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Abstract. The only previously published triangulation of the n-cube using o(n!) 
simplices, due to Sallee, uses O(n-2n!) simplices. We point out a very simple method 
of achieving O(p"n!) simplices, where p < 1 is a constant. 

I. Introduction 

This short note is intended to point out a simple method of triangulating the n-cube 
I" using significantly fewer simplices than in previous constructions. 

Various authors [2], [3], [5] - [8]  have considered the problem of triangulating 
I" into fewer than the easily achievable maximum of n! simplices. Since the volume 
of a simplex with vertices in Z" is an integral multiple of 1/n!, it is clear that n! is in 
fact the maximum number of simplices in any triangulation. A lower bound can 
also be derived from volume considerations as follows. I" can be inscribed in a 

sphere of diameter x//n. The maximum volume of a simplex contained in this sphere 
is (n + 1)~"+1)/2/2"n!, attained by the equilateral simplex. This shows that any 
triangulation of 1" uses at least 2"(n + 1) -t"+ ~)/2n! simplices. This lower bound is 
very much less than n!, being O(c"(n!)~/2). By replacing the cube with an "ideal 
cube" in hyperbolic space and using hyperbolic instead of Euclidean volume it is 
possible to improve the lower bound [-8], but only by a factor of 0((3/2)"/2). 

In view of the large gap between the lower and upper bounds it is perhaps 
surprising that all triangulations of I" proposed so far use nearly n! simplices. In 
fact, only Sallee [7] achieves o(n!) simplices. Sallee's triangulation, however, uses 
more than 2A(n - 1, t(n - 1)/23) simplices, where the Eulerian number A(n, k) is 
the number of permutations of n having k "descents" [10]. Since A(n, k) is 
unimodal as a function of k, A(n - 1, t(n - 1)/23) _> (n - 1)!/(n - 1) = (n - 2)! 
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and hence Sallee uses at least O(n-2n!) simplices. (Readers of [7] should observe 
that the function g(n, m) of that paper is actually A(n - 1, m - 1), a fact not noted 
there.) 

The construction given below triangulates I n with O(p"n!) simplices, where 
p < 1. In fact, given a triangulation of I n into T(n) simplices for any particular 
value of n, we can take p = (T(n)/n!) 1/n. The smallest value for p obtainable from 
triangulations published to date is p = (13,248/40,320)1/a ~ 0.870 from Sallee's 
triangulation of I s. We remark that Todd [11] proposed the quantity R(n) = 
(T(n)/n!) 1In as a measure of a triangulation's efficiency. Previous constructions 
have lim,~ ~ R(n) = 1, whereas our results show that any value of R(n) achievable 
for one triangulation is achievable asymptotically. This is still far from R(n) = o(1), 
let alone the lower bound of R(n) = O(n- 1/2). 

2. Construction 

Definition. A polyhedral decomposition of an n-dimensional polytope P is a union 
P = T 1 u T2u . - .  w TR of n-dimensional polytopes 7]i such that for all i,j the 
vertices of T/are vertices of P and T i n Tj is a (possibly empty) face of both T i and 
Tj. If each Ti is a simplex, then {Ti} is a triangulation of P. 

Lemma 1. Every polyhedral decomposition of P can be refined to a triangulation. 

Proof. We require triangulations 0i of the T~ such that 0~ and 0j induce the same 
triangulation on T /n  Tj considered as a face of T/and as a face of Tj. Now there are 
well-known constructions [4], [6], [9], [12] whereby we associate to a total 
ordering ~ of the vertices of a polytope T a triangulation 0 in such a way that the 
triangulation induced on each face F G T is the one associated to the restriction of 
a to the vertices of F. Hence fixing any total ordering ~t o of all the vertices of P and 
triangulating each T~ in accordance with ao we obtain compatible triangulations 0~ 
as required. [] 

Lemma 2 [1]. Every triangulation o f  A k x A t uses exactly (k +/)!/k! l! simplices, 
where A, denotes an n-dimensional simplex. 

Proof. Realize A k in R k a s  the convex hull of 0 and the unit coordinate vectors 
e ~ = ( 0  . . . . .  0, 1,0 . . . . .  0). Likewise A~. Then A k • A,___R k+t has vertices 0, 
ei (I < i < k + / ) ,  and el + e~ (1 < i < k < j  < k + / ) .  Its volume is V(Ak)V(AI) = 
1/k! l !. We claim every nondegenerate (k +/)-s implex A spanned by vertices of 
A k • A l has volume 1/(k +/)!.  Note that there are affine-linear symmetries of 
A k x A t acting transitively on the vertices. These preserve volume, so we can 
assume 0 is a vertex of A. Then _ (k + / ) !  v(A) is the determinant of the matrix M 
whose rows are the coordinates of the other vertices; we are to show that this 
determinant is _+ 1. If some el is a vertex of A, then expanding by minors on the 
corresponding row gives the result by induction. If not, then M is the edge-vertex 
incidence matrix of a (k, /)-bipartite graph with k + l edges. Having one too many 



A Simple and Relatively Efficient Triangulation of the n-Cube 289 

edges to be a tree, this graph must contain a cycle, necessarily even. But then M is 
singular, contrary to hypothesis. [ ]  

Theorem 1. Given a triangulation {$1 . . . . .  S~} of a k-dimensional polytope P and a 
triangulation { TI . . . . .  Tt} of an l-dimensional polytope Q, there exists a triangulation 
of P • Q using s . t . ( k  + l)!/k! l! simplices. 

Proof It is easy to see that {S, • Tj} is a polyhedral decomposition of P • Q. 
Refine it to a triangulation by Lemma 1. Each S~ • T~ will then contain 
(k + l)!/k! 1! simplices by Lemma 2, establishing the result. [ ]  

Corollary 1. If  I" can be triangulated into T(n) simplices, then I k" can be 
trianyulated into [(kn)!/(n !)k] T(n)k = pk,(kn) ! simplices, where p = (T(n)/n !)1/,. 

Proof Immediate from Theorem 1 by induction on k. [ ]  

References 

1. L.J. Billera, R. Cushman, and J. A. Sanders, The Stanley decomposition of the harmonic oscillator, 
Nederl. Akad. Wetensch. Proc. Ser. A 91 (1988), 375-393. 

2. R. W. Cottle, Minimal triangulations of the 4-cube, Discrete Math. 40 (1982), 25-29. 
3. C. Lee, Triangulating the d-cube, in Discrete Geometry and Convexity, J. E. Goodman, E. Lutwak, J. 

Malkevitch, and R. Pollack, eds., New York Academy of Sciences, New York (1985), pp. 205-21 I. 
4. C. Lee, Some notes on triangulating polytopes, in Proc. 3. Kolloquium iiber Diskrete Geometrie, 

Institut ffir Mathematik, Universit/it Salzburg (1985), pp. 173-181. 
5. P. S. Mara, Triangulations of the Cube, M. S. Thesis, Colorado State University (1972). 
6. J. F. Sallee, A triangulation of the n-cube, Discrete Math. 40 (1982), 81 86. 
7. J. F. Sallee, Middle-cut triangulations of the n-cube, SIAM J. Algebraic Discrete Methods 5, no. 3 

(1984), 407-419. 
8. W. D. Smith, Polytope triangulations in d-space, improving Hadamard's  inequality and maximal 

volumes of regular polytopes in hyperbolic d-space. Manuscript, Princeton, NJ (September 1987). 
9. R. P. Stanley, Decompositions of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333-342. 

10. R. P. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth & Brooks/Cole, Monterey, CA (1986). 
11. M. J. Todd, The Computation of Fixed Points and Applications, Lecture Notes in Economics and 

Mathematical Systems, Vol. 124, Springer-Verlag, Berlin (1976). 
12. B. Von Hohenbalken, How To Simplicially Partition a Polytope, Research Paper No. 79 17, 

Department of Economics, University of Alberta, Edmonton (1979). 

Received September 21, 1989, and in revised form November 27, 1989. 


