

A Simple and Relatively Efficient Triangulation of the n-Cube*

Mark Haiman

Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Abstract. The only previously published triangulation of the *n*-cube using o(n!) simplices, due to Sallee, uses $O(n^{-2}n!)$ simplices. We point out a very simple method of achieving $O(\rho^n n!)$ simplices, where $\rho < 1$ is a constant.

1. Introduction

This short note is intended to point out a simple method of triangulating the n-cube I^n using significantly fewer simplices than in previous constructions.

Various authors [2], [3], [5]-[8] have considered the problem of triangulating I^n into fewer than the easily achievable maximum of n! simplices. Since the volume of a simplex with vertices in \mathbb{Z}^n is an integral multiple of 1/n!, it is clear that n! is in fact the maximum number of simplices in any triangulation. A lower bound can also be derived from volume considerations as follows. I^n can be inscribed in a sphere of diameter \sqrt{n} . The maximum volume of a simplex contained in this sphere is $(n+1)^{(n+1)/2}/2^n n!$, attained by the equilateral simplex. This shows that any triangulation of I^n uses at least $2^n(n+1)^{-(n+1)/2}n!$ simplices. This lower bound is very much less than n!, being $O(c^n(n!)^{1/2})$. By replacing the cube with an "ideal cube" in hyperbolic space and using hyperbolic instead of Euclidean volume it is possible to improve the lower bound [8], but only by a factor of $O((3/2)^{n/2})$.

In view of the large gap between the lower and upper bounds it is perhaps surprising that all triangulations of I^n proposed so far use nearly n! simplices. In fact, only Sallee [7] achieves o(n!) simplices. Sallee's triangulation, however, uses more than $2A(n-1, \lfloor (n-1)/2 \rfloor)$ simplices, where the Eulerian number A(n, k) is the number of permutations of n having k "descents" [10]. Since A(n, k) is unimodal as a function of k, $A(n-1, \lfloor (n-1)/2 \rfloor) \ge (n-1)!/(n-1) = (n-2)!$

^{*} This research was supported in part by N.S.F. Grant No. DMS-8717795.

288 M. Haiman

and hence Sallee uses at least $O(n^{-2}n!)$ simplices. (Readers of [7] should observe that the function g(n, m) of that paper is actually A(n - 1, m - 1), a fact not noted there.)

The construction given below triangulates I^n with $O(\rho^n n!)$ simplices, where $\rho < 1$. In fact, given a triangulation of I^n into T(n) simplices for any particular value of n, we can take $\rho = (T(n)/n!)^{1/n}$. The smallest value for ρ obtainable from triangulations published to date is $\rho = (13,248/40,320)^{1/8} \approx 0.870$ from Sallee's triangulation of I^8 . We remark that Todd [11] proposed the quantity $R(n) = (T(n)/n!)^{1/n}$ as a measure of a triangulation's efficiency. Previous constructions have $\lim_{n\to\infty} R(n) = 1$, whereas our results show that any value of R(n) achievable for one triangulation is achievable asymptotically. This is still far from R(n) = o(1), let alone the lower bound of $R(n) = O(n^{-1/2})$.

2. Construction

Definition. A polyhedral decomposition of an n-dimensional polytope P is a union $P = T_1 \cup T_2 \cup \cdots \cup T_k$ of n-dimensional polytopes T_i such that for all i, j the vertices of T_i are vertices of P and $T_i \cap T_j$ is a (possibly empty) face of both T_i and T_i . If each T_i is a simplex, then $\{T_i\}$ is a triangulation of P.

Lemma 1. Every polyhedral decomposition of P can be refined to a triangulation.

Proof. We require triangulations θ_i of the T_i such that θ_i and θ_j induce the same triangulation on $T_i \cap T_j$ considered as a face of T_i and as a face of T_j . Now there are well-known constructions [4], [6], [9], [12] whereby we associate to a total ordering α of the vertices of a polytope T a triangulation θ in such a way that the triangulation induced on each face $F \subseteq T$ is the one associated to the restriction of α to the vertices of F. Hence fixing any total ordering α_0 of all the vertices of F and triangulating each T_i in accordance with α_0 we obtain compatible triangulations θ_i as required.

Lemma 2 [1]. Every triangulation of $\Delta_k \times \Delta_l$ uses exactly $(k+l)!/k! \ l!$ simplices, where Δ_n denotes an n-dimensional simplex.

Proof. Realize Δ_k in \mathbb{R}^k as the convex hull of 0 and the unit coordinate vectors $e_j = (0, \dots, 0, 1, 0, \dots, 0)$. Likewise Δ_l . Then $\Delta_k \times \Delta_l \subseteq \mathbb{R}^{k+l}$ has vertices 0, e_i $(1 \le i \le k+l)$, and $e_i + e_j$ $(1 \le i \le k < j \le k+l)$. Its volume is $v(\Delta_k)v(\Delta_l) = 1/k! \ l!$. We claim every nondegenerate (k+l)-simplex Δ spanned by vertices of $\Delta_k \times \Delta_l$ has volume 1/(k+l)!. Note that there are affine-linear symmetries of $\Delta_k \times \Delta_l$ acting transitively on the vertices. These preserve volume, so we can assume 0 is a vertex of Δ . Then $\pm (k+l)! \ v(\Delta)$ is the determinant of the matrix M whose rows are the coordinates of the other vertices; we are to show that this determinant is ± 1 . If some e_i is a vertex of Δ , then expanding by minors on the corresponding row gives the result by induction. If not, then M is the edge-vertex incidence matrix of a (k, l)-bipartite graph with k + l edges. Having one too many

 \Box

edges to be a tree, this graph must contain a cycle, necessarily even. Busingular, contrary to hypothesis.	it then M is
Theorem 1. Given a triangulation $\{S_1, \ldots, S_s\}$ of a k-dimensional polyttriangulation $\{T_1, \ldots, T_t\}$ of an l-dimensional polytope Q , there exists a t of $P \times Q$ using $s \cdot t \cdot (k+l)!/k!$ $l!$ simplices.	
<i>Proof.</i> It is easy to see that $\{S_i \times T_j\}$ is a polyhedral decomposition Refine it to a triangulation by Lemma 1. Each $S_i \times T_j$ will the $(k+l)!/k!$!! simplices by Lemma 2, establishing the result.	
Corollary 1. If I^n can be triangulated into $T(n)$ simplices, then triangulated into $[(kn)!/(n!)^k]T(n)^k = \rho^{kn}(kn)!$ simplices, where $\rho = (T(n)!/(n!)^k)!$	

References

- L. J. Billera, R. Cushman, and J. A. Sanders, The Stanley decomposition of the harmonic oscillator, Nederl. Akad. Wetensch. Proc. Ser. A 91 (1988), 375-393.
- 2. R. W. Cottle, Minimal triangulations of the 4-cube, Discrete Math. 40 (1982), 25-29.
- C. Lee, Triangulating the d-cube, in Discrete Geometry and Convexity, J. E. Goodman, E. Lutwak, J. Malkevitch, and R. Pollack, eds., New York Academy of Sciences, New York (1985), pp. 205-211.
- C. Lee, Some notes on triangulating polytopes, in Proc. 3. Kolloquium über Diskrete Geometrie, Institut für Mathematik, Universität Salzburg (1985), pp. 173-181.
- 5. P. S. Mara, Triangulations of the Cube, M. S. Thesis, Colorado State University (1972).
- 6. J. F. Sallee, A triangulation of the n-cube, Discrete Math. 40 (1982), 81-86.

Immediate from Theorem 1 by induction on k.

- J. F. Sallee, Middle-cut triangulations of the n-cube, SIAM J. Algebraic Discrete Methods 5, no. 3 (1984), 407-419.
- 8. W. D. Smith, Polytope triangulations in d-space, improving Hadamard's inequality and maximal volumes of regular polytopes in hyperbolic d-space. Manuscript, Princeton, NJ (September 1987).
- 9. R. P. Stanley, Decompositions of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333-342.
- 10. R. P. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth & Brooks/Cole, Monterey, CA (1986).
- M. J. Todd, The Computation of Fixed Points and Applications, Lecture Notes in Economics and Mathematical Systems, Vol. 124, Springer-Verlag, Berlin (1976).
- B. Von Hohenbalken, How To Simplicially Partition a Polytope, Research Paper No. 79-17, Department of Economics, University of Alberta, Edmonton (1979).

Received September 21, 1989, and in revised form November 27, 1989.