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Abstract. An interactive proof system is called perfect zero-knowledge if the proba- 
bility distribution generated by any probabilistic polynomial-time verifier inter- 
acting with the prover on input theorem ~p, can be generated by another prob- 
abilistic polynomial-time machine which only gets ~p as input (and interacts with 
nobody!). 

In this paper we present a perfect zero-knowledge proof system for a decision 
problem which is computationally equivalent to the Discrete Logarithm Problem. 
Doing so we provide additional evidence to the belief that perfect zero-knowledge 
proof systems exist in a nontrivial manner (i.e., for languages not in BPP). Our 
results extend to the logarithm problem in any finite Abelian group. 
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1. Introduction 

One of the most basic questions in complexity theory is how much knowledge 
should be revealed in order to convince a polynomial-time verifier of the validity 
of some theorem. This question was raised by Goldwasser et al. [GMR], with special 
emphasis on the extreme case where nothing but the validity of the theorem is 
given away in the process of proving the theorem. Such proofs are known as 
zero-knowledge proofs and have been the focus of much attention in recent years. 
Loosely speaking, whatever can be efficiently computed after participating in a zero- 
knowledge proof can be efficiently computed when just ~tssuming the validity 
of the assertion. 

* This research was partially supported by the Fund for Basic Research Administered by the Israeli 
Academy of Sciences and Humanities. An early version of this paper appeared in Advances in Cryptology 
--Crypto 88 (Proceedings), S. Goldwasser (ed.), pp. 57-70, Lecture Notes in Computer Science, vol. 403, 
Springer-Verlag, Berlin, 1990. 
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The definition of zero-knowledge considers two types of probability distributions: 

1. A distribution generated by a probabilistic polynomial-time verifier after 
participating in an interaction with the prover. 

2. A distribution generated by a probabilistic polynomial-time machine on the 
input theorem. 

Zero-knowledge means that for each distribution of type l there exists a distribution 
of type 2 such that these two distributions are "essentially equal." The exact 
definition of zero-knowledge depends on the exact interpretation of the phrase 
"essentially equal." Two extreme cases are of particular interest: 

Perfect zero-knowledge. This notion is derived when interpreting "essentially 
equal" in the most conservative way; namely, exactly equal. 
Computational zero-knowledge. This notion is derived when interpreting "essen- 
tially equal" in a very liberal way; namely, requiring that the distribution 
ensembles are polynomially indistinguishable. Loosely speaking, two distribu- 
tion ensembles are polynomially indistinguishable if they cannot be told apart 
by any probabilistic polynomial-time test. For  a formal definition see [ G M ]  
and [Y]. 

In this paper we focus on the notion of perfect zero-knowledge proof  systems and 
provide additional circumstantial evidence to the nontriviality of this notion. The 
validity of our results does not depend on any assumption (yet their significance 
depends on the assumed intractability of the Discrete Logarithm Problem. 1) 

1.1. Known Results 

Assuming the existence of secure commitment schemes, 2 Goldreich et al. showed 
that any language in NP  has a computat ional  zero-knowledge proof  system 
I-GMW]. Using this result it has been shown that whatever can be proven through 
an efficient interaction proof, can be proven through such a computat ional  zero- 
knowledge proof  [IY], [BGG+] .  Thus, assuming the existence of one-way functions, 
the question of which languages have computational  zero-knowledge proof  systems 
is closed. 

Much less is known about  perfect zero-knowledge. Clearly, any language in BPP 
has a trivial perfect zero-knowledge proof  system (in which the prover is inactive). 
Several languages believed not to be in BPP were shown to have perfect zero- 
knowledge proof  systems. These include Quadratic Residuosity and Quadrat ic  
non-Residuosity [GMR] ,  Graph Isomorphism and Graph non-Isomorphism 

Clearly, if IP = BPP, then all languages in IP have trivial perfect zero-knowledge proof systems. 
Similarly, if the Discrete Logarithm Problem can be solved in probabilistic polynomial-time, then the 
corresponding decision problem has a trivial perfect zero-knowledge proof system. In such a case our 
results will remain valid but lose their possible significance. 

2 Using recent results of [N], [HI, and JILL] the existence of commitment schemes can be reduced 
to the existence of one-way functions. 
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[GMW], and membership and nonmembership in a subgroup generated by a given 
group element [TW]. 3 

The complexity of languages which have perfect zero-knowledge interactive proof 
systems was studied by Fortnow [F] and then by Aiello and Hastad [AH]. They 
prove that if a language L has a perfect zero-knowledge interactive proof system, 
then both L and L have two-step interactive proof systems. Using [Ba] and [GS], 
this implies that languages having perfect zero-knowledge proof systems fall quite 
low in the polynomial-time hierarchy (i.e., as low as H~ ~ E~). Using a result of 
Boppana et al. [BHZ], such language can also not be NP-complete, unless the 
polynomial-time hierarchy collapses to its second level. 

Perfect zero-knowledge proofs should not be confused with the perfect zero- 
knowledge arguments presented by Chaum [C] and by Brassard et al. [BCC]. The 
difference between an interactive-proof and an argument is that the argument is 
sound only if the verifier believes that the prover is a polynomial-time machine with 
some auxiliary input (which is fixed before the protocol starts). It should be noted 
however that the class of languages having perfect zero-knowledge arguments does 
not seem to have the same complexity as the class of languages having perfect 
zero-knowledge proofs. More precisely, it was shown assuming the intractability of 
the discrete logarithm, that every language that has an interactive proof system has 
a perfect zero-knowledge argument [BCC]. By a recent result of Shamir IS] this 
implies that assuming the intractability of the discrete logarithm, every language in 
PSPACE has a perfect zero-knowledge argument. On the other hand, as mentioned 
above, every language having a perfect zero-knowledge proof is in FI~ ~ Y.~. There- 
fore, if the class of language having perfect zero-knowledge arguments equals the 
class of languages having perfect zero-knowledge proofs, then either the discrete- 

P P logarithm can be solved in probabilistic polynomial time, or PSPACE ~ I-I 2 ~ ~2. 
The work of Brickell et al. [BCDG] should not be confused with the present 

work. Brickell et al. present a computational zero-knowledge proof system for a 
problem equivalent to the discrete logarithm problem, assuming the existence of a 
bit commitment secure against an all-powerful committer. This protocol is hereafter 
referred to as version 1. Using a bit commitment scheme secure against an all- 
powerful receiver (instead of a bit commitment secure against an all-powerful 
committer), version 2, which constitutes a perfect zero-knowledge argument for the 
same problem is obtained. The first type of bit commitment can be implemented 
given any one-way function, whereas the second type requires claw-free pairs of 
one-way permutations [GK] (and both can be implemented assuming, the intracta- 
bility of the Discrete Logarithm Problem). However, neither version yields (or say 
anything about) perfect zero-knowledge proofs. The first version is computational 
zero-knowledge (under some intractability assumption) but is not perfect zero- 
knowledge (even if this assumption does hold); whereas the second version is an 
argument (under some intractability assumption) but is not an interactive proof 

3 It should be noticed that Tompa and Woll's proof of "possession of the Discrete Logarithm" is in 
fact a proof of membership in a subgroup generated by a primitive element. So are the proofs given by 
[CEGP] and [CEG]. 
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system (again even if this assumption does hold). Furthermore, the zero-knowledge 
(resp. soundness) claim of version 1 (resp. version 2), and not just its significance, 
depends on an intractability assumption. That is, if the discrete logarithm assump- 
tion turns out to be false, then version 1 is not zero-knowledge (resp. version 2 
is not sound). In contrast, the protocols presented in this paper are perfect zero- 
knowledge proofs, and this property is independent of any assumption. Hence, 
the correctness of our work does not depend on any assumption (and only its 
significance is lost if the discrete logarithm is uniformly easy). 

1.2. Our Results 

In this paper we present a perfect zero-knowledge proof system for a decision 
problem which is computationally equivalent to the Discrete Logarithm Problem. 
Doing so, we present a perfect zero-knowledge proof system for a problem which 
is widely believed to be intractable. Thus, we provide additional evidence to the 
belief that perfect zero-knowledge proof systems exist in a nontrivial manner (i.e., 
for languages not in BPP). 

Let p be a prime and let 9 be a primitive element in the multiplicative group 
modulo p. The Discrete Logarithm Problem (DLP) is to find, given integers p, 9, and 
y, an integer x such that 9 x - y rood p. Solving DLP is believed to be intractable, 
in particular when p - 1 has large prime factors. The best algorithms known for 
this problem run in subexponential time (exp {O(x/q-og p log log p)}), see Odlyzko's 
survey [-Od]. It has been shown that determining whether x < (p - 1)/2 is computa- 
tionally equivalent to finding x, on inputs p, 9, and 9 x mod p IBM]. 4 This is the 
case even if x is guaranteed to lie either in the interval [1, e(n). p] or in the interval 
[(p - 1)/2 + 1, (p - 1)/2 + e(n).p], where n -°~11 < e(n) < ½ and n = log 2 p. This 
promise problem is hereby referred to as DLPE. 

In this paper we present a perfect zero-knowledge proof system for DLPE. Using 
the computational equivalence with DLP, we have a perfect zero-knowledge proof 
system for a problem considered computationally hard. Both our protocol and the 
computational equivalence of DLP and DLP~ extend to any finite Abelian group, 
in which the group operation can be implemented in polynomial time and the order 
of the group is known (or can be efficiently found). (In the case of acyclic groups, it 
is necessary first to define the problems.) 

According to the results of IF], [AH], and [BHZ] (see Section 1.1), languages 
which have perfect zero-knowledge proof systems are not "too high" in the polyno- 
mial hierarchy. Furthermore, although perfect zero-knowledge proof systems were 
given to languages not known to be in BPP (see Section 1.1), we believe that these 
languages are not among the "hardest" and in particular that they are "easier" than 
DLP: 

• The Quadratic Residuosity Problem is not "harder" than factoring: Given a 
polynomial-time algorithm for factoring, we can construct a polynomial-time 

4 In fact, Blum and Micali proved a much stronger statement.  Namely, that guessing this bit with 
success probability greater than ½ + e is as hard as retrieving x i-BM]. 
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algorithm to decide whether x is a quadratic residue modulo a comosite y. This 
algorithm will work by first factoring y, and then check whether x is a quadratic 
residue modulo each prime factor ofy (this test can be conducted in polynomial 
time). On the other hand, it is not known if quadratic residuosity is as "hard" 
as factoring. It seems plausible that factoring is not "harder" than DLP and 
hence we believe that the Quadratic Residuosity Problem is"easier" than DLP. 
The Graph Isomorphism Problem seems to be "easy" for most inputs: For most 
pairs of graphs (GI, Gz) it can easily be proved that there is no isomorphism 
between the two graphs. In fact, this problem is known to be polynomial time 
on the average for many natural distributions of inputs. For example, in the 
case that each pair of graphs with the same number of vertices has the same 
probability [BK] or even in the cae that only d-regular graphs are considered 
and each pair of d-regular graphs with the same number of vertices has the 
same probability [Kuc]. 
The Subgroup Membership Problem is not "harder" than DLP: Given a 
polynomial-time algorithm for solving DLP we can construct a polynomial- 
time algorithm for determining membership in a subgroup (see Appendix A). 
In some cases, for example when p - 1 = 2q and q is prime, determining 
membership in a subgroup of Z* (the multiplicative group mod p) is "easy" (see 
Appendix B), while solving DLP in Z* is considered "hard" also in this case. 

2. Preliminaries 

2.1. Promise Problems and Interactive Proofs 

Informally, a promise problem is a partial decision problem. That is, a decision 
problem in which only a subset of all possible inputs is being considered. 

Formally a promise problem is a pair of predicates (P, Q), where P is called the 
"promise" and Q is called the "question." A Turing machine M solves the promise 
problem (P, Q) if for every z which satisfies P(z) machine M halts, and it answers 
"yes" iff Q(z). When 7 P(z) we do not care what M does. This definition originates 
from [ESY]. 

We extend to definition of interactive proof systems given by Goldwasser et al. 
[GMR] to promise problems. Intuitively, an interactive proof system for a promise 
problem (P, Q) is a two-party protocol for a "powerful" prover P and a probabilistic 
polynomial-time verifier V satisfying the following two conditions with respect to 
the common input, denoted z. If P(z) ^ Q(z), then with a very high probability the 
verifier is "convinced" of Q(z), when interacting with the prover. If P(z) ^ 7 Q(z), 
then no matter what the prover does, he cannot fool the verifier (into believing that 
"Q(z) is true"), except with a very low probability. When 7 P(z') nothing is required. 

Definition 1. An interactive proof system for a promise problem (P, Q) is a pair of 
interacting Turing machines <P, V>, satisfying the following three conditions: 

(0) V is a (probabilistic) expected polynomial-time machine which shares its input 
With P and they can communicate with each other using special communica- 
tion tapes. 
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(1) Completeness condifion: for every constant c > 0, and all sufficiently long z if 
P(z) A Q(z), then 

Prob(V will accept z after interacting with P) 2 1 - ~ Z I - ~ .  

(2) Soundness condition: for every Turing machine P*, every constant c > 0, and 
ail sufficiently long z if P(z) A 1Q(z), then 

Prob(V will reject z after interacting with P*) 2 1 - Izl-' 

2.2. Perfect Zero-Knowledge Proofs for Promise Problems 

Here, we extend the definition of perfect zero-knowledge given by Goldreich et al. 
[GM W] to promise problems. 

Definition 2. Let (P, V) be an interactive proof system for a promise problem 
(P, Q), and let V* be an arbitrary verifier. Denote by (P, V*)(z) the probability 
distribution on all the read-only tapes of V* (including the random tape) when 
interacting with P (the prover) on common input z. We say that the proof system 
(P, V) is perfect-zero-knowledge for (P, Q) if, for every expected polynomial-time 
verifier V*, there exists a (probabilistic) expected polynomial-time machine, M,., 
such that for every z satisfying P(z) A Q(z) the distributions M,.(z) and (P, V*)(z) 
are equal. 

2.3. The Discrete Logarithm Problem and a Related Promise Problem 

Let p be a prime. The set of integers [I, p - 11 forms a cyclic group of p - 1 elements 
under multiplication (mod p). This group is denoted Z,*. The Discrete Logarithm 
Problem (DLP) is as follows: 

Input: a prime p, a generator g E Z,*, and a number y E Z,*. 
Find s E [ l ,  p - 11 such that y = gx mod p. (We use the notation x = D log, y). 

Let g be a primitive element (a generator) of Z,* and let y be an element of the 
group. We define the Half predicate H as follows: 

Let n = log, p and let ~ ( n )  < $ be a fraction bounded below by l/no"'. We define 
the following predicate: 

S,(p, g, y) - g is a generator of Z,* and D log, y in 11, ~ ( n ) ( p  - I)] 

p - l  p - l  
or [- 2 + I ,  - + ~ ( n ) ( p  - I)]. 

2 

When it is clear from the context we shorten H ( p ,  g, y) and S,(p, g, y) to H(y) and 
S(y), respectively. 

The promise problem defined by the pair of predicates (S,, H) is hereafter referred 
to as DLP,. Blum and Micali have shown that the DLP, is polynomially equivalent 
to the original DLP in the group Z,* [BM]. 
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2.4. Notation 

• Let  s and  t be two integers such that  0 < s < p -  2 and  0 < t < p -  2. I-s, t] 
denotes  the set of  integers {s, s + 1 . . . . .  t - 1, t} in case s _< t or  {s, s + 1 . . . . .  
p - 2 , 0 , 1  . . . . .  t } i n c a s e s > t .  I f s > p - l o r t _ > p - l w e t a k e s m o d ( p - l )  
and  t m o d  (p - 1) (respectively). 

• Let  S be a set. The  no t a t i on  r ER S means  that  r is chosen at  r a n d o m  with 
uni form probab i l i ty  d is t r ibut ion  a m o n g  the e lements  of  S. 

3. The Protocol for DLP, in Z~ 

In this section we in t roduce  a perfect ze ro -knowledge  p ro toco l  for the p romise  
p rob l em DLP~. In order  to m a k e  the p ro toco l  more  clear we first in t roduce  a 
p ro toco l  which is perfect ze ro -knowledge  only with respect  to the hones t  verifier. 

3.1. Protocol 1--Perfect Zero-Knowledge Proof System 
with Respect to the Honest Verifier 

Here  is a p ro toco l  for the p romise  p r o b l e m  (S~(p, 9, Y), H(p, g, y)) where e is any 
cons tan t  such that  0 < e < I :  

Common input: the integers p, g, and  y as previous ly  defined. 

The  fol lowing three steps are executed n = log2 p t imes (unless the verifier rejects 
previously),  each t ime using independen t  r a n d o m  coin tosses. 

(V1) The  verifier chooses  at r a n d o m  a bit b e n  {0, 1} and  an integer 
r ~R [1, 2e(p - 1)]. The  verifier compu te s  ~ = yb. gr and  sends c~ to the 
prover .  

(P1) The  p rove r  compu te s  fl = H(~) and  sends it to the verifier. 
(V2) If f l ¢  b, then the verifier rejects. 

If the verifier has comple ted  all n rounds  wi thout  rejecting, then the verifier accepts. 

Theorem 1. Assuming e <_ I, then Protocol 1 constitutes an interactive proof system 
for DLP~. 

Proof. Recall tha t  x denotes  D log o y (i.e., y - gX m o d  p). 

Completeness: I fS (y )  ^ H(y), then x ~ [(p - 1)/2 + 1, (p - 1)/2 + e(p - 1)]. In  ad-  
dit ion, V chooses  r s [1, 2e(p - 1)] where  0 < e < I .  There fore  i fb  = 0, then 

b x + r = r ~ [ 1 , 2 e ( p - 1 ) ]  ~ [1 ,  ~ - ~ 1  

and  if b = 1, then 

b x + r = x + r ~  + 2 ,  + 3 e ( p -  1) ~ + 1, p -  1 
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Fig. 1. 

p - - 1  1 

x + 2 ~ ( p ~  

0 l /0 
,) \ \  I Z 

2 " ~ " ~  , I J 2e(p- 1) 
x 

p - 1  
- - + 1  

2 

The completeness condition: D loggct as a function of b for inputs with S(y) A H(y). 

(see Fig. 1). Therefore  in each round  

f l  = n ( c t )  = n ( y b . g  ") = n ( g  bx+~) = b. 

Which  m e a n s  that the prover  in this case  a lways  causes  the verifier to accept  the 
input. 

Soundness: I fS(y )  ^ 7 H ( y ) ,  then we have  x e [1, e(p - 1)]. Therefore  if the verifier 
c h o o s e s  b = 0, then D log o ~ e [1, 2e(p - 1)], and if it c h o o s e s  b = 1, then D log o c~ e 
[x  + 1, x + 2e(p - 1)] (see Fig. 2). In this case,  for any prover  P* we are l o o k i n g  for 
the probabi l i ty  that V does  not  reject in a single round  (the probabi l i t ies  are taken  
over  the r a n d o m  choices  of  V, name ly  b and r): 

P r o b ( V  does  not  reject) = Prob(P*(~)  = b) 

= P r o b ( b  = O ) . P r o b ( P * ( ~ )  = b i b  = O) + P r o b ( b  = 1) 

• P r o b ( P * ( a )  = b i b  = 1) 

1 ~ a(p - 1) 

i d 

~(p-  1) 

x + 2e(p -- 1) 

Fig. 2. The soundness condition: D logg ~ as a function of b for inputs with S(y) A 7 H(y). 
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= ½"Prob(P*(9") = O) + ½"Prob(P*(yg ~) = 1) 

1 1 ( Z  Prob(P*(g ~) = O) 
= 2" 2~(p 1) - -  i=1 

1 1 
- 2 2e(p - 1) 

+ 
2g(p-1) 

2 
i=x+l 

(Prob(P*(9 i) = O) + Prob(P*(9 i) = 1)) 

+ 
2elp-1)+x ) 

Prob(P*(g') = 1) 
i=2e(p-1 )+1 

- ( x + ( 2 ~ ( p -  1 ) - x ) + x )  

I x + 1 )  
= 2 " ( 2 e ( p - -  1) 

l ( tp- 1_) ) 
-<2 \ 2 e ( p -  1) + 1 

3 
4" 

Therefore in n iterations the probability that the verifier will not reject this input is 
exponentially low (i.e., (3),). [ ]  

It is clear that the protocol is perfect zero-knowledge with respect to the honest 
verifier V. The simulator My chooses the random tape for V, and outputs pairs of 
the form (~ = yb'gr, b). Since for every y with S(y) A H(y) we have H(c0 = b (see 
the completeness proof) the distribution of Mv's output  equals the distribution of 
conversations between P and the honest verifier V. However, the protocol is proba- 
bly not zero-knowledge with respect to arbitrary verifiers: a cheating verifier inter- 
acting with the prover may send ~'s for which it wants to know H(~). It could also 
choose r ¢ [1, 2e(p - 1)] and get in this way some additional information about  x. 
The way to prevent this, is to let the verifier first "prove" to the prover that it 
"knows"/-/(~). This is done in the following protocol. 

3.2. Protocol 2--Perfect  Zero-Knowledge Proof System with 
Respect to Any Verifier 

The previous protocol is modified. The modification folows an idea of [ G M R ]  used 
also in [ G M W ]  and simplified in [Be] (this idea in a different context first appeared 
in [EGL]) .  However, in our case the implementation of this idea is more complex. 

In the following protocol we provide an interactive proof system to the promise 
problem (Sa,}( p, g, y), H(p, 9, Y)), where ~(n) will be determined later. 

C o m m o n  input: the integers p, g, and y as previously defined. 

The following five steps are repeated n = log 2 p times (unless the verifier rejects or 
the prover stops previously), each time using independent random coin tosses. 
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(V1) The verifier chooses at random a bit b •R {0, 1} and an integer 

p - - 1  

The verifier computes c~ = ybgr and sends c~ to the prover. In addition to c~ 
it computes n pairs of integers. The ith pair is denoted cq and is constructed 
in the following way: The verifier chooses at random ~i •R {0, 1} and ri,0, 
ri. 1 ER[1 , [ ( p - 1 ) / | 2 J ] .  He computes 7i.0 =yn,.gr,.., and ~i. 1 = y , , e l .  
gr,=.®, (where • denotes the exclusive-or function) and at last sets ai = 
(~;. o, al. 1). The verifier sends the list of pairs to the prover. Intuitively, every 
a~ is a random permutation of two elements. Assuming that S(y) A H(y), 
then one of the elements satisfies H(-) = 0 and the other satisfies H( ' )  = 1. 
These pairs will be used by the verifier to prove that it "knows" H(a). 

(P1) The prover chooses at random, a subset I c_ {1, 2 . . . . .  n} with uniform 
probability distribution among all 2" subsets. The prover sends I to the 
verifier. 

(V2) If I is not a subset of {1, 2 . . . . .  n}, then the verifier halts and rejects. 
Otherwise, the verifier replies with {(n;, r~.o, r;.1): i • I }  and {(Tr[ = ~z~G 
b O 1, r" -- r + r;.bel): i• 1} (where i = {1, 2 . . . . .  n}\l).  Intuitively, in this 
step the verifier proves for every i • I that the pair a~ is constructed according 
to the protocol (step V1). In addition, for every i• i the verifier proves 
(assuming S(y) A H(y)) that if ai is constructed according to step (V1), then 
it "knows" H(a). 

(P2) For  every i • I the prover checks that a~ is constructed according to the 
protocol (i.e., ri. o, ri. 1 • [1, L(p - 1)/12J] and ct i = (y,,.gr,,.,, y , , e l  .gr,.,,¢,)). 
The prover also checks for every i • i that 

and y" g'; = a" ~ . ,  I- If either conditions is violated the prover stops. Other- 
wise, the prover computes fl = H(a) and sends it to the verifier. 

(V3) If f l¢  b, then the verifier rejects. Otherwise it continues. 

If the verifier has completed all n rounds without rejecting, then the verifier accepts. 

Theorem 2 (Main Theorem). Let e(n) be a function such that 1/n °tl~ < e(n) < 
1/(100.n), then protocol 2 constitutes a perfect zero-knowledge interactive proof 
system for DLP~. 

Proof. We first prove that Protocol  2 is an interactive proof  system for DLP,, and 
then we show that it is perfect zero-knowledge. Recall again that x = D log 9 y. 

Completeness: Similar to the completeness in Theorem 1. 

Soundness: We prove that although in some cases ~ and the list of pairs S = 
{ct 1 . . . . .  ct,} can yield information about  b, there is a big enough probability that 
ct and S will not yield any information about  b, and therefore will not help the prover 
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to convince V that 

p - l  p - 1  
x E [- 2 + 1, ---- 

2 +c(n) . (p-  I)] 

when in fact x E [l, e(n).(p - I)]. 
Assume that x E [l, c(n).(p - I)]. We call a good if it satisfies 

Otherwise a is bad. Intuitively, when a is good the prover cannot learn anything 
about b from a (since in this case Prob(b = Olyb.gr = a) = i). The probability that 
a is bad is less than or equal to 12. ~ ( n ) .  

Similarly we call a pair ai good if both r,., and ri,, are in [x + 1, L(p - 1)/12j]. 
Otherwise a, is bad. The list of pairs S is good if every ai is good, and is bad otherwise. 
The probability that a pair ai is bad is less than 2.12.e(n) and the probability that 
S is bad is therefore less than 24n. ~ ( n ) .  

We remark here that since P*  has infinite power we can assume without loss of 
generality that P* is deterministic5 Therefore for any a and S the prover P* always 
chooses the same subset I, denoted f(a, S). 

Our first claim is that in every round in which a and S are good, the prover does 
not get any information about b. Clearly, the answers {(xi, ri,,, ris (which the 
verifier sends in step (V2)) are independent of b and therefore are irrelevant. How- 
ever, we claim that also a, S ,  and the answers for i E T do not help the prover to find 
what b is. Formally, for every good a and S, and for every {ri, xi)icT, 

Prob(b = 01 ybgr = a A f(a, S) = I A V i  E f (y .gr ;  = a .  a,,,; A r,! = r + r. L , R (  ,)) = t .  
The reason is that when a and S are good then (by the definition of "good") assigning 
any value to b yields unique values to all the other variables r, ri+,, and ri,, . Thus, 
there are only two elements in the conditional probability space, one corresponds 
to b = 0 and the other to b = 1. Using this claim we now show that the probability 
that P* will convince V in a single round is "low": 

= bla and S are good) + Prob(a is bad or S is bad) 

Informally, the reason for this is as follows: suppose there exists a probabilistic prover P** that is 
able to convince V with probability p,. Then there must exist "good" coin tosses for the first round of P** 
that guarantee that if P** uses these coin tosses, then V is convinced with probability 2 p,. As P* is 
all-powerful and as V is a fixed probabilistic polynomial-time machine, P* can deterministically find 
such "good" coin tosses and simulate P** with these coin tosses. The argument for the next rounds is 
similar. 
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Since ~(n) < 1/(100. n) this probability is less than -34 (as long as n > 12)• Therefore 
the probability that P* will mislead V (i.e., provide correct/~'s) in all n rounds is 
exponentially low. 

Zero-knowledge: For every expected polynomial-time interactive machine V*, we 
present a machine My. so that, for every input satisfying S~,~(p, g, y)/x H(p, g, y), 
Mr,(p, g, y) = (P, V*)(p, g, y). The machine Mv. uses V* as a subroutine. 

The idea of the simulator My. is to cause V* to yield all the information needed 
for calculating H(~). This is done by executing V* several times with the same 
random tape, so that V* will send the same 0~ and S. Machine Mv. will try to get, 
for one of the pairs cg, the information {ni, ruo, ri. 1} in one trial and {n~,r'} in 
another. If this information is constructed according to the protocol (M v, will check 
it), then this is enough for calculating H(c0. 

Following is a detailed description of My.. For  simplicity we start by dealing 
with the case that V* is polynomial time, and only then do we deal with the case 
of expected polynomial-time verifiers. The machine My. starts by choosing a 
random tape s e r {0, 1} q for V*, where q = poly(jp, g, y[) is a bound on the running 
time of V* on the current input• (Clearly, V* reads at most q bits from its random 
tape.) Mv. places s on its record tape and proceeds in n rounds as follows. 

Round j: 

(S1) Machine My. initiates V* on the input (p, g, and y), the random tape s, 
and the sequence of previous successfully simulated j - 1 communicat ion" 
rounds. It reads from the communication tape of V* the element a and the 
pairs al ... a,. Machine Mr° chooses a random subset I and places it on the 
communication tape of V*. Machine Mr .  also appends I to its record tape. 

($2) My. reads from the communication tape of V* {(hi, r~,o, ri, 1): i ~ I} and 
{(n~, ri'): i ~ 7}. For  every i e I machine Mv, checks whether /~i E {0, 1}, 
r;. o, r;. ~ e [ 1,/(P - 1)/12J ], and whether ~i = (Y"'" g~""', Y ~,e 1. f,..,,,). It also 
checks for every i ~ i whether 

, 

and y -g'~ = c~. cg ~,. If either condition is violated M r .  outputs its record tape 
• i 

and stops. Otherwise, Mr .  continues to step ($3). 
($3) The purpose of this step is to find H(e). This is done by repeating the 

following procedure (until H(c0 is found): 
($3.1) Machine Mr ,  chooses at random a subset K ~ { 1, 2 . . . .  , n} not equal 

to I. Machine M r .  initiates V* on the same input, the same (!) random 
tape s, and the same sequence of previous successfully simulated 
rounds. It places K on the read-only communication tape of V*. 
Subsequently, machine Mr .  reads from the communication tape of 
V* {(6,, S;.o, si. 1): i ~ K} and {(6[, s[):ie K}. 

($3.2) Machine My. checks whether the information it received is correct• 
(The same tests as it does for the answers to I.) If it is not correct, then 
M v. goes back to step ($3.1). Otherwise M v. finds i such that i e I n K" 
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or i ~ I ~ K. Such an i exists since I :/: K, without loss of generality 
we assume that i ~ I c~ K. (The index i corresponds to a pair ct i for 
which V* sent (in a different trials) both {n,, ri.o, r,.1} and {n~, r[}. 
Since all this information was checked by My, and found correct then 
My, is now able to compute H(ct).) Machine M v, sets fl = n~ ~) 6[ 0) 1. 

($3.3) In parallel to ($3.1) and ($3.2), try to find H(ct) by exhaustive search. 
(Make one try for each invocation of V*.) 

($4) Once fl is found, machine My, appends fl to its record tape, thus completing 
roundj .  

If all rounds are completed, then Mv, outputs its record tape and halts. 
We now have to prove the validity of the construction. First we prove that the 

simulator My, indeed terminates in expected polynomial time. Next, we prove that 
the output distribution produced by M v, does equal the distribution over V*'s tapes 
(when interacting with P). Once these two claims are proven, the theorem follows. 

Claim 1. Machine Mv, terminates in expected polynomial time. 

Proof. We consider the expected running time on a single round j with respect to 
a particular random tape s and a fixed sequence of communications corresponds 
to the first j - 1 rounds. We call a subset I _ {1, 2 . . . . .  n} good if V* answers 
properly on message I with random tape s. Denote by 9~ the number of good subsets 
with respect to random tape s. Clearly, 0 < g~ < 2". We compute the expected 
number of times V* is invoked in round j as a function of g~. We need to consider 
three cases: 

Case 1 (gs > 2). In case the subset I chosen in step (S 1) is good, we have to consider 
the probability that another subset K is also good. In case the set I chosen in step 
(S1) is bad, the round is completed immediately. Thus, the expected number of 
invocations is 

2" \ \ ~ - ~ J  + ]  + ~ " l < g s _  1 + 1 < 3 . _  

Case 2 (gs = 1). With exponentially small probability (i.e., 2-") the subset I chosen 
in step (S1) is good. In this case we find fl by exhaustive search (in stage ($3.3)). 
Otherwise, the round is completed immediately. Thus, the expected complexity of 
My, in Case 2 is bounded by one invocation of V* and an additional (p - 1). 2-" < 1 
step. 

Case 3 (gs = 0). The subset I chosen in step (S1) is always bad, and thus My, 
invokes V* exactly once and then halts. 

The claim follows by additivity of expectation and the fact that V* is polynomial 
time. [] 

Claim 2. The probability distribution Mv,(p, g, y) is identical to the distribution 
(P, V*)(p, g, y). 



110 O. Goldreich and E. Kushilevitz 

Proof. Both distributions consists of a random s, and sequence of elements, each 
being either (/, r )  (with good I) or a bad I, with random I. In (P, V*>(p, g, y) we 
have fl = H(a) (where a = V*(p, g, y, s)) we need to show that this is the case also 
in Mv.(p, g, y), i.e., we prove that when I is good then My.  succeeds in finding H(ct), 
but this is true because either it finds H(ct) by exhaustive search or find an i in which 
hi, ri. o, r~. 1, ~Sj, and s~ are all correct. That  is, 

(a) ri. o, r,. t e [1, [(p - 1)/12J], 
(b) s; e [k(p - 1)/41 + 2, k(p - 1)/4j + 2k(p - 1)/12j], 
(c) cq.j = y"'~j'gr'.", ~j, and 

(d) y ' g "  = ~'~i,~;. 

In this case we have (using (d) and then (c)) 

H(~) = n(y" gs;' (cti.~;) -1) 

= H(y" gS;. (y~,e~',. gr,..,~Q-1) 

= H(y,',e~;e I • g~',-~..,~,;). 

Finally, using (a) and (b) we have s~ - rg,~,,~; E [2/12(p - 1), 5/12(p - 1)]. In addi- 
tion, D log o y ~ [(p - 1)/2 + 1, (p - 1)/2 + e(n)(p - 1)], Therefore, 

H(7) = H(y  ~ '~ ;e  1) = ni G 6[ G 1. 

This is exactly the way that My.  computes H(c0. []  

This completes the proof of zero-knowledgeness with respect to polynomial-time 
verifiers. For  the case where V* is expected polynomial time we need to perform 
some technical modification of My..  This follows from the fact that there may be 
no polynomial bound on the length of the random tape of V*. This is solved by 
letting Mv. select the random tape of V* adaptively: each time V* requires a new 
random bit, Mr.  choose it at random and also store it for all future invocations of 
V*. Using this modification the proof  remains valid also for expected polynomial- 
time verifiers. [ ]  

Remark 1. The protocol obtained by executing n copies of the give steps of 
Protocol  2 in parallel (instead of executing them sequentially) is also perfect zero- 
knowledge (for details see [Kus]).  

Remark 2. The DLP~ can be extended to any two intervals of size e(n).(p - 1), 
where the first interval starts from s and the second from s + (p - 1)/2 mod p - 1. 
This promise problem is hereby referred to as DLP~. The problems DLP~ and DLP~ 
are clearly polynomially equivalent (see Lemma 1, Appendix C). A zero-knowledge 
protocol for DLP[ on input (p,g,y ,  s) will work by first computing y ' =  
y. g-s+l mod p and then executing the protocol for DLP~ on (p, g, y,).6 

6 We remark that the fact that the latter protocol is indeed zero-knowledge is not implied merely by 
the existence of a polynomial-time reduction from DLP[ to DLP,, since the verifier while executing the 
protocol for DLP, has additional information about the input of this protocol, which is the original input 
for the DLP[. However, since the protocol for DLP~ was proved to be zero-knowledge using a black-box 
simulation, then it is also auxiliary-input zero-knowledge [Or], [GO]. This implies the zero-knowledgeness 
of the modified protocol. 
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4. Extensions 

4.1. Generalization of the Protocol to Other Cyclic Groups 

Let {G~} be a family of cyclic groups such that the following conditions hold: 

I. The group operation of every G~ can be implemented in polynomial time. That 
is, there exists a polynomial-time Algorithm A that on input (i, x, y) outputs 
x . y  for every x, y e G~. 

2. The order of Gi (to be denoted Ni) is either given or can be computed in 
polynomial time (i.e., there exists a polynomial-time Algorithm B that on input 
i outputs Ni). 

We can extend the definitions of the DLP and the DLP~ in the obvious way. The 
modifications required are to replace any multiplication mod p by the group opera- 
tion of Gi and to replace p - 1 by the group order (Ni) (for example, the DLP problem 
is given i and g, y ~ G i, where g is a generator of G i, to find x such that y = g~). 

With the same modifications our protocol is a perfect zero-knowledge proof 
system for the promise problem DLP~ in {Gi} (since the protocol does not make any 
use of the special structure of Z*, but merely its being cyclic). What we still have to 
show is that DLP~ is polynomially equivalent to DLP in any such family. The 
Blum-Micali  proof (used for the group Z*) extends easily only to groups in which 
the order is even and both testing quadratic residuosity and taking square root can 
be performed in polynomial time. Unfortunately, this does not seem to be the case 
in all groups and a different argument is needed. 

Theorem 3. For every family of cyclic groups { Gi } that satisfies the above conditions 
and for every function e(n) such that n -°~1~ < e(n) < ½ where n = log 2 Ni, the prob- 
lems DLP and DLP~ are polynomially equivalent. 

In Appendix C we present a proof for this theorem based on ideas of Kaliski 
[Ka].  (The proofin [Ka]  is more complicated since he proves a stronger statement.) 

4.2. Generalization of the Results to Acyclic Groups 

Let {Gi} be a family of acylic groups which are finite and Abelian. In this case G~ 
does not have a generator but a generating-tuple ~ = (gt, g2 . . . . .  gk). Any element 

Xl Xk y ~ G i can be uniquely expressed as y = gl "" "gk • The order of each gj is denoted 
Ni(gj) and the number of elements in the group is Ni = Ni(gl) 'Ni(gz)" 'Ni(gk).  We 
also assume that for every group Gi, the group operation, the order Ni, and also 
N~(gl) are polynomial-time computable. 

The problems DLP and DLP, are defined with respect to gl. (For example the 
DLP in such a family is: given i, y, and .~ where y, gl . . . . .  gk E Gi and .~ is a generating 
tuple of Gi, find xl such that 3X2"''XRlY = g~ "''gkk). Our protocol with some 
modifications works here too. We should replace every occurrence of p -  1 by 
Ni(g~) and also everything done with respect to g has to be done with respect to gl. 
In addition we should randomize everything by elements chosen at random from 
the subgroup generated by (g2, g3, -.-, gk). For example in step (V1) of the protocol 
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the verifier should compute  ct = yb.g~, .  922... 9k ~, where b ~R {0, 1}, 

and  r 2  - "  r k e R [ | ,  Ni]. 
Using the same modifications described above we can also modify Theorem 3 to 

show that  the D L P  and the DLP,  are still equivalent in such an acyclic group. 

Appendix A. Subgroup Membership is not Harder than Discrete Logarithm 

In this appendix we prove that the Subgroup Membership  Problem is not "harder"  
than the Discrete Logar i thm Problem. We do so by presenting an expected 
polynomial- t ime algorithm that uses an oracle L O G  for the Discrete Logar i thm 
Problem, and solves the Subgroup Membership  Problem. We start  by giving a for- 
mal definition of the Subgroup Membership  Problem: 

Input: a prime p, and a, b ~ Z~. 
Find whether a belongs to the subgroup defined by b. That  is, whether there exists 
i such that a - b / mod p. 

The algorithm on input p, a, and b works as follows (as usual, we denote n = log 2 p): 

1. The target of this step is to find g which is a generator  of Zp*: 
Choose a candidate g ~R Z*. 
Choose n r andom elements 3'1, Y2 . . . . .  Y, ~R Z*. For  each of them compute:  

xi = LOG(p,  9, Yi). 

Verify for every i that y~ =- 9 x' rood p. If not, then find another  candiate, other- 
wise go to step (2). 

2. The target of this step is to check (using g that we found in step 1) whether a 
belongs to the subgroup defined by b. We compute: 

= LOG(p,  9, a), 

fl = LOG(p ,  g, b). 

If  ct does not saitsfy a - 9" mod  p or/~ does not satisfy b --- g~ mod  p, then 
return to step 1. (This can happen only in the case where g is not a generator.) 
If ~ and/~ are correct, then compute  t = gcd(//, p - 1). If  t divides c~ answer 
YES otherwise answer NO. 

Since at least f~(1/log n) of the group elements are generators (see [RS]), the 
expected number  of times we will have to execute step 1 in order to find a generator  
is O(log n). In the case that 9 is not a generator, the probabil i ty that  it will pass all 
the n tests in step 1 is at most  2-" (since its order is at most  half of the group order). 
Finally, it can be verified that if g is indeed a generator,  then gcd(/~, p - 1) divides 
ct if and only if there exists i such that a - b i mod  p (note: it always holds that 
gcd(/~, p - 1) divides ct if and only if3i; ct = / ~ ' i  mod  (p - 1)). Assuming that L O G  
is polynomial  time then it follows that the above algorithm is correct and runs in 
expected polynomial  time. 
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Appendix B. Determining Membership in a Subgroup--Special Case 

In this appendix we consider the problem of determining membership in a subgroup 
generated by an element 9 in Z*, when p is a prime satisfying p - 1 = 2q for some 
prime q. We show that in this special case, testing membership in a subgroup is easy. 
This should be contrasted with the believed intractability of DLP also for this case. 

It can be readily verified that if p - l = 2q with q prime, then Z* has q - 1 
primitive elements (i.e., elements of order p - 1), q - 1 elements of order q, one 
element of order 2, and one element of order 1 (i.e., the identity). Furthermore,  all 
the elements of order q and the identity element form a subgroup which is generated 
by any of the elements of order q. Thus, the question of whether a is in the subgroup 
generated by b reduces (in this case!) to testing the order of both a and b (a is in the 
subgroup generated by b iff the order  of a divides the order of b). Finally note that 
testing the order of an element is easy (in this case!). 

Appendix C. The Equivalence of DLP and DLP~ 

In this appendix we prove Theorem 3 (Section 4.1), claiming the equivalence of DLP 
and DLP~ for every family of cyclic groups {Gi} in which the group operation and 
the group order are polynomial-time computable. For  proving this theorem we first 
prove the following two lemmas. 

Lemma 1. For every family of cyclic 9roups {Gi} as above, and for every function 
e(n) such that n -°111 < e(n) < ½ (where n = log2 Ni) the problems DLP~ and DLP[ are 
polynomially equivalent. 

Proof. We show a polynomial-time reduction from each problem to the other. 
Given w = (i, 9, Y), an input for the DLP~ problem, we transform it to w' = (i, 9, Y, 1). 
Given w ' =  (i, 9, Y, s), an input for the DLP~ problem, we transform it to w = 
(i, 9, Y 9 -s+l). In both cases it can be easily verified that w ~ DLP~ if and only if 
w' ~ DLP~. [] 

Lemma2. ForeverycyclicgroupGof orderN, foreveryy E G, andforeveryd < N: 
![" D log o yZ ~ Is, s + d], then D log o y is in [ I-s/2], [s/2] + Fd/2] ] or in [ [(s + N)/2], 
[-(s + N)/2] + I-d/2-1]. 

Proof. Let w ~ I-s, s + d] ~_ {0, 1 . . . . .  N - 1 }. We show that every solution of the 
equation 2 -x  - w m o d  N satisfies x E  [[-s/2], l-s/2] + ]-d/2]] or x E  [[-(s + N)/2], 
[-(s + N)/2] + I-d/2] ]. We deal with two cases: 

Case 1: N is odd. Since N is odd, 2 has an inverse module N which is (N + 1)/2. 
In this case if w is even, then x = w/2 ~ [ l-s/2], Is/2] + Fd/2] ] and if w is odd, then 

x -  2 6 , + . 
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Case 2: N is even. In this case, 2 does not have an inverse modulo  N, and therefore 
the above equat ion has a solution only when w is even. In such a case the equat ion 
has two solutions: xl = w/2 and x2 = (w + N)/2. These solutions satisfy 

X 1 ~ - ~  , --J-- 

a n d  

Now taking w = D log o y2 and x = D logo y, the lemma follows. [ ]  

Proof of Theorem 3. By Lemma  1 it is enough to prove the equivalence of D L P  and 
DLP~. It is obvious that if we know how to solve the D L P  we can solve the DLP' .  
We prove the other direction by presenting an algorithm that  solves the D L P  using 
an oracle HALFG(g,  y, s) that solves the DLP~. The oracle H A L F  G is defined as 
follows: 

where 1/n °c1~ < e(n) < ½ and n = log2 N. By "?" we mean that  in this case H A L F a  
can give any output. The following algorithm solves the D L P  using this oracle: 

D logo y • [s, s + e (n ) 'N] ,  

D log s y • Is + LN/2J, s + LN/2J + e(n) .N] ,  

otherwise. 

Algorithm 1. (The input is y e G and a generator  g.) 

1. Let n = log 2 N. 
2. Compute  Yx ~ Y, Y2 *-- y2, Y3 ~ y2 . . . . .  Yn ~ y2-1. 
3. Let s, s '  ~ 0. 
4. F o r k = n t o l d o  

If (HALFa(g ,  Yk, S) = 0), then s ~ s /* i.e., do no th ing*/  

(l J) e l s e s ~  s +  m o d N  

s ~-  Fs/2] 

end 
5. If (g~ = y) output  s 

else if(g s÷~ = y) output  s + 1 
6. s' ~ s' + e(n). N 

s ~ s'; goto (4) 

/* Yi = Y 2'-1 */ 

The algorithm finds D log o y by looking for D log o Yn = D log o y2" in lie(n) = n °~1~ 
disjoint intervals of  size e(n). N.  When we are looking in the correct interval then, 
according to Lemma 2, we can find D log o y using a binary search. Namely,  if 
D log o y; belongs to an interval of size d, then D log o y~_l belongs to one of two 
intervals of size [d/2]. We decide which interval is the correct one by using the oracle 
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H A L F  a. Therefore after at most n = log 2 N rounds we are looking for D logg Yl = 
D logs y in an interval of size 2. Now we check which of the two numbers in the 
interval is D log 9 y. If both do not fit, then the current interval is wrong and we try 
another  one. Since there are polynomially many intervals, and since the cost of the 
binary search is polynomial (assuming that HALFa is polynomial time, and that 
computing the order of G and the group operation are polynomial time), the 
algorithm is polynomial time. []  
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