
J. Cryptology (1993) 6:97-116 Journol of

CRYPTOLOGY
© 1993 International Association for
Cryptologic Research

A Perfect Zero-Knowledge Proof System for a
Problem Equivalent to the Discrete Logarithm*

Oded Goldreich and Eyal Kushilevitz
Department of Computer Science, Technion,

Haifa 32000, Israel
odedCa techsel.bitnet eyalk(~ techunix.bitnet

Communicated by Ernest F. Brickell

Received 6 December 1989 and revised 13 November 1991

Abstract. An interactive proof system is called perfect zero-knowledge if the proba-
bility distribution generated by any probabilistic polynomial-time verifier inter-
acting with the prover on input theorem ~p, can be generated by another prob-
abilistic polynomial-time machine which only gets ~p as input (and interacts with
nobody!).

In this paper we present a perfect zero-knowledge proof system for a decision
problem which is computationally equivalent to the Discrete Logarithm Problem.
Doing so we provide additional evidence to the belief that perfect zero-knowledge
proof systems exist in a nontrivial manner (i.e., for languages not in BPP). Our
results extend to the logarithm problem in any finite Abelian group.

Key words. Interactive proofs, Perfect zero-knowledge, Discrete logarithm.

1. Introduction

One of the most basic questions in complexity theory is how much knowledge
should be revealed in order to convince a polynomial-time verifier of the validity
of some theorem. This question was raised by Goldwasser et al. [GMR], with special
emphasis on the extreme case where nothing but the validity of the theorem is
given away in the process of proving the theorem. Such proofs are known as
zero-knowledge proofs and have been the focus of much attention in recent years.
Loosely speaking, whatever can be efficiently computed after participating in a zero-
knowledge proof can be efficiently computed when just ~tssuming the validity
of the assertion.

* This research was partially supported by the Fund for Basic Research Administered by the Israeli
Academy of Sciences and Humanities. An early version of this paper appeared in Advances in Cryptology
--Crypto 88 (Proceedings), S. Goldwasser (ed.), pp. 57-70, Lecture Notes in Computer Science, vol. 403,
Springer-Verlag, Berlin, 1990.

97

98 O. Goldreich and E. Kushilevitz

The definition of zero-knowledge considers two types of probability distributions:

1. A distribution generated by a probabilistic polynomial-time verifier after
participating in an interaction with the prover.

2. A distribution generated by a probabilistic polynomial-time machine on the
input theorem.

Zero-knowledge means that for each distribution of type l there exists a distribution
of type 2 such that these two distributions are "essentially equal." The exact
definition of zero-knowledge depends on the exact interpretation of the phrase
"essentially equal." Two extreme cases are of particular interest:

Perfect zero-knowledge. This notion is derived when interpreting "essentially
equal" in the most conservative way; namely, exactly equal.
Computational zero-knowledge. This notion is derived when interpreting "essen-
tially equal" in a very liberal way; namely, requiring that the distribution
ensembles are polynomially indistinguishable. Loosely speaking, two distribu-
tion ensembles are polynomially indistinguishable if they cannot be told apart
by any probabilistic polynomial-time test. For a formal definition see [G M]
and [Y].

In this paper we focus on the notion of perfect zero-knowledge proof systems and
provide additional circumstantial evidence to the nontriviality of this notion. The
validity of our results does not depend on any assumption (yet their significance
depends on the assumed intractability of the Discrete Logarithm Problem. 1)

1.1. Known Results

Assuming the existence of secure commitment schemes, 2 Goldreich et al. showed
that any language in NP has a computat ional zero-knowledge proof system
I-GMW]. Using this result it has been shown that whatever can be proven through
an efficient interaction proof, can be proven through such a computat ional zero-
knowledge proof [IY], [BGG+] . Thus, assuming the existence of one-way functions,
the question of which languages have computational zero-knowledge proof systems
is closed.

Much less is known about perfect zero-knowledge. Clearly, any language in BPP
has a trivial perfect zero-knowledge proof system (in which the prover is inactive).
Several languages believed not to be in BPP were shown to have perfect zero-
knowledge proof systems. These include Quadratic Residuosity and Quadrat ic
non-Residuosity [GMR] , Graph Isomorphism and Graph non-Isomorphism

Clearly, if IP = BPP, then all languages in IP have trivial perfect zero-knowledge proof systems.
Similarly, if the Discrete Logarithm Problem can be solved in probabilistic polynomial-time, then the
corresponding decision problem has a trivial perfect zero-knowledge proof system. In such a case our
results will remain valid but lose their possible significance.

2 Using recent results of [N], [HI, and JILL] the existence of commitment schemes can be reduced
to the existence of one-way functions.

A Perfect Zero-Knowledge Proof System 99

[GMW], and membership and nonmembership in a subgroup generated by a given
group element [TW]. 3

The complexity of languages which have perfect zero-knowledge interactive proof
systems was studied by Fortnow [F] and then by Aiello and Hastad [AH]. They
prove that if a language L has a perfect zero-knowledge interactive proof system,
then both L and L have two-step interactive proof systems. Using [Ba] and [GS],
this implies that languages having perfect zero-knowledge proof systems fall quite
low in the polynomial-time hierarchy (i.e., as low as H~ ~ E~). Using a result of
Boppana et al. [BHZ], such language can also not be NP-complete, unless the
polynomial-time hierarchy collapses to its second level.

Perfect zero-knowledge proofs should not be confused with the perfect zero-
knowledge arguments presented by Chaum [C] and by Brassard et al. [BCC]. The
difference between an interactive-proof and an argument is that the argument is
sound only if the verifier believes that the prover is a polynomial-time machine with
some auxiliary input (which is fixed before the protocol starts). It should be noted
however that the class of languages having perfect zero-knowledge arguments does
not seem to have the same complexity as the class of languages having perfect
zero-knowledge proofs. More precisely, it was shown assuming the intractability of
the discrete logarithm, that every language that has an interactive proof system has
a perfect zero-knowledge argument [BCC]. By a recent result of Shamir IS] this
implies that assuming the intractability of the discrete logarithm, every language in
PSPACE has a perfect zero-knowledge argument. On the other hand, as mentioned
above, every language having a perfect zero-knowledge proof is in FI~ ~ Y.~. There-
fore, if the class of language having perfect zero-knowledge arguments equals the
class of languages having perfect zero-knowledge proofs, then either the discrete-

P P logarithm can be solved in probabilistic polynomial time, or PSPACE ~ I-I 2 ~ ~2.
The work of Brickell et al. [BCDG] should not be confused with the present

work. Brickell et al. present a computational zero-knowledge proof system for a
problem equivalent to the discrete logarithm problem, assuming the existence of a
bit commitment secure against an all-powerful committer. This protocol is hereafter
referred to as version 1. Using a bit commitment scheme secure against an all-
powerful receiver (instead of a bit commitment secure against an all-powerful
committer), version 2, which constitutes a perfect zero-knowledge argument for the
same problem is obtained. The first type of bit commitment can be implemented
given any one-way function, whereas the second type requires claw-free pairs of
one-way permutations [GK] (and both can be implemented assuming, the intracta-
bility of the Discrete Logarithm Problem). However, neither version yields (or say
anything about) perfect zero-knowledge proofs. The first version is computational
zero-knowledge (under some intractability assumption) but is not perfect zero-
knowledge (even if this assumption does hold); whereas the second version is an
argument (under some intractability assumption) but is not an interactive proof

3 It should be noticed that Tompa and Woll's proof of "possession of the Discrete Logarithm" is in
fact a proof of membership in a subgroup generated by a primitive element. So are the proofs given by
[CEGP] and [CEG].

I00 O. Goldreich and E. Kushilevitz

system (again even if this assumption does hold). Furthermore, the zero-knowledge
(resp. soundness) claim of version 1 (resp. version 2), and not just its significance,
depends on an intractability assumption. That is, if the discrete logarithm assump-
tion turns out to be false, then version 1 is not zero-knowledge (resp. version 2
is not sound). In contrast, the protocols presented in this paper are perfect zero-
knowledge proofs, and this property is independent of any assumption. Hence,
the correctness of our work does not depend on any assumption (and only its
significance is lost if the discrete logarithm is uniformly easy).

1.2. Our Results

In this paper we present a perfect zero-knowledge proof system for a decision
problem which is computationally equivalent to the Discrete Logarithm Problem.
Doing so, we present a perfect zero-knowledge proof system for a problem which
is widely believed to be intractable. Thus, we provide additional evidence to the
belief that perfect zero-knowledge proof systems exist in a nontrivial manner (i.e.,
for languages not in BPP).

Let p be a prime and let 9 be a primitive element in the multiplicative group
modulo p. The Discrete Logarithm Problem (DLP) is to find, given integers p, 9, and
y, an integer x such that 9 x - y rood p. Solving DLP is believed to be intractable,
in particular when p - 1 has large prime factors. The best algorithms known for
this problem run in subexponential time (exp {O(x/q-og p log log p)}), see Odlyzko's
survey [-Od]. It has been shown that determining whether x < (p - 1)/2 is computa-
tionally equivalent to finding x, on inputs p, 9, and 9 x mod p IBM]. 4 This is the
case even if x is guaranteed to lie either in the interval [1, e(n). p] or in the interval
[(p - 1)/2 + 1, (p - 1)/2 + e(n).p], where n -°~11 < e(n) < ½ and n = log 2 p. This
promise problem is hereby referred to as DLPE.

In this paper we present a perfect zero-knowledge proof system for DLPE. Using
the computational equivalence with DLP, we have a perfect zero-knowledge proof
system for a problem considered computationally hard. Both our protocol and the
computational equivalence of DLP and DLP~ extend to any finite Abelian group,
in which the group operation can be implemented in polynomial time and the order
of the group is known (or can be efficiently found). (In the case of acyclic groups, it
is necessary first to define the problems.)

According to the results of IF], [AH], and [BHZ] (see Section 1.1), languages
which have perfect zero-knowledge proof systems are not "too high" in the polyno-
mial hierarchy. Furthermore, although perfect zero-knowledge proof systems were
given to languages not known to be in BPP (see Section 1.1), we believe that these
languages are not among the "hardest" and in particular that they are "easier" than
DLP:

• The Quadratic Residuosity Problem is not "harder" than factoring: Given a
polynomial-time algorithm for factoring, we can construct a polynomial-time

4 In fact, Blum and Micali proved a much stronger statement. Namely, that guessing this bit with
success probability greater than ½ + e is as hard as retrieving x i-BM].

A Perfect Zero-Knowledge Proof System 101

algorithm to decide whether x is a quadratic residue modulo a comosite y. This
algorithm will work by first factoring y, and then check whether x is a quadratic
residue modulo each prime factor ofy (this test can be conducted in polynomial
time). On the other hand, it is not known if quadratic residuosity is as "hard"
as factoring. It seems plausible that factoring is not "harder" than DLP and
hence we believe that the Quadratic Residuosity Problem is"easier" than DLP.
The Graph Isomorphism Problem seems to be "easy" for most inputs: For most
pairs of graphs (GI, Gz) it can easily be proved that there is no isomorphism
between the two graphs. In fact, this problem is known to be polynomial time
on the average for many natural distributions of inputs. For example, in the
case that each pair of graphs with the same number of vertices has the same
probability [BK] or even in the cae that only d-regular graphs are considered
and each pair of d-regular graphs with the same number of vertices has the
same probability [Kuc].
The Subgroup Membership Problem is not "harder" than DLP: Given a
polynomial-time algorithm for solving DLP we can construct a polynomial-
time algorithm for determining membership in a subgroup (see Appendix A).
In some cases, for example when p - 1 = 2q and q is prime, determining
membership in a subgroup of Z* (the multiplicative group mod p) is "easy" (see
Appendix B), while solving DLP in Z* is considered "hard" also in this case.

2. Preliminaries

2.1. Promise Problems and Interactive Proofs

Informally, a promise problem is a partial decision problem. That is, a decision
problem in which only a subset of all possible inputs is being considered.

Formally a promise problem is a pair of predicates (P, Q), where P is called the
"promise" and Q is called the "question." A Turing machine M solves the promise
problem (P, Q) if for every z which satisfies P(z) machine M halts, and it answers
"yes" iff Q(z). When 7 P(z) we do not care what M does. This definition originates
from [ESY].

We extend to definition of interactive proof systems given by Goldwasser et al.
[GMR] to promise problems. Intuitively, an interactive proof system for a promise
problem (P, Q) is a two-party protocol for a "powerful" prover P and a probabilistic
polynomial-time verifier V satisfying the following two conditions with respect to
the common input, denoted z. If P(z) ^ Q(z), then with a very high probability the
verifier is "convinced" of Q(z), when interacting with the prover. If P(z) ^ 7 Q(z),
then no matter what the prover does, he cannot fool the verifier (into believing that
"Q(z) is true"), except with a very low probability. When 7 P(z') nothing is required.

Definition 1. An interactive proof system for a promise problem (P, Q) is a pair of
interacting Turing machines <P, V>, satisfying the following three conditions:

(0) V is a (probabilistic) expected polynomial-time machine which shares its input
With P and they can communicate with each other using special communica-
tion tapes.

102 0. Goldreich and E. Kushilevitz

(1) Completeness condifion: for every constant c > 0, and all sufficiently long z if
P(z) A Q(z), then

Prob(V will accept z after interacting with P) 2 1 - ~ Z I - ~ .

(2) Soundness condition: for every Turing machine P*, every constant c > 0, and
ail sufficiently long z if P(z) A 1Q(z), then

Prob(V will reject z after interacting with P*) 2 1 - Izl-'

2.2. Perfect Zero-Knowledge Proofs for Promise Problems

Here, we extend the definition of perfect zero-knowledge given by Goldreich et al.
[GM W] to promise problems.

Definition 2. Let (P, V) be an interactive proof system for a promise problem
(P, Q), and let V* be an arbitrary verifier. Denote by (P, V*)(z) the probability
distribution on all the read-only tapes of V* (including the random tape) when
interacting with P (the prover) on common input z. We say that the proof system
(P, V) is perfect-zero-knowledge for (P, Q) if, for every expected polynomial-time
verifier V*, there exists a (probabilistic) expected polynomial-time machine, M,.,
such that for every z satisfying P(z) A Q(z) the distributions M,.(z) and (P, V*)(z)
are equal.

2.3. The Discrete Logarithm Problem and a Related Promise Problem

Let p be a prime. The set of integers [I, p - 11 forms a cyclic group of p - 1 elements
under multiplication (mod p). This group is denoted Z,*. The Discrete Logarithm
Problem (DLP) is as follows:

Input: a prime p, a generator g E Z,*, and a number y E Z,*.
Find s E [l , p - 11 such that y = gx mod p. (We use the notation x = D log, y).

Let g be a primitive element (a generator) of Z,* and let y be an element of the
group. We define the Half predicate H as follows:

Let n = log, p and let ~ (n) < $ be a fraction bounded below by l/no"'. We define
the following predicate:

S,(p, g, y) - g is a generator of Z,* and D log, y in 11, ~ (n) (p - I)]

p - l p - l
or [- 2 + I , - + ~ (n) (p - I)].

2

When it is clear from the context we shorten H (p , g, y) and S,(p, g, y) to H(y) and
S(y), respectively.

The promise problem defined by the pair of predicates (S,, H) is hereafter referred
to as DLP,. Blum and Micali have shown that the DLP, is polynomially equivalent
to the original DLP in the group Z,* [BM].

A Perfect Zero-Knowledge Proof System 103

2.4. Notation

• Let s and t be two integers such that 0 < s < p - 2 and 0 < t < p - 2. I-s, t]
denotes the set of integers {s, s + 1 t - 1, t} in case s _< t or {s, s + 1
p - 2 , 0 , 1 t } i n c a s e s > t . I f s > p - l o r t _ > p - l w e t a k e s m o d (p - l)
and t m o d (p - 1) (respectively).

• Let S be a set. The no t a t i on r ER S means that r is chosen at r a n d o m with
uni form probab i l i ty d is t r ibut ion a m o n g the e lements of S.

3. The Protocol for DLP, in Z~

In this section we in t roduce a perfect ze ro -knowledge p ro toco l for the p romise
p rob l em DLP~. In order to m a k e the p ro toco l more clear we first in t roduce a
p ro toco l which is perfect ze ro -knowledge only with respect to the hones t verifier.

3.1. Protocol 1--Perfect Zero-Knowledge Proof System
with Respect to the Honest Verifier

Here is a p ro toco l for the p romise p r o b l e m (S~(p, 9, Y), H(p, g, y)) where e is any
cons tan t such that 0 < e < I :

Common input: the integers p, g, and y as previous ly defined.

The fol lowing three steps are executed n = log2 p t imes (unless the verifier rejects
previously), each t ime using independen t r a n d o m coin tosses.

(V1) The verifier chooses at r a n d o m a bit b e n {0, 1} and an integer
r ~R [1, 2e(p - 1)]. The verifier compu te s ~ = yb. gr and sends c~ to the
prover .

(P1) The p rove r compu te s fl = H(~) and sends it to the verifier.
(V2) If f l ¢ b, then the verifier rejects.

If the verifier has comple ted all n rounds wi thout rejecting, then the verifier accepts.

Theorem 1. Assuming e <_ I, then Protocol 1 constitutes an interactive proof system
for DLP~.

Proof. Recall tha t x denotes D log o y (i.e., y - gX m o d p).

Completeness: I fS (y) ^ H(y), then x ~ [(p - 1)/2 + 1, (p - 1)/2 + e(p - 1)]. In ad-
dit ion, V chooses r s [1, 2e(p - 1)] where 0 < e < I . There fore i fb = 0, then

b x + r = r ~ [1 , 2 e (p - 1)] ~ [1 , ~ - ~ 1

and if b = 1, then

b x + r = x + r ~ + 2 , + 3 e (p - 1) ~ + 1, p - 1

104 O. Goldreich and E. Kushilevitz

Fig. 1.

p - - 1 1

x + 2 ~ (p ~

0 l /0
,) \ \ I Z

2 " ~ " ~ , I J 2e(p- 1)
x

p - 1
- - + 1

2

The completeness condition: D loggct as a function of b for inputs with S(y) A H(y).

(see Fig. 1). Therefore in each round

f l = n (c t) = n (y b . g ") = n (g bx+~) = b.

Which m e a n s that the prover in this case a lways causes the verifier to accept the
input.

Soundness: I fS(y) ^ 7 H (y) , then we have x e [1, e(p - 1)]. Therefore if the verifier
c h o o s e s b = 0, then D log o ~ e [1, 2e(p - 1)], and if it c h o o s e s b = 1, then D log o c~ e
[x + 1, x + 2e(p - 1)] (see Fig. 2). In this case, for any prover P* we are l o o k i n g for
the probabi l i ty that V does not reject in a single round (the probabi l i t ies are taken
over the r a n d o m choices of V, name ly b and r):

P r o b (V does not reject) = Prob(P*(~) = b)

= P r o b (b = O) . P r o b (P * (~) = b i b = O) + P r o b (b = 1)

• P r o b (P * (a) = b i b = 1)

1 ~ a(p - 1)

i d

~(p- 1)

x + 2e(p -- 1)

Fig. 2. The soundness condition: D logg ~ as a function of b for inputs with S(y) A 7 H(y).

A Perfect Zero-Knowledge Proof System 105

= ½"Prob(P*(9") = O) + ½"Prob(P*(yg ~) = 1)

1 1 (Z Prob(P*(g ~) = O)
= 2" 2~(p 1) - - i=1

1 1
- 2 2e(p - 1)

+
2g(p-1)

2
i=x+l

(Prob(P*(9 i) = O) + Prob(P*(9 i) = 1))

+
2elp-1)+x)

Prob(P*(g') = 1)
i=2e(p-1)+1

- (x + (2 ~ (p - 1) - x) + x)

I x + 1)
= 2 " (2 e (p - - 1)

l (tp- 1_))
-<2 \ 2 e (p - 1) + 1

3
4"

Therefore in n iterations the probability that the verifier will not reject this input is
exponentially low (i.e., (3),). []

It is clear that the protocol is perfect zero-knowledge with respect to the honest
verifier V. The simulator My chooses the random tape for V, and outputs pairs of
the form (~ = yb'gr, b). Since for every y with S(y) A H(y) we have H(c0 = b (see
the completeness proof) the distribution of Mv's output equals the distribution of
conversations between P and the honest verifier V. However, the protocol is proba-
bly not zero-knowledge with respect to arbitrary verifiers: a cheating verifier inter-
acting with the prover may send ~'s for which it wants to know H(~). It could also
choose r ¢ [1, 2e(p - 1)] and get in this way some additional information about x.
The way to prevent this, is to let the verifier first "prove" to the prover that it
"knows"/-/(~). This is done in the following protocol.

3.2. Protocol 2--Perfect Zero-Knowledge Proof System with
Respect to Any Verifier

The previous protocol is modified. The modification folows an idea of [G M R] used
also in [G M W] and simplified in [Be] (this idea in a different context first appeared
in [EGL]) . However, in our case the implementation of this idea is more complex.

In the following protocol we provide an interactive proof system to the promise
problem (Sa,}(p, g, y), H(p, 9, Y)), where ~(n) will be determined later.

C o m m o n input: the integers p, g, and y as previously defined.

The following five steps are repeated n = log 2 p times (unless the verifier rejects or
the prover stops previously), each time using independent random coin tosses.

106 o. Goldreich and E. Kushilevitz

(V1) The verifier chooses at random a bit b •R {0, 1} and an integer

p - - 1

The verifier computes c~ = ybgr and sends c~ to the prover. In addition to c~
it computes n pairs of integers. The ith pair is denoted cq and is constructed
in the following way: The verifier chooses at random ~i •R {0, 1} and ri,0,
ri. 1 ER[1 , [(p - 1) / | 2 J] . He computes 7i.0 =yn,.gr,.., and ~i. 1 = y , , e l .
gr,=.®, (where • denotes the exclusive-or function) and at last sets ai =
(~;. o, al. 1). The verifier sends the list of pairs to the prover. Intuitively, every
a~ is a random permutation of two elements. Assuming that S(y) A H(y),
then one of the elements satisfies H(-) = 0 and the other satisfies H(') = 1.
These pairs will be used by the verifier to prove that it "knows" H(a).

(P1) The prover chooses at random, a subset I c_ {1, 2 n} with uniform
probability distribution among all 2" subsets. The prover sends I to the
verifier.

(V2) If I is not a subset of {1, 2 n}, then the verifier halts and rejects.
Otherwise, the verifier replies with {(n;, r~.o, r;.1): i • I } and {(Tr[= ~z~G
b O 1, r" -- r + r;.bel): i• 1} (where i = {1, 2 n}\l). Intuitively, in this
step the verifier proves for every i • I that the pair a~ is constructed according
to the protocol (step V1). In addition, for every i• i the verifier proves
(assuming S(y) A H(y)) that if ai is constructed according to step (V1), then
it "knows" H(a).

(P2) For every i • I the prover checks that a~ is constructed according to the
protocol (i.e., ri. o, ri. 1 • [1, L(p - 1)/12J] and ct i = (y,,.gr,,.,, y , , e l .gr,.,,¢,)).
The prover also checks for every i • i that

and y" g'; = a" ~ . , I- If either conditions is violated the prover stops. Other-
wise, the prover computes fl = H(a) and sends it to the verifier.

(V3) If f l¢ b, then the verifier rejects. Otherwise it continues.

If the verifier has completed all n rounds without rejecting, then the verifier accepts.

Theorem 2 (Main Theorem). Let e(n) be a function such that 1/n °tl~ < e(n) <
1/(100.n), then protocol 2 constitutes a perfect zero-knowledge interactive proof
system for DLP~.

Proof. We first prove that Protocol 2 is an interactive proof system for DLP,, and
then we show that it is perfect zero-knowledge. Recall again that x = D log 9 y.

Completeness: Similar to the completeness in Theorem 1.

Soundness: We prove that although in some cases ~ and the list of pairs S =
{ct 1 ct,} can yield information about b, there is a big enough probability that
ct and S will not yield any information about b, and therefore will not help the prover

A Perfect Zero-Knowledge Proof System

to convince V that

p - l p - 1
x E [- 2 + 1, ----

2 +c(n) . (p- I)]

when in fact x E [l, e(n).(p - I)].
Assume that x E [l, c(n).(p - I)]. We call a good if it satisfies

Otherwise a is bad. Intuitively, when a is good the prover cannot learn anything
about b from a (since in this case Prob(b = Olyb.gr = a) = i). The probability that
a is bad is less than or equal to 12. ~ (n) .

Similarly we call a pair ai good if both r,., and ri,, are in [x + 1, L(p - 1)/12j].
Otherwise a, is bad. The list of pairs S is good if every ai is good, and is bad otherwise.
The probability that a pair ai is bad is less than 2.12.e(n) and the probability that
S is bad is therefore less than 24n. ~ (n) .

We remark here that since P* has infinite power we can assume without loss of
generality that P* is deterministic5 Therefore for any a and S the prover P* always
chooses the same subset I, denoted f(a, S).

Our first claim is that in every round in which a and S are good, the prover does
not get any information about b. Clearly, the answers {(xi, ri,,, ris (which the
verifier sends in step (V2)) are independent of b and therefore are irrelevant. How-
ever, we claim that also a, S , and the answers for i E T do not help the prover to find
what b is. Formally, for every good a and S, and for every {ri, xi)icT,

Prob(b = 01 ybgr = a A f(a, S) = I A V i E f (y .gr ; = a . a,,,; A r,! = r + r. L , R (,)) = t .
The reason is that when a and S are good then (by the definition of "good") assigning
any value to b yields unique values to all the other variables r, ri+,, and ri,, . Thus,
there are only two elements in the conditional probability space, one corresponds
to b = 0 and the other to b = 1. Using this claim we now show that the probability
that P* will convince V in a single round is "low":

= bla and S are good) + Prob(a is bad or S is bad)

Informally, the reason for this is as follows: suppose there exists a probabilistic prover P** that is
able to convince V with probability p,. Then there must exist "good" coin tosses for the first round of P**
that guarantee that if P** uses these coin tosses, then V is convinced with probability 2 p,. As P* is
all-powerful and as V is a fixed probabilistic polynomial-time machine, P* can deterministically find
such "good" coin tosses and simulate P** with these coin tosses. The argument for the next rounds is
similar.

108 o. Goldreich and E. Kushilevitz

Since ~(n) < 1/(100. n) this probability is less than -34 (as long as n > 12)• Therefore
the probability that P* will mislead V (i.e., provide correct/~'s) in all n rounds is
exponentially low.

Zero-knowledge: For every expected polynomial-time interactive machine V*, we
present a machine My. so that, for every input satisfying S~,~(p, g, y)/x H(p, g, y),
Mr,(p, g, y) = (P, V*)(p, g, y). The machine Mv. uses V* as a subroutine.

The idea of the simulator My. is to cause V* to yield all the information needed
for calculating H(~). This is done by executing V* several times with the same
random tape, so that V* will send the same 0~ and S. Machine Mv. will try to get,
for one of the pairs cg, the information {ni, ruo, ri. 1} in one trial and {n~,r'} in
another. If this information is constructed according to the protocol (M v, will check
it), then this is enough for calculating H(c0.

Following is a detailed description of My.. For simplicity we start by dealing
with the case that V* is polynomial time, and only then do we deal with the case
of expected polynomial-time verifiers. The machine My. starts by choosing a
random tape s e r {0, 1} q for V*, where q = poly(jp, g, y[) is a bound on the running
time of V* on the current input• (Clearly, V* reads at most q bits from its random
tape.) Mv. places s on its record tape and proceeds in n rounds as follows.

Round j:

(S1) Machine My. initiates V* on the input (p, g, and y), the random tape s,
and the sequence of previous successfully simulated j - 1 communicat ion"
rounds. It reads from the communication tape of V* the element a and the
pairs al ... a,. Machine Mr° chooses a random subset I and places it on the
communication tape of V*. Machine Mr . also appends I to its record tape.

($2) My. reads from the communication tape of V* {(hi, r~,o, ri, 1): i ~ I} and
{(n~, ri'): i ~ 7}. For every i e I machine Mv, checks whether /~i E {0, 1},
r;. o, r;. ~ e [1,/(P - 1)/12J], and whether ~i = (Y"'" g~""', Y ~,e 1. f,..,,,). It also
checks for every i ~ i whether

,

and y -g'~ = c~. cg ~,. If either condition is violated M r . outputs its record tape
• i

and stops. Otherwise, Mr . continues to step ($3).
($3) The purpose of this step is to find H(e). This is done by repeating the

following procedure (until H(c0 is found):
($3.1) Machine Mr , chooses at random a subset K ~ { 1, 2 , n} not equal

to I. Machine M r . initiates V* on the same input, the same (!) random
tape s, and the same sequence of previous successfully simulated
rounds. It places K on the read-only communication tape of V*.
Subsequently, machine Mr . reads from the communication tape of
V* {(6,, S;.o, si. 1): i ~ K} and {(6[, s[):ie K}.

($3.2) Machine My. checks whether the information it received is correct•
(The same tests as it does for the answers to I.) If it is not correct, then
M v. goes back to step ($3.1). Otherwise M v. finds i such that i e I n K"

A Perfect Zero-Knowledge Proof System 109

or i ~ I ~ K. Such an i exists since I :/: K, without loss of generality
we assume that i ~ I c~ K. (The index i corresponds to a pair ct i for
which V* sent (in a different trials) both {n,, ri.o, r,.1} and {n~, r[}.
Since all this information was checked by My, and found correct then
My, is now able to compute H(ct).) Machine M v, sets fl = n~ ~) 6[0) 1.

($3.3) In parallel to ($3.1) and ($3.2), try to find H(ct) by exhaustive search.
(Make one try for each invocation of V*.)

($4) Once fl is found, machine My, appends fl to its record tape, thus completing
roundj .

If all rounds are completed, then Mv, outputs its record tape and halts.
We now have to prove the validity of the construction. First we prove that the

simulator My, indeed terminates in expected polynomial time. Next, we prove that
the output distribution produced by M v, does equal the distribution over V*'s tapes
(when interacting with P). Once these two claims are proven, the theorem follows.

Claim 1. Machine Mv, terminates in expected polynomial time.

Proof. We consider the expected running time on a single round j with respect to
a particular random tape s and a fixed sequence of communications corresponds
to the first j - 1 rounds. We call a subset I _ {1, 2 n} good if V* answers
properly on message I with random tape s. Denote by 9~ the number of good subsets
with respect to random tape s. Clearly, 0 < g~ < 2". We compute the expected
number of times V* is invoked in round j as a function of g~. We need to consider
three cases:

Case 1 (gs > 2). In case the subset I chosen in step (S 1) is good, we have to consider
the probability that another subset K is also good. In case the set I chosen in step
(S1) is bad, the round is completed immediately. Thus, the expected number of
invocations is

2" \ \ ~ - ~ J +] + ~ " l < g s _ 1 + 1 < 3 . _

Case 2 (gs = 1). With exponentially small probability (i.e., 2-") the subset I chosen
in step (S1) is good. In this case we find fl by exhaustive search (in stage ($3.3)).
Otherwise, the round is completed immediately. Thus, the expected complexity of
My, in Case 2 is bounded by one invocation of V* and an additional (p - 1). 2-" < 1
step.

Case 3 (gs = 0). The subset I chosen in step (S1) is always bad, and thus My,
invokes V* exactly once and then halts.

The claim follows by additivity of expectation and the fact that V* is polynomial
time. []

Claim 2. The probability distribution Mv,(p, g, y) is identical to the distribution
(P, V*)(p, g, y).

110 O. Goldreich and E. Kushilevitz

Proof. Both distributions consists of a random s, and sequence of elements, each
being either (/, r) (with good I) or a bad I, with random I. In (P, V*>(p, g, y) we
have fl = H(a) (where a = V*(p, g, y, s)) we need to show that this is the case also
in Mv.(p, g, y), i.e., we prove that when I is good then My. succeeds in finding H(ct),
but this is true because either it finds H(ct) by exhaustive search or find an i in which
hi, ri. o, r~. 1, ~Sj, and s~ are all correct. That is,

(a) ri. o, r,. t e [1, [(p - 1)/12J],
(b) s; e [k(p - 1)/41 + 2, k(p - 1)/4j + 2k(p - 1)/12j],
(c) cq.j = y"'~j'gr'.", ~j, and

(d) y ' g " = ~'~i,~;.

In this case we have (using (d) and then (c))

H(~) = n(y" gs;' (cti.~;) -1)

= H(y" gS;. (y~,e~',. gr,..,~Q-1)

= H(y,',e~;e I • g~',-~..,~,;).

Finally, using (a) and (b) we have s~ - rg,~,,~; E [2/12(p - 1), 5/12(p - 1)]. In addi-
tion, D log o y ~ [(p - 1)/2 + 1, (p - 1)/2 + e(n)(p - 1)], Therefore,

H(7) = H(y ~ '~ ;e 1) = ni G 6[G 1.

This is exactly the way that My. computes H(c0. []

This completes the proof of zero-knowledgeness with respect to polynomial-time
verifiers. For the case where V* is expected polynomial time we need to perform
some technical modification of My.. This follows from the fact that there may be
no polynomial bound on the length of the random tape of V*. This is solved by
letting Mv. select the random tape of V* adaptively: each time V* requires a new
random bit, Mr. choose it at random and also store it for all future invocations of
V*. Using this modification the proof remains valid also for expected polynomial-
time verifiers. []

Remark 1. The protocol obtained by executing n copies of the give steps of
Protocol 2 in parallel (instead of executing them sequentially) is also perfect zero-
knowledge (for details see [Kus]).

Remark 2. The DLP~ can be extended to any two intervals of size e(n).(p - 1),
where the first interval starts from s and the second from s + (p - 1)/2 mod p - 1.
This promise problem is hereby referred to as DLP~. The problems DLP~ and DLP~
are clearly polynomially equivalent (see Lemma 1, Appendix C). A zero-knowledge
protocol for DLP[on input (p,g,y , s) will work by first computing y ' =
y. g-s+l mod p and then executing the protocol for DLP~ on (p, g, y,).6

6 We remark that the fact that the latter protocol is indeed zero-knowledge is not implied merely by
the existence of a polynomial-time reduction from DLP[to DLP,, since the verifier while executing the
protocol for DLP, has additional information about the input of this protocol, which is the original input
for the DLP[. However, since the protocol for DLP~ was proved to be zero-knowledge using a black-box
simulation, then it is also auxiliary-input zero-knowledge [Or], [GO]. This implies the zero-knowledgeness
of the modified protocol.

A Perfect Zero-Knowledge Proof System 111

4. Extensions

4.1. Generalization of the Protocol to Other Cyclic Groups

Let {G~} be a family of cyclic groups such that the following conditions hold:

I. The group operation of every G~ can be implemented in polynomial time. That
is, there exists a polynomial-time Algorithm A that on input (i, x, y) outputs
x . y for every x, y e G~.

2. The order of Gi (to be denoted Ni) is either given or can be computed in
polynomial time (i.e., there exists a polynomial-time Algorithm B that on input
i outputs Ni).

We can extend the definitions of the DLP and the DLP~ in the obvious way. The
modifications required are to replace any multiplication mod p by the group opera-
tion of Gi and to replace p - 1 by the group order (Ni) (for example, the DLP problem
is given i and g, y ~ G i, where g is a generator of G i, to find x such that y = g~).

With the same modifications our protocol is a perfect zero-knowledge proof
system for the promise problem DLP~ in {Gi} (since the protocol does not make any
use of the special structure of Z*, but merely its being cyclic). What we still have to
show is that DLP~ is polynomially equivalent to DLP in any such family. The
Blum-Micali proof (used for the group Z*) extends easily only to groups in which
the order is even and both testing quadratic residuosity and taking square root can
be performed in polynomial time. Unfortunately, this does not seem to be the case
in all groups and a different argument is needed.

Theorem 3. For every family of cyclic groups { Gi } that satisfies the above conditions
and for every function e(n) such that n -°~1~ < e(n) < ½ where n = log 2 Ni, the prob-
lems DLP and DLP~ are polynomially equivalent.

In Appendix C we present a proof for this theorem based on ideas of Kaliski
[Ka]. (The proofin [Ka] is more complicated since he proves a stronger statement.)

4.2. Generalization of the Results to Acyclic Groups

Let {Gi} be a family of acylic groups which are finite and Abelian. In this case G~
does not have a generator but a generating-tuple ~ = (gt, g2 gk). Any element

Xl Xk y ~ G i can be uniquely expressed as y = gl "" "gk • The order of each gj is denoted
Ni(gj) and the number of elements in the group is Ni = Ni(gl) 'Ni(gz)" 'Ni(gk). We
also assume that for every group Gi, the group operation, the order Ni, and also
N~(gl) are polynomial-time computable.

The problems DLP and DLP, are defined with respect to gl. (For example the
DLP in such a family is: given i, y, and .~ where y, gl gk E Gi and .~ is a generating
tuple of Gi, find xl such that 3X2"''XRlY = g~ "''gkk). Our protocol with some
modifications works here too. We should replace every occurrence of p - 1 by
Ni(g~) and also everything done with respect to g has to be done with respect to gl.
In addition we should randomize everything by elements chosen at random from
the subgroup generated by (g2, g3, -.-, gk). For example in step (V1) of the protocol

112 O. Goldreich and E. Kushilevitz

the verifier should compute ct = yb.g~, . 922... 9k ~, where b ~R {0, 1},

and r 2 - " r k e R [| , Ni].
Using the same modifications described above we can also modify Theorem 3 to

show that the D L P and the DLP, are still equivalent in such an acyclic group.

Appendix A. Subgroup Membership is not Harder than Discrete Logarithm

In this appendix we prove that the Subgroup Membership Problem is not "harder"
than the Discrete Logar i thm Problem. We do so by presenting an expected
polynomial- t ime algorithm that uses an oracle L O G for the Discrete Logar i thm
Problem, and solves the Subgroup Membership Problem. We start by giving a for-
mal definition of the Subgroup Membership Problem:

Input: a prime p, and a, b ~ Z~.
Find whether a belongs to the subgroup defined by b. That is, whether there exists
i such that a - b / mod p.

The algorithm on input p, a, and b works as follows (as usual, we denote n = log 2 p):

1. The target of this step is to find g which is a generator of Zp*:
Choose a candidate g ~R Z*.
Choose n r andom elements 3'1, Y2 Y, ~R Z*. For each of them compute:

xi = LOG(p, 9, Yi).

Verify for every i that y~ =- 9 x' rood p. If not, then find another candiate, other-
wise go to step (2).

2. The target of this step is to check (using g that we found in step 1) whether a
belongs to the subgroup defined by b. We compute:

= LOG(p, 9, a),

fl = LOG(p , g, b).

If ct does not saitsfy a - 9" mod p or/~ does not satisfy b --- g~ mod p, then
return to step 1. (This can happen only in the case where g is not a generator.)
If ~ and/~ are correct, then compute t = gcd(//, p - 1). If t divides c~ answer
YES otherwise answer NO.

Since at least f~(1/log n) of the group elements are generators (see [RS]), the
expected number of times we will have to execute step 1 in order to find a generator
is O(log n). In the case that 9 is not a generator, the probabil i ty that it will pass all
the n tests in step 1 is at most 2-" (since its order is at most half of the group order).
Finally, it can be verified that if g is indeed a generator, then gcd(/~, p - 1) divides
ct if and only if there exists i such that a - b i mod p (note: it always holds that
gcd(/~, p - 1) divides ct if and only if3i; ct = / ~ ' i mod (p - 1)). Assuming that L O G
is polynomial time then it follows that the above algorithm is correct and runs in
expected polynomial time.

A Perfect Zero-Knowledge Proof System 113

Appendix B. Determining Membership in a Subgroup--Special Case

In this appendix we consider the problem of determining membership in a subgroup
generated by an element 9 in Z*, when p is a prime satisfying p - 1 = 2q for some
prime q. We show that in this special case, testing membership in a subgroup is easy.
This should be contrasted with the believed intractability of DLP also for this case.

It can be readily verified that if p - l = 2q with q prime, then Z* has q - 1
primitive elements (i.e., elements of order p - 1), q - 1 elements of order q, one
element of order 2, and one element of order 1 (i.e., the identity). Furthermore, all
the elements of order q and the identity element form a subgroup which is generated
by any of the elements of order q. Thus, the question of whether a is in the subgroup
generated by b reduces (in this case!) to testing the order of both a and b (a is in the
subgroup generated by b iff the order of a divides the order of b). Finally note that
testing the order of an element is easy (in this case!).

Appendix C. The Equivalence of DLP and DLP~

In this appendix we prove Theorem 3 (Section 4.1), claiming the equivalence of DLP
and DLP~ for every family of cyclic groups {Gi} in which the group operation and
the group order are polynomial-time computable. For proving this theorem we first
prove the following two lemmas.

Lemma 1. For every family of cyclic 9roups {Gi} as above, and for every function
e(n) such that n -°111 < e(n) < ½ (where n = log2 Ni) the problems DLP~ and DLP[are
polynomially equivalent.

Proof. We show a polynomial-time reduction from each problem to the other.
Given w = (i, 9, Y), an input for the DLP~ problem, we transform it to w' = (i, 9, Y, 1).
Given w ' = (i, 9, Y, s), an input for the DLP~ problem, we transform it to w =
(i, 9, Y 9 -s+l). In both cases it can be easily verified that w ~ DLP~ if and only if
w' ~ DLP~. []

Lemma2. ForeverycyclicgroupGof orderN, foreveryy E G, andforeveryd < N:
![" D log o yZ ~ Is, s + d], then D log o y is in [I-s/2], [s/2] + Fd/2]] or in [[(s + N)/2],
[-(s + N)/2] + I-d/2-1].

Proof. Let w ~ I-s, s + d] ~_ {0, 1 N - 1 }. We show that every solution of the
equation 2 -x - w m o d N satisfies x E [[-s/2], l-s/2] +]-d/2]] or x E [[-(s + N)/2],
[-(s + N)/2] + I-d/2]]. We deal with two cases:

Case 1: N is odd. Since N is odd, 2 has an inverse module N which is (N + 1)/2.
In this case if w is even, then x = w/2 ~ [l-s/2], Is/2] + Fd/2]] and if w is odd, then

x - 2 6 , + .

114 O. Goldreich and E. Kushilevitz

Case 2: N is even. In this case, 2 does not have an inverse modulo N, and therefore
the above equat ion has a solution only when w is even. In such a case the equat ion
has two solutions: xl = w/2 and x2 = (w + N)/2. These solutions satisfy

X 1 ~ - ~ , --J--

a n d

Now taking w = D log o y2 and x = D logo y, the lemma follows. []

Proof of Theorem 3. By Lemma 1 it is enough to prove the equivalence of D L P and
DLP~. It is obvious that if we know how to solve the D L P we can solve the DLP' .
We prove the other direction by presenting an algorithm that solves the D L P using
an oracle HALFG(g, y, s) that solves the DLP~. The oracle H A L F G is defined as
follows:

where 1/n °c1~ < e(n) < ½ and n = log2 N. By "?" we mean that in this case H A L F a
can give any output. The following algorithm solves the D L P using this oracle:

D logo y • [s, s + e (n) 'N] ,

D log s y • Is + LN/2J, s + LN/2J + e(n) .N] ,

otherwise.

Algorithm 1. (The input is y e G and a generator g.)

1. Let n = log 2 N.
2. Compute Yx ~ Y, Y2 *-- y2, Y3 ~ y2 Yn ~ y2-1.
3. Let s, s ' ~ 0.
4. F o r k = n t o l d o

If (HALFa(g , Yk, S) = 0), then s ~ s /* i.e., do no th ing*/

(l J) e l s e s ~ s + m o d N

s ~- Fs/2]

end
5. If (g~ = y) output s

else if(g s÷~ = y) output s + 1
6. s' ~ s' + e(n). N

s ~ s'; goto (4)

/* Yi = Y 2'-1 */

The algorithm finds D log o y by looking for D log o Yn = D log o y2" in lie(n) = n °~1~
disjoint intervals of size e(n). N. When we are looking in the correct interval then,
according to Lemma 2, we can find D log o y using a binary search. Namely, if
D log o y; belongs to an interval of size d, then D log o y~_l belongs to one of two
intervals of size [d/2]. We decide which interval is the correct one by using the oracle

A Perfect Zero-Knowledge Proof System 115

H A L F a. Therefore after at most n = log 2 N rounds we are looking for D logg Yl =
D logs y in an interval of size 2. Now we check which of the two numbers in the
interval is D log 9 y. If both do not fit, then the current interval is wrong and we try
another one. Since there are polynomially many intervals, and since the cost of the
binary search is polynomial (assuming that HALFa is polynomial time, and that
computing the order of G and the group operation are polynomial time), the
algorithm is polynomial time. []

References

[BGG +]

IBM]

[BHZ]

[BCC]

[BCDG]

[CEG]

[CEGP]

[EGL]

[ESY]

[F]

[GK]
[GMW]

[AH] Aiello, W., and J. Hastad, Perfect Zero-Knowledge Languages Can Be Recognized in Two
Rounds, Proc. 28th FOCS, 1987, pp. 439-448.

[Ba] Babai, L, Trading Group Theory for Randomness, Proc. 17th STOC, 1985, pp. 421-429.
[BK] Babai, L., and L. Kucera, Canonical Labeling of Graphs in Linear Average Time, Proc. 20th

FOCS, 1979, pp. 39-46.
[Be] Benaloh (Cohen), J. D., Cryptographic Capsules: A Disjunctive Primitive for Interactive

Protocols, Advances in Cryptology--Crypto 86 (Proceedings), A. M. Odlyzko (ed.), pp. 213-
222, Lecture Notes in Computer Science, Vol. 263, Springer-Verlag, Berlin, 1987.
Ben-or, M., O. Goldreich, S. Goldwasser, J. Hastad, J. Kilian, S. Micali, and P. Rogaway,
Everything Provable Is Provable in Zero-Knowledge, Advances in Cryptology--Crypto 88
(Proceedings), S. Goldwasser (ed.), pp. 37-56, Lecture Notes in Computer Science, Vol. 403,
Springer-Verlag, Berlin, 1990.
Blum, M., and S. Micali, How To Generate Cryptographicatly Strong Sequences of Pseudo-
Random Bits, SIAM J. Comput., Vol. 13, 1984, pp. 850-864.
Boppana, R., J. Hastad, and S. Zachos, Does Co-NP Have Short Interactive Proofs?, Inform.
Process. Lett., Vol. 25, May 1987, pp. 127-132.
Brassard, G., D. Chaum, and C. Crepeau, Minimum Disclosure Proofs of Knowledge,
J. Comput. System Sci., Vol. 37, No. 2, October 1988, pp. 156-189.
Brickell E. F., D. Chaum, I. Damgard, and J. van de Graaf, Gradual and Verifiable Release
of a Secret, Advances in Cryptology--Crypto 87 (Proceedings), C. Pomerance (ed.), pp. 156-
166, Lecture Notes in Computer Science, Vol. 293, Springer-Verlag, Berlin, 1987.

[C] Chaum, D., Demonstrating that a Public Predicate Can be Satisfied Without Revealing Any
Information About How, Advances in Cryptology--Crypto 86 (Proceedings), A. M. Odlyzko
(ed.), pp. 195-199, Lecture Notes in Computer Science, Vol. 263, Springer-Verlag, Berlin,
1987.
Chaum, D., J. H. Evertse, and J. van de Graaf, An Improved Protocol for Demonstrating
Possession of a Discrete Logarithm Without Revealing It, Advances in Cryptology--
Eurocrypt 87 (Proceedings), D. Chaum and W. L. Price (eds.), pp. 127-142, Lecture Notes in
Computer Science, Vol. 304, Springer-Verlag, Berlin, 1988.
Chaum, D., J. H. Evertse, J. van de Graaf, and R. Peralta, Demonstrating Possession of a
Discrete Logarithm Without Revealing It, Advances in Cryptology--Crypto 86 (Proceedings),
A. M. Odlyzko (ed.), pp. 200-212, Lecture Notes in Computer Science, Vol. 263, Springer-
Verlag, Berlin, 1987.
Even, S., O. Goldreich, and A. Lempel, A Randomized Protocol for Signing Contracts, Comm.
ACM, Vol. 28, No. 6, 1985, pp. 637-647.
Even, S., A. L. Selman, and Y. Yacobi, The Complexity of Promige Problems with Applications
to Public-Key Cryptography Inform. Control, Vol. 61, 1984, pp. 159-173.
Fortnow, L., The Complexity of Perfect Zero-Knowledge, Proc. 19th STOC, pp. 204-209,
1987.
Goldreich, O., and A. Kahn, in preparation.
Goldreich, O., S. Micali, and A. Wigderson, Proofs that Yield Nothing but Their Validity and
a Methodology of Cryptographic Protocol Design, J. Assoc. Comput. Math., Vol. 38, No. I,
1991, pp. 691-729.

116 O. Goldreich and E. Kushilevitz

[GO]

[GM]

[GMR]

[GS]

[HI

JILL]

ElY]

[Ka]

[Kuc]

[Kus]

[N]

[Od]

[Or]

[RS]

[S]
[TW]

[Y]

Goldreich, O., and Y. Oren, On the Cunning Power of Cheating Verifiers: Some Observations
about Zero-Knowledge Proofs, in preparation.
Goldwasser, S., and S. Micali, Probabilistic Encryption, J. Comput. System Sci., Vol. 28, No. 2,
1984, pp. 270-299.
Goldwasser, S., S. Micali, and C. Rackoff, The Knowledge Complexity of Interactive Proof
Systems, SIAM J. Comput., Vol. 18, No. 1, 1989, pp. 186-208. Early version appeared in Proc.
17th STOC, 1985, pp. 291-304.
Goldwasser, S., and M. Sipser, Private Coins vs. Public Coins in Interactive Proof Systems,
Proc. 18th STOC, 1986, pp. 59-68.
Hastad, J., Psuedo-random Generators Under Uniform Assumptions, Proc. 22nd S TOC, 1990,
pp. 395-404.
lmpagliazo, R., U A. Levin, and M. Luby, Pseudorandom Generation from One-Way Func-
tions, Proc. 21st STOC, 1989, pp. 12-24.
Impagliazo, R., and M. Yung, Direct Minimum-Knowledge Computations, Advances in
Cryptology--Crypto 87 (Proceedings), C. Pomerance (ed.), pp. 40-51, Lecture Notes in Com-
puter Science, Vol. 293, Springer-Verlag, Berlin, 1987.
Kaliski, B. S., Elliptic Curves and Cryptography: A Pseudorandom Bit Generator and Other
Tools. Ph.D. Thesis, MIT/LCS/TR-411, Massachusetts Institute of Technology, 1988.
Kucera, L., Canonical Labeling of Regular Graphs in Linear Average Time, Proc. 28th FOCS,
1987, pp. 271-279.
Kushilevitz, E., Perfect Zero-Knowledge Proofs, Master Thesis, Technion, 1989 (in Hebrew).
A translation in English of the subsection concerning the parallel execution of the basic
protocol is available from the author.
Naor, M., Bit Commitment Using Pseudorandomness, Advances in Cryptology--Crypto 89
(Proceedings), G. Brassard, (ed.), pp. 128-136, Lecture Notes in Computer Science, Vol. 435,
Springer-Verlag, Berlin, 1990.
Odlyzko, A., Discrete Logarithm in Finite Fields and Their Cryptographic Significance, Proc.
Eurocrypt 84, pp. 224-314, Lecture Notes in Computer Science, Vol. 209, Springer-Verlag,
Berlin, 1985.
Oren, Y., On the Cunning Power of Cheating Verifiers: Some Observations about Zero-
Knowledge Proofs, Proc. 28th FOCS, 1987, pp. 462-471.
Rosser, J., and L. Schoenfield, Approximate Formulas for Some Functions of Prime Numbers,
Illinois J. Math., Vol. 6, 1961, pp. 64-94.
Shamir A., IP = PSPACE, Proc. 31st FOCS, 1990, pp. 11-15.
Tompa, M., and H. Woll, Random Self-Reducibility and Zero-Knowledge Interactive Proofs
of Possession of Information, Proc. 28th FOCS, 1987, pp. 472-482.
Yao, A. C., Theory and Applications of Trapdoor Functions, Proc. 23rd FOCS, 1982,
pp. 80-91.

