) Regional expression of heat shock protein-70 mRNA and c-fos mRNA following focal ischemia in rat brain.J. Cereb. Blood Flow Metab. 12, 204–212.

    PubMed  CAS  Google Scholar 

  • Yamashita K., Eguchi Y., Kajiwara K., and Ito H. (1991) Mild hypothermia ameliorates ubiquitin synthesis and prevents delayed neuronal death in the gerbil hippocampus.Stroke 22, 1574–1581.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Tytell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tytell, M., Brown, W.R., Moody, D.M. et al. Immunohistochemical assessement of constitutive and inducible heat-shock protein 70 and ubiquitin in human cerebellum and caudate nucleus. Molecular and Chemical Neuropathology 35, 97–117 (1998). https://doi.org/10.1007/BF02815118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815118

Index Entries

Navigation