Skip to main content
Log in

Studies on the effects of selenium on rumen microbial fermentation in vitro

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effects of selenium (Se) on ruminant microbial fermentation were investigated in vitro using rumen microflora collected from a rumen-fistulated dairy cow. First, the effects ofl-selenomethionine (SeMet; at 0.2 or 2 ppm Se) in the presence or absence of wheat bran (WB, 500 mg per incubation flask) were evaluated. Second, the effects of several forms of Se (elemental Se: 50 ppm Se; sodium selenite: 2 ppm Se; SeMet: 2 ppm Se) were compared. Results showed that the amounts of short-chain fatty acids (SCFAs) tended to be increased by SeMet treatment, whereas SeMet in the presence of WB transiently suppressed fermentation. The addition of SeMet tended to increase the production of acetate while reducing the production of butyrate with and without WB supplementation. Among the different Se compounds tested, the amounts of SCFAs were greater with SeMet treatment, which yielded a higher proportion of acetate compared to other treatments. Selenite did not influence the total SCFAs concentrations; however, it increased the relative proportion of butyrate at the expense of acetate. Elemental Se did not significantly affect fermentation. Higher bacterial Se concentrations were observed for selenite than for SeMet. It was concluded that Se supplementation can influence rumen microbial fermentation and that Se compounds differ in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Randall, J. R. Marshall, J. Brasure, and S. Graham, Dietary patterns and colon cancer in Western New York,Nutr. Cancer 18, 265–276 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. J. D. Potter, Colon cancer—Do the nutritional epidemiology, the gut physiology and the molecular biology tell the same story?J. Nutr. 123, 418–423 (1993).

    PubMed  CAS  Google Scholar 

  3. R. J. Shamberger, S. A. Tytko, and C. E. Willis, Antioxidant and cancer. Part VI. Selenium and age-adjusted human cancer mortality,Arch. Environ. Health 31, 231–235 (1976).

    PubMed  CAS  Google Scholar 

  4. W. C. Willet, B. F. Polk, J. S. Morris, M. J. Stampfer, S. Pressel, B. Rosner, J. O. Taylor, K. Schneider, and C. G. Hames, Prediagnostic serum selenium and risk of cancer,Lancet 2, 130–133 (1983).

    Article  Google Scholar 

  5. L. C. Clarke, G. F. Combs Jr., L. Hixson, D. R. Deal, J. Moore, J. S. Rice, M. Dellasega, A. Rogers, and J. Woodaro, Low plasma selenium predicts the prevalence of colorectal adenomatous polyps in a cancer prevention trial,FASEB J. 7, 3, 4 A65 (1993).

    Google Scholar 

  6. D. F. Birt, Inhibition by dietary selenium of colon cancer induced in the rat by bis(2-oxopropyl) nitrosamine,Cancer Res. 42, 4455–4459 (1982).

    PubMed  CAS  Google Scholar 

  7. M. Jacobs, Selenium inhibition of 1,2-dimethylhydrazine-induced colon carcinogenesis,Cancer Res. 43, 1646–1649 (1983).

    PubMed  CAS  Google Scholar 

  8. B. S. Reddy, S. Sugie, H. Maruyama, and P. Marra, Effect of dietary excess of inorganic selenium during initiation & post-initiation phases of colon carcinogenesis in F344 rats,Cancer Res. 48, 1777–1780 (1988).

    PubMed  CAS  Google Scholar 

  9. J. P. Langlands, J. E. Bowles, G. E. Donald, and A. J. Smith, Selenium excretion in sheep,Aust. J. Agric. Res. 37, 201–209 (1986).

    Article  CAS  Google Scholar 

  10. M. Hidiroglou and J. R. Lessard, The effect of selenium or vitamin E supplementation on volatile fatty acid content of rumen liquor in sheep fed a purified diet,Int. J. Vit. Nutr. Res. 46, 458–463 (1976).

    CAS  Google Scholar 

  11. T. Sakata and H. Tamate, Rumen epithelial cell proliferation accelerated by rapid increase in intraluminal butyrate,J. Dairy Sci. 61, 1109–1117 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. G. F. Combs, Jr. and S. Combs, The biologic availability of selenium in foods and feeds, Chapter 4, inThe Role of Selenium in Nutrition, Academic New York, pp. 127–178 (1986).

    Google Scholar 

  13. A. B. Serra, K. Nakamura, T. Matsui, T. Harumoto, and T. Fujihara, Inorganic selenium for sheep, I. selenium balance and selenium levels in the different ruminal fluid fractions,Asian-Australasian J. Anim. Sci. 7, 83–89 (1994).

    CAS  Google Scholar 

  14. J. B. J. Van Ryssen, J. T. Deagen, M. A. Beilstein, and P. D. Whanger, Comparative metabolism of organic and inorganic selenium by sheep,J. Agric. Food Chem. 37, 1358–1363 (1989).

    Article  Google Scholar 

  15. H. K. Goering and P. J. Van Soest, Forage Fiber Analyses.Agriculture Handbook, No. 379, Agricultural research service, USDA (1970).

  16. G. A. Weaver, J. A. Krause, T. L. Miller, and M. J. Wolin, Constancy of glucose and starch fermentations by two different human faecal microbial communities,Gut 30, 19–25 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. N. L. Whitehouse, V. M. Olson, C. G. Schwab, W. R. Chesbro, K. D. Cummingham, and T. Lykos, Improved techniques for dissociating particle-associated mixed rumen microorganism from rumen digesta solids,J. Animal Sci. 72, 1335–1343 (1994).

    CAS  Google Scholar 

  18. O. E. Olson, Fluorometric analysis of selenium in plants,J. Assoc. Offoc. Ana. Chem. 52, 627–634 (1969).

    CAS  Google Scholar 

  19. G. A. Spiller, M. C. Chernoff, R. A. Hill, J. E. Gates, J. J. Nassar, and E. A. Shipley, Effect of purified cellulose, pectin, and a low-residue diet on fecal volatile fatty acids, transit time and fecal weight in humans,Am. J. Clin. Nutr. 33, 754–759 (1980).

    PubMed  CAS  Google Scholar 

  20. F. R. Ehle, J. B. Robertson, and P. J. Van Soest, Fiber fermentation in human large intestine,J. Nutr. 112, 158–166 (1982).

    PubMed  CAS  Google Scholar 

  21. P. J. Van Soest,Nutritional Ecology of the Ruminant, 2nd ed., Cornell University Press, Ithaca, NY (1994).

    Google Scholar 

  22. G. T. Macfarlane, G. R. Gibson, E. Beatty, and J. H. Cummings, Estimation of shortchain fatty production from protein by human intestinal bacteria on branched-chain fatty acid measurements,FEMS Microbiol. Ecol. 101, 81–88 (1992).

    Article  CAS  Google Scholar 

  23. M. Hidiroglou, D. P. Heaney, and K. J. Jenkins, Metabolism of inorganic selenium in rumen bacteria,Can. J. Physiol. Pharmacol. 46, 229–234 (1968).

    PubMed  CAS  Google Scholar 

  24. P. D. Whanger, P. H. Weswig, and J. E. Oldfield, Selenium, sulfur and nitrogen levels in ovine rumen microorganisms,J. Anim. Sci. 46, 515–519 (1978).

    PubMed  CAS  Google Scholar 

  25. R. J. Shamberger, Comparative metabolism and biochemistry of selenium and sulfur, inBiochemistry of Selenium, R. J. Shamberger, ed., Plenum, New York, pp. 82–99 (1983).

    Google Scholar 

  26. G. T. MacFarlane and J. H. Cummings, The colonic fermentation and large bowel digestive function, inThe Large Intestine Physiology, Pathophysiology and Disease, S. F. Phillips, J. H. Pemberton, and R. G. Shorter, eds., Raven, New York, pp. 51–92 (1991).

    Google Scholar 

  27. W. Scheppach, F. Wehner, P. Bartram, P. Schramel, and H. Kasper, Metabolic and nutritional parameters in patients after colonic polypectomy,Digestion 41, 94–100 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Van Soest, P.J. & Combs, G.F. Studies on the effects of selenium on rumen microbial fermentation in vitro. Biol Trace Elem Res 56, 203–213 (1997). https://doi.org/10.1007/BF02785393

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02785393

Index Entries

Navigation