Skip to main content
Log in

Modeling of primary and secondary dendrites in a Cu-6 Wt Pct Sn alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructure of gas-atomized CuSn6 particles has been investigated using scanning electron microscopy (SEM), and it is shown that the dendrite arm spacing (DAS) is related to the particle diameter (d) so that DAS=0.19d 0.72. Formation of microstructures in the particles are modeled using a numerical solidification model. This model concerns tips of cells and dendrites, but in the present investigation, it is, in a simple manner, extended to comprise whole cells and dendrites. Furthermore, ripening of dendrite arms is taken into consideration. It is found that for increasing growth rates there is a transition from dendrites to cells when the growth velocity approaches the diffusional velocity in the melt,i.e., when the Peclet number is equal to one. It is also shown that both primary stem spacing and dendrite spacing are related to the ratio between the volume in the liquid where there is solute diffusion and to the surface area of the cells and dendrites (D/A). The relation between spacing and D/A is the same for cells and dendrites, indicating that the spacing selection is controlled purely by solute diffusion in the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.W. Clyne, R.A. Ricks, and P.J. Goodhew:Int. J. Rapid Solidification, 1984, vol. 1, pp. 59–80.

    CAS  Google Scholar 

  2. T.W. Clyne, R.A. Ricks, and P.J. Goodhew:Int. J. Rapid Solidification, 1985, vol. 1, pp. 85–101.

    CAS  Google Scholar 

  3. L. Kallien:Herstellung Schnell Erstarrter und Hochunterkühlter Metallpulver, VDI Verlag, Düsseldorf, 1989.

    Google Scholar 

  4. G.C. Hartmann:Die Erstarrung von Metallen im Sprühgiessprozess am Beispiel der Zinnbronze CuSn6, VDI Verlag, Düsseldorf, 1990.

    Google Scholar 

  5. A.F. Norman:Rapid Solidification of Al-Hf and Al-Li-Hf Alloys, University of Surrey, Surrey, 1991.

    Google Scholar 

  6. D. Stock:Die Zweistufige Gas-Wasserzerstäubung Metallischer Schmelzen, Insbesondere von CuSn6, VDI Verlag, Düsseldorf, 1990.

    Google Scholar 

  7. P. Ottosen:Numerical Simulation of Spray Forming, Technical University of Denmark, Copenhagen, 1993.

    Google Scholar 

  8. P.S. Grant, B. Cantor, and L. Katgerman:Acta Metall. Mater., 1993, vol. 41, pp. 3097–3108.

    Article  CAS  Google Scholar 

  9. P.S. Grant, B. Cantor, and L. Katgerman:Acta Metall. Mater., 1993, vol. 41, pp. 3109–18.

    Article  CAS  Google Scholar 

  10. J.-O. Choi:Einfluss der Erstarrungsgeschwindigkeit auf Gefüge und Eigenschaften Technischer Kupferlegierungen, Max-Planck-Institut für Metallforschung, Stuttgart, 1987.

    Google Scholar 

  11. W.A. Kaysser, K. Rzesnitzek, R. Laag, J. Wachter, and G. Petzow:The Future of Powder Metallurgy, Int. Powder Metallurgy Conf., Düsseldorf, July 1986. W.A. Kaysser and W.J. Huppmann, eds., Schmidt GMBH, Freiburg, Germany, 1986, pp. 84–88.

    Google Scholar 

  12. Y. Kondo, T. Suzuki, Y. Miyata, and T. Umemura:Imono, 1986, vol. 58, pp. 35–40.

    Google Scholar 

  13. K.W. Lee and S.H. Park:J. Kor. Inst. Met., 1980, vol. 18, pp. 114–21.

    CAS  Google Scholar 

  14. T. Suzuki, T. Umeda, Y. Kimura, and M. Sugiyama:Nipp. Kinz. Gakk., 1980, vol. 18, pp. 761–66.

    Google Scholar 

  15. M. Sugiyama and T. Umeda:J. Fac. Eng. Univ. Tokyo, 1971, vol. 9, pp. 62–63.

    Google Scholar 

  16. K. Rzesnitzek, W.A. Kaysser, and G. Petzow:VIII’th German-Yugoslav Meeting on materials Sciences and Development, W.A. Kaysser and W.J. Huppmann, eds., 1986, Schmidt, Freiburg, Germany, pp. 371–78.

    Google Scholar 

  17. W. Kurz and D.J. Fisher:Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1989.

    Google Scholar 

  18. J. Lipton, W. Kurz, and R. Trivedi:Acta Metall., 1987, vol. 35, pp. 957–64.

    Article  CAS  Google Scholar 

  19. R. Trivedi, J. Lipton, and W. Kurz:Acta Metall., 1987, vol. 35, pp. 965–70.

    Article  CAS  Google Scholar 

  20. J.D. Hunt:Acta Metall. Mater., 1991, vol. 39, pp. 2117–33.

    Article  CAS  Google Scholar 

  21. J.D. Hunt:Acta Metall. Mater., 1990, vol. 38, pp. 411–18.

    Article  Google Scholar 

  22. S.-Z. Lu and J.D. Hunt:J. Cryst. Growth, 1992, vol. 123, pp. 17–34.

    Article  Google Scholar 

  23. J. Lipton, M.E. Glicksman, and W. Kurz:Mater. Sci. Eng., 1984, vol. 65, pp. 57–63.

    Article  CAS  Google Scholar 

  24. B. Giovanola and W. Kurz:Metall. Trans. A, 1990, vol. 21A, pp. 260–63.

    CAS  Google Scholar 

  25. W. Kurz, B. Giovanola, and R. Trivedi:Acta Metall., 1986, vol. 34, pp. 823–30.

    Article  CAS  Google Scholar 

  26. N. Tiedje:Formation of Microstructures in Gas-Atomised Cu-6 wt pct Sn and 316L Powders, Grafisk Service, Risø, 1994.

    Google Scholar 

  27. W.E. Ranz and W.R. Marshall, jr.:Chem. Eng. Prog., 1952, vol. 48, pp. 173–80.

    CAS  Google Scholar 

  28. M.J. Aziz and T. Kaplan:Acta Metall., 1988, vol. 36, pp. 2335–47.

    Article  CAS  Google Scholar 

  29. S.H. Han and R. Trivedi:Acta Metall. Mater., 1994, vol. 42, pp. 25–41.

    Article  CAS  Google Scholar 

  30. B.P. Bewlay and B. Cantor:Metall. Trans. B, 1990, vol. 21B, pp. 899–912.

    CAS  Google Scholar 

  31. A. Mortensen:Mater. Sci. Eng., 1989, vol. 20A, pp. 247–53.

    CAS  Google Scholar 

  32. A. Mortensen:Metall. Trans. A, 1991, vol. 22A, pp. 569–74.

    CAS  Google Scholar 

  33. H. Jones:Mater. Sci. Eng., 1984, vol. 65, pp. 145–56.

    Article  CAS  Google Scholar 

  34. V.G. Rivlin and G.V. Raynor:Int. Met. Rev., 1980, pp. 21–38.

  35. P. Esslinger:Z. Metallkd. 1966, vol. 57, pp. 12–19.

    CAS  Google Scholar 

  36. J.S. Langer and H. Müller-Krumbhaar:Acta Metall., 1978, vol. 26, pp. 1681–87.

    Article  CAS  Google Scholar 

  37. J.S. Langer and H. Müller-Krumbhaar:Acta Metall., 1978, vol. 26, pp. 1689–95.

    Article  CAS  Google Scholar 

  38. J.S. Langer and H. Müller-Krumbhaar:Acta Metall., 1978, vol. 26, pp. 1697–1708.

    Article  Google Scholar 

  39. R. Trivedi:Metall. Trans. A, 1984, vol. 15A, pp. 977–82.

    CAS  Google Scholar 

  40. D.H. Kirkwood:Mater. Sci. Eng., 1985, vol. 73, pp. L1-L4.

    Article  CAS  Google Scholar 

  41. H. Matyja, B.C. Giessen, and N.J. Grant:J. Inst. Met., 1968, vol. 96, pp. 30–32.

    CAS  Google Scholar 

  42. N.J.E. Adkins, N. Saunders, and P. Tsakiropoulos:Mater. Sci. Eng., 1988, vol. 98, pp. 217–19.

    Article  CAS  Google Scholar 

  43. N.J.E. Adkins, A.F. Norman, and P. Tsakiropoulos:Int. J. Rapid Solidification, 1991, vol. 6, pp. 77–86.

    CAS  Google Scholar 

  44. M. Carrard, M. Gremaud, M. Zimmermann, and W. Kurz:Acta Metall. Mater., 1992, vol. 40, pp. 983–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiedje, N., Hansen, P.N. & Pedersen, A.S. Modeling of primary and secondary dendrites in a Cu-6 Wt Pct Sn alloy. Metall Mater Trans A 27, 4085–4093 (1996). https://doi.org/10.1007/BF02595657

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595657

Keywords

Navigation