Skip to main content
Log in

Fibroblast migration and proliferation during in vitro wound healing

A quantitative comparison between various growth factors and a low molecular weight blood dialyzate used in the clinic to normalize impaired wound healing

  • Original Papers
  • Published:
Research in Experimental Medicine

Abstract

During the formation of granulation tissue in a dermal wound, plate-lets, monocytes and other cellular blood constituents release various peptide growth factors to stimulate fibroblasts to migrate into the wound site and proliferate, in order to reconstitute the various connective tissue components. The effect on fibroblast migration and proliferation of these growth factors, and of Solcoseryl (HD), a deproteinized fraction of calf blood used to normalize wound granulation and scar tissue formation, was quantified in vitro. The presence of basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), transforming growth factor-β (TGF-β) and hemodialyzate (HD) increased the number of cells in the denuded area, i.e., in the “wound space” of an artificially ruptured monolayer of LM-fibroblasts (mouse lung fibroblasts). When cell proliferation was blocked with Mitomycin C, in the first 24 h all factors, i.e., bFGF, PDGF, TGF-β and HD, promoted cell migration, whereas after 48h it became obvious that each factor stimulated both migration and proliferation, each in a characteristic way. The effects were significant and more distinct after 48 h, following the order: PDGF (46%) ≈ bFGF (87%) > HD (45%) ≈ TGF-β (40%) > control (62%). The relative contributions of migration after inhibiting proliferation are given in brackets. The modulatory activity of HD was localized in its hydrophilic fraction. It was destroyed by acid hydrolysis. Furthermore, this activity could be blocked by protamine sulfate, an inhibitor blocking peptide growth factor receptor binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allgöwer M, Pomerat CM, Blocker TG (1952) Influence of normal serum, its derivatives, and of “wound healing agents” on human epidermis in vitro. Arch Surg 135:923–937

    Google Scholar 

  2. Alsbjörn BF, Jensen MG, Sörensen B (1989) Effect of Solcoseryl on cadaveric split-skin oxygen consumption during 4°C storage and in frozen biopsies. Cryobiology 26: 119

    Article  PubMed  Google Scholar 

  3. Biland L, Hürlimann F, Gloor W, Körner WF, Kündig A, Madar G, Widmer LK, Ziegler WJ (1985) Treatment of venous ulcers—a multi-center randomized double-blind study. VASA (Bern) 14:383–389

    CAS  Google Scholar 

  4. Brown GL, Nanney LB, Griffen J, Cramer AB, Yancey JM, Curtsinger LJ, Holtzin L, Schultz GS, Jurkiewicz MJ, Lynch JB (1989) Enhancement of wound healing by topical treatment with epidermal growth factor. N Engl J Med 321:76–79

    Article  PubMed  CAS  Google Scholar 

  5. Bürk RR (1973) A factor from a transformed cell line that affects cell migration. Proc Natl Acad Sci USA 70:369–372

    Article  PubMed  Google Scholar 

  6. Charlesworth D, Harris PL, Palmer MK (1975) Intra-arterial infusion of Solcoseryl: a clinical trial of a method of treatment for pre-gangrene of the lower limb. Br J Surg 62:337–339

    Article  PubMed  CAS  Google Scholar 

  7. Clark RAF (1988) Overview and general consideration of wound repair. In: RAF Clark, PM Hensen (eds) The molecular and cellular biology of wound repair. Plenum Press, New York, pp 3–33

    Google Scholar 

  8. Coffey RJ Jr, Leof EB, Shipley GD, Moses HL (1987) Suramin inhibition of growth factor receptor binding and mitogenicity in AKR-2B cell. J Cell Physiol 132:143–148

    Article  PubMed  CAS  Google Scholar 

  9. Coomber BL, Gotlieb AI (1990) In vitro endothelial wound repair. Arteriosclerosis 10: 215–222

    PubMed  CAS  Google Scholar 

  10. Deuel TF, Senior RM, Huang JS, Griffin GL (1982) Chemotaxis for monocytes and neutrophils to platelet-derived growth factor. J Clin Invest 69:1046–1049

    PubMed  CAS  Google Scholar 

  11. Dri P, Cramer R, Mittenzwei H, Patriarca P (1989) Dual effect of a protein-free hemodialyzate on the oxygen uptake of phagocytosing human polymorphonuclear leucocytes. Drug Res 39: 1565

    CAS  Google Scholar 

  12. Fabbro D, Imber R, Huggel R, Baschong W (1992) Growth promoting effect of a protein-free hemodialyzate used in situtations of hypoxya and for tissue repair as measured via stimulation of S6-Kinase. Drug Res 42:917–920

    CAS  Google Scholar 

  13. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  14. Grotendorst GR, Chang T, Seppä HEJ, Kleinman HK, Martin GR (1982) Platelet-derived growth factor is a chemoattractant for vascular smooth muscle cells. J Cell Physiol 113: 261–266

    Article  PubMed  CAS  Google Scholar 

  15. Halfter W, Liverani D, Vigny M, Monard D (1990) Deposition of extracellular matrix along pathways of migrating fibroblasts. Cell Tissue Res 262:467–481

    Article  PubMed  CAS  Google Scholar 

  16. Hartung T, Leist M, Tiegs G, Baschong W, Wendel A (1991) Solcoseryl prevents inflammatory and hypoxic but not toxic live damage in rodents. Inflammopharmacology 1:49–60

    CAS  Google Scholar 

  17. Isler H, Bauen A, Hubler M, Oberholzer M (1991) Morphometric assessment of wound healing in rats treated with a protein-free haemodialyzate. Burns 17:99–103

    Article  PubMed  CAS  Google Scholar 

  18. Isler H, Bauen A, Baschong W (1991) Topical treatment of standardized burns with a protein-free haemodialyzate. Burns 17:93–98

    Article  PubMed  CAS  Google Scholar 

  19. Jaeger KH, Leybold K, Mittenzwei H, Staudinger HJ, Waldstätten L von (1965) Die Förderung der Zellatmung durch einen Blutextrakt. Drug Res 15:750–754

    CAS  Google Scholar 

  20. Kay AB, Pepper DS, McKenzie R (1974) The identification of fibrinopeptide B as a chemotactic agent derived form human fibrinogen. Br J Haematol 27:669–677

    PubMed  CAS  Google Scholar 

  21. Knudsen L, Solvhoj L, Christensen B (1982) The use of a haemodialyzate in the treatment of decubital ulcer: a double-blind randomized clinical study. Curr Ther Res 32:498–504

    Google Scholar 

  22. Konturek SJ, Drozdowicz D, Patko-Polonczyk J, Brzozowoski T, Bielanski W (1991) Solcoseryl in prevention of stress-induced gastric lesion and healing of chronic ulcers. J Phys Pharmacol 42:43–84

    Google Scholar 

  23. Ksander GA, Sawamura SJ, Ogawa Y, Sundsmo J, McPherson JM (1990) The effects of platelet relesate on wound healing in animal models. J Am Acad Dermatol 22:781–791

    Article  PubMed  CAS  Google Scholar 

  24. Levi-Schaffer F, Kupietzky A (1990) Mast cells enhance migration and proliferation of fibroblasts into an in vitro wound. Exp Cell Res 188:42–49

    Article  PubMed  CAS  Google Scholar 

  25. Liebich HG, Hamm D, Jöchle W (1988) Histologic evaluation of wound healing in horses treated with the protein-free haemodialyzate Solcoseryl and its hexosylceramid fraction. J Vet Med 35:84–95

    Article  CAS  Google Scholar 

  26. Lipton A, Klinger I, Paul D, Holley RW (1971) Migration of mouse 3T3 fibroblasts in response to a serum factor. Proc Natl Acad Sci USA 68:2799–2801

    Article  PubMed  CAS  Google Scholar 

  27. Lynch SE, Nixon JC, Colvin RB (1987) Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc Natl Acad Sci USA 84:7696–7700

    Article  PubMed  CAS  Google Scholar 

  28. Lynch SE, Colvin RB, Antoniades HN (1989) Growth factors in wound healing. Single and synergistic effects on partial thickness porcine skin wounds. J Chir Invest 84:640

    CAS  Google Scholar 

  29. Mawatari M, Okamura K, Matsuda T, Hamanaka R, Mizoguchi H, Higashio K, Kohno K, Kuwano M (1991) Tumor necrosis factor and epidermal growth factor modulate migration of human microvascular endothelial cells and production of tissue-type plaminogen activator and its inhibitor. Exp Cell Res 192:574–580

    Article  PubMed  CAS  Google Scholar 

  30. Morimoto A, Okamura K, Hamanaka R, Sato Y, Shima N, Higashio K, Kuwano M (1991) Hepatocyte growth factor modulates migration and proliferation of human microvascular endothelial cells in culture. Biochem Biophys Res Commun 2:1042–1049

    Article  Google Scholar 

  31. Niinikoski J, Renvall S, Laato M, Tschannen R, Fraefel W (1986) Effect of a hexosylceramide fraction of the haemodialyzate Solcoseryl on experimental granulation tissue. Eur Surg Res 18:58–64

    PubMed  CAS  Google Scholar 

  32. Postlethwaite AE, Seyer JM, Kang AH (1979) Generation of a fibroblast chemotactic factor in serum by activation of complement. J Clin Invest 64:1379–1385

    Article  PubMed  CAS  Google Scholar 

  33. Postlethwaite AE, Keski-Oja J, Moses HL, Kang AH (1987) Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor β. J Exp Med 165: 251–256

    Article  PubMed  CAS  Google Scholar 

  34. Raff EC, Houck JC (1989) Migration and proliferation of diploid human fibroblasts following „wounding” of confluent monolayers. J Cell Physiol 74:235–244

    Article  Google Scholar 

  35. Rosen EM, Goldberg ID (1989) Protein factors with regulate cell motility. In Vitro Cell Dev Biol 25:1079–1087

    PubMed  CAS  Google Scholar 

  36. Ross R (1968) The fibroblast and wound repair. Biol Rev 43:51–96

    PubMed  CAS  Google Scholar 

  37. Ross R, Vogel A (1978) The platelet-derived growth factor. Rev Cell 14:203–210

    Article  CAS  Google Scholar 

  38. Sarber R, Hull B, Merrill C, Sorranno T, Bell E (1981) Regulation of proliferation of fibroblasts of low and high population doubling levels grown in collagen lattices. Mech Ageing Dev 17:107–117

    Article  PubMed  CAS  Google Scholar 

  39. Sato Y, Rifkin DB (1988) Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis, J Cell Biol 107:1199–1205

    Article  PubMed  CAS  Google Scholar 

  40. Sato Y, Abe M, Takaki R (1990) Platelet factor 4 blocks the binding of basic fibroblast growth factor to the receptor and inhibits the spontaneous migration of vascular endothelial cells. Biochem Biophys Res Commun 172:595–600

    Article  PubMed  CAS  Google Scholar 

  41. Sato Y, Hamanaka R, Ono J, Kuwano M, Rifkin DB, Takaki R (1991) The stimulatory effect of PDGF on vascular smooth muscle cell migration is mediated by the induction of endogenous basic FGF. Biochem Biophys Res Commun 174:1260–1266

    Article  PubMed  CAS  Google Scholar 

  42. Seppä H, Grotendorst G, Seppä S, Schiffmann E, Martin GR (1982) Platelet derived growth factor is chemotactic for fibroblasts. J Cell Biol 92:584–588

    Article  PubMed  Google Scholar 

  43. Skalli O, Gabbiani G (1988) The biology of the myofibroblast. Relationship to wound contraction and fibrocontractive diseases. In: Clark RAF, Henson PM (eds) The molecular and cellular biology of wound repair. Plenum Press, New York, pp 373–402

    Google Scholar 

  44. Snyderman R, Philips J, Mergenhagen SE (1970) Polymorphonuclear leukocyte chemotactic activity in rabbit serum and guinea pig serum treated with immune complexes: evidence for C5a as the major chemotactic factor. Infect Immunol 1:521–525

    CAS  Google Scholar 

  45. Uitto J, Santa Cruz DJ, Eisen AZ (1980) Connective tissue nevi of the skin: the clinical, genetic and histopathological classification of hamartomas of the collagen, elastin and proteoglycan type. J Am Acad Dermatol 3:441–461

    Article  PubMed  CAS  Google Scholar 

  46. Uitto J, Rhyhänen L, Tan EML, Oikarinen AI, Zarazoga EJ (1984) Pharmacological inhibition of excessive collagen deposition in fibrotic diseases, Fed Proc 43:2815–2820

    PubMed  CAS  Google Scholar 

  47. Ward PA, Cochrane CG, Muller-Eberhard HJ (1965) The role of serum complement in chemotaxis of leukocytes in vitro. J Exp Med 122:327–346

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreier, T., Degen, E. & Baschong, W. Fibroblast migration and proliferation during in vitro wound healing. Res. Exp. Med. 193, 195–205 (1993). https://doi.org/10.1007/BF02576227

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02576227

Key words

Navigation