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Abstract. We discuss packings of sequences of convex bodies of Euclidean n-space 
E" in a box and particularly in a cube. Followiag an Auerbach-Banach-Mazur -  
Ulam problem from the well-known Scottish Book, results of  this kind are called 
potato-sack theorems. We consider on-line packing methods which work under the 
restriction that during the packing process we are given each succeeding "'potato'" 
only when the preceding one has been packed. One of our on-line methods enables 
us to pack into the cube of  side d > 1 in E"  every sequence of  convex bodies of  
diameters at most 1 whose total volume does not exceed ( d -  1 ) ( , f d - 1 )  2~'' ~/n?. 
Asymptotically, as d ~ o0, this volume is as good as that given by the non-on-line 
methods previously known. 

I. Introduct ion 

W e  d e n o t e  E u c l i d e a n  n - s p a c e  by E" .  Let  ( K r , ) =  K l ,  g 2 , . . ,  be  a s e q u e n c e  o f  
sets in E n. We  say tha t  (Kin) can  be  packed in a set K c E "  i f  t he re  are  r ig id  

m o t i o n s  o-m such  tha t  all  the  sets crmKm, w h e r e  m = 1 , 2 , . . . ,  a re  subse ts  o f  K 

a n d  such  tha t  t hey  h a v e  p a i r w i s e  d i s jo in t  in te r iors .  T h e  a b o v e  p a c k i n g  is ca l l ed  

translative i f  o n l y  t r an s l a t i ons  are  a l l o w e d  he re  as r ig id  mo t ions .  

In this  p a p e r  we c o n s i d e r  p a c k i n g  m e t h o d s  w h i c h  w o r k  u n d e r  the  res t r i c t ion  

tha t  at the  b e g i n n i n g  we are  g iven  on ly  K1 a n d  tha t  we  are  g iven  Km o n l y  a f te r  

Km ~ has  b e e n  p a c k e d ,  m = 2, 3 , . . . .  Pack ing  m e t h o d s  u n d e r  this r e s t r i c t ion  are  

ca l l ed  on-line packing methods. 

* This research was done during the academic year 1987/88, while the first author was visiting 
the City College of the City University of New York. The second author was supported in part by 
Office of Naval Research Grant N00014-85-K-0147. 
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The po t a to - sack  theo rem of  Auerbach  et al. [1] guarantees  that  every sequence 
o f  convex bod ies  in E ~ o f  d iameters  at most  1, the sum of  whose volumes  is 
finite, can be packed  in a cube. The proofs  o f  Kosifiski  [5], M o o n  and Moser  
[6], and  G r o e m e r  [2] es t imate  the total  vo lume  of  a sequence  that  can be packed  
in a cube o f  s ide d. There  is a survey p a p e r  [3] on this subject .  

Our  a im is to prove  the po ta to - sack  theorem under  the on- l ine  res t r ic t ion and 
to es t imate  the  to ta l  vo lume  of  convex bod ies  which  can be packed .  Thanks  to 
the fo l lowing  result  this task can be s impl i f ied  to the p rob l e m of  packing  sequences  
of  boxes.  

Lemma [4], [5]. Every convex body in E" of  diameter 1 and volume v is a subset 
of  a rectangular parallelotope of volume at most n! v and edge lengths at most 1. 

2. On-Line Packing Methods 

Let an o r thogona l  coo rd ina t e  system in En be given. Every set o f  the form 

{ ( x l , . . . ,  xn); s,-< xi<- t, for  i =  1 , . . . ,  n}, 

where  s~ < t~ for  i =  1, . . . ,  n, is ca l led  a box. The n u m b e r  t~-s~ is ca l led  the ith 
width, i = 1 , . . . ,  n, and the nth width  o f  this box is ca l led  its height. The set 

{(xl . . . . .  x , ) ;  si<- x~<~ t~ for i =  1 , . . . ,  n -  1 and xn =y~} 

is ca l led  the  bottom of  this  box for  y~ = sn and  the top for Yn = tn. 
Sequences  o f  boxes  o f  all n widths  at most  1 and  sequences  of  convex bodies  

of  d iamete r s  at most  1 will be packed  in a box  

C = { (x l , .  � 9  xn); O -  < x i - <  c~ for i = 1 , . . . ,  n}, 

where  cl > 1 , . . . ,  cn > 1, ca l led  the ( c ~ , . . . ,  c,)-container or s imply  a container. 
I f  n > 2, we define a few add i t iona l  not ions .  Let p ~ , . . . ,  p~ be posi t ive integers 

such that  

[I p~<c~. 
i - 2  

We dissect  C into p~ sets 

D j { ( x , , . . . , x n ) . ( j - l ) c ~  " } = , - - - < x l < J C ~ a n d O - < x i - < c ~ f o r i = 2  . . . .  , n  , 
P,  P, 

where  j = 1 , . . . ,  Pn, ca l led  compartments of  C. Let 

1 
r = l  (1) 

.,/p.c. - p .  + 1" 
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By layers of  C we unde r s t and  sets of  the form 

{ ( x , , . . . , x , ) e  Dj; g<-- X,<~ g + rk}, 

where  j c { 1 , . . . , p , } ,  k is a nonnega t ive  integer,  and  where  g->O is a number  
such that  g + r k <- c,.  It is c lear  what  is meant  by the height ,  bo t tom,  and  top  of  
a conta iner ,  a compa r tmen t ,  or  a layer because  each of  them is a box.  I f  the 
height  of  a box is greater  than  r k+~ but  not  greater  than r k, then layers o f  height  
r k are ca l led  proper for this box.  

We are ready  to descr ibe  on- l ine  methods  o f  packing  sequences  o f  boxes  o f  
all n widths  at most  1 in a con ta iner  C =  E ". We p roceed  by induc t ion  with 
respect  to n. 

(al) The segment-to-segment method in E ~. Let c~ be a sequence  of  one- 
d imens iona l  boxes  of  heights  at most  1 (i.e., o f  c losed segments  of  lengths at 
most  1). The first box of  a is packed  in C ={x~; O~x~-~  q} such that  0 becomes  
its left endpo in t .  Every succeed ing  box o f  c~ is packed  such that  its left endpo in t  
co inc ides  with the right e n d p o i n t  of  the box packed  jus t  before ;  of  course,  if  
there  is enough  space  in C. If  there  is not  enough space in C when a new box 
Z o f  a is given,  we say that  the packing  is s topped  by Z. 

(an) The ( P 2 , . - . , P ~ ) - m e t h o d i n  E n, where n>-2. Assume that  the me thod  
( a ,  ~) has been desc r ibed  in E"  ~. Let c~ be a sequence  o f  boxes  in E "  of  all n 
widths  at most  1 and  let C be the ( q , . . . ,  c, ) -container .  Every box A can be 
p a c k e d  on ly  in a layer  L which is p r o p e r  for it and  with its bo t tom in the bo t tom 
of  L. This pack ing  is p rov ided  accord ing  to the (P2 . . . .  , Pn- ~)-method in E"  
a p p l i e d  to the  bo t tom of  L as the (n - 1 ) - d i m e n s i o n a l  con ta ine r  and  the bo t tom 
of  A as an ( n - 1 ) - d i m e n s i o n a l  box.  But if  n = 2 ,  we use here the segment- to-  
segment  me thod  (a~). Every box A of  c~ is packed  in the last c rea ted  layer  which 
is p r o p e r  for  A; o f  course ,  if  such a layer  exists and  if  there  is enough  space.  I f  
in this layer  there is not  enough  space for  this, we say that  the layer  is full. In 
this case, as well as in the case when no p rope r  layer  for A has been  c rea ted  yet, 
we create  a new p r o p e r  layer  L A for  A (if  this is poss ib le)  and  we pack  A in LA.  

The bo t t om of  L A must  co inc ide  with the top  of  the last layer  in a compar tmen t ,  
or  with the bo t tom of  this c o m p a r t m e n t  if no layer  has been  c rea ted  in this 
c o m p a r t m e n t  yet. This layer  L A c a n  be crea ted  in any c o m p a r t m e n t  where  it is 
poss ib le ;  the  choice  of  this c o m p a r t m e n t  does  not  matter .  I f  in every c o m p a r t m e n t  
there  is not  enough space  to create a new p r o p e r  layer  when necessary  for a 
succeed ing  box Z c a,  we s top the packing.  We say that  the pack ing  is stopped 
byZ. 

Remark.  When  d iscuss ing  the (p2 , .  �9 �9 P~)-method for the  ( q , . . . ,  cn)-conta iner  
we a lways  taci t ly  a ssume that  c~ > l , . . . ,  c, > 1, and  that  P2, �9 �9 �9 P,  are posi t ive 
integers  whose  p roduc t  is smal le r  than  cl. Moreover ,  when d iscuss ing  the 
(P2, �9 �9 �9 P.  ) -me thod  in E n, where  n -> 1, we mean  the segment - to - segment  me thod  
when n = 1. 
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The segment- to-segment  method  in E l and the (1 . . . .  , 1 ) -me thod  in E", where 
n -> 2, are called o n e - c o m p a r t m e n t  me thods .  

( b . )  The  re la ted  c o m b i n e d  m e t h o d  for packing a sequence/3 o f  convex bodies 
o f  diameters at most  1 in a container  C c E". We combine  the iemma and method 
(a . ) .  The successive body  B o f / 3  is first packed in a box A according to the 
lemma and  then, if there is enough space in C, the box A is packed in C by 
method (a . ) .  

Of  course, (a . )  and (bn) are on-line methods.  Observe that ( a . )  guarantees a 
translative packing. 

3. How Effective Are the On-Line Methods? 

Proposition.  L e t  c~ be a s equence  o f  boxes  in E " ,  each h a v i n g  al l  n w i d t h s  a t  

m o s t  1. The ( P 2 , - - . , P , ) - m e t h o d  enab le s  us  to p a c k  the  nex t  b o x  o f  c~ in the 

( c~, . . . , c , ) - c o n t a i n e r  i f  the  s u m  o f  v o l u m e s  o f  al l  b o x e s  p a c k e d  be fore  does  no t  exceed  

w= C l -  I] p, , (2) 
i = 2  i = 2  Pi 

where  w is u n d e r s t o o d  to be cl - 1 f o r  n = 1. 

Proof.  We apply induct ion with respect to n. For the segment- to-segment  method 
in E l (see the remark) the proposi t ion  is obvious.  Assume that the proposi t ion 
holds true in E n- 1, where n -> 2, and consider  the packing of  a by the (p2 . . . .  , P,)-  
method  in the ( c ~ , . . . ,  c , ) -conta iner  C c E% In order  to prove the proposi t ion 
for the above situation it is sufficient to show that if the packing is s topped by 
a box of  a, then the total volume of  the preceding boxes o f  a is greater than w. 

Assume that the packing is s topped by a box Z of  ~. There is a nonnegat ive 
integer q such that the height o f  Z is greater than r q but not greater than r q-I .  

Observe that  for every nonnegat ive integer k at most  one nonfull  layer o f  height 
r k exists. Moreover ,  no nonfull  layer o f  height r q exists. Since the packing is 
s topped by Z, we have 

[ ( i  r0r ] ' 
where h denotes  the sum of  heights of  full layers o f  C. Thus f rom 

co 

rk = 1 = x/ p ,cn -- p ,  + l 
k = l  1 - r  

and since r q ~ 1 we see that 

h > p ,  cn - p ,  + 1 - ~ / p , c ,  - p ,  + 1. (3) 
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By our  induc t ion  hypothes is ,  every full layer  of  C conta ins  boxes  of  a with 
total  ( n -  1) -d imens iona l  vo lume of  their  bo t toms  greater  than 

= - p, _. - l + - - -  
r 2 / f = 2  P~ 

(where  b should  be unde r s tood  a s  cliP2-1 for n = 2), and  thus of  total  n- 
d imens iona l  vo lume  grea te r  than br t imes the vo lume of  the layer.  Hence  the 
volume of  boxes  packed  in C before  s topp ing  the packing  process  by the box Z 
is greater  than brh. Using (3) and  the equal i ty  

r~-(p.c - p , , + l - x / p . G - p , , + l ) =  c , , - l +  1 -  
P. P. 

we see that  brh > w, which comple tes  the proof .  [] 

Corol la ry .  Every  sequence o f  boxes o f  E ~ with all n widths at most  1 and the total 

vo lume not greater than w can be packed  on-line in the ( c ~ , . . . ,  c , ) -con ta iner  by 

the (p2,  . � 9  P , ) -me thod .  

The es t imate  given in the  p ropos i t ion  and  in the coro l la ry  is the best  poss ib le  
for the ( P 2 ,  �9 �9 �9 , p,, ) -me thod  app l i ed  to the ( c ~ , . . . ,  c, ) - con ta iner  C. The reason 
is that  for  every e > 0  we can const ruct  a sequence  o f  boxes ,  each with all n 
widths  at most  1, o f  total  vo lume w +  e, which canno t  be packed  in C by the 
( P 2 , . . - ,  p,  ) -method.  We leave such a cons t ruc t ion  for the reader  as an exercise.  

Observe  that  usual ly  the o rde r  of  the axes mat ters  for  the effectiveness o f  the 
(P2, - - �9 pn) -method ;  our  first axis is special .  I f  before  app ly ing  the (P2, �9 �9 �9 P , ) -  

method  a p e r m u t a t i o n  7r re -orders  the axes,  we call  this a p p r o a c h  the (P2, - - - , P n  ) -  

method under the permuta t ion  rr. I f  for a fixed con ta ine r  C the n u m b e r  w (def ined 
in (2)) is grea ter  for the ( P 2 , . . . ,  p,, ) -method  under  a pe rmu ta t i on  ~ than  for the 
( p ~ , . . . ,  p ' , ) - m e t h o d  under  a pe rmuta t ion  7r', then we say that  the ( P 2 , - - - ,  P.)-  
me thod  unde r  7r is more effective for C than  the ( p ~ , . . . ,  p ' , ) -me thod  unde r  7r'. 
F ind ing  a genera l  rule for de te rmin ing  which of  the me thods  is the most  effective 
for the  ( c ~ , . . . ,  G ) - c o n t a i n e r  seems to be a difficult task. Some par t ia l  results  for 
the case o f  the  cube as the  con ta iner  are p resen ted  in the next  section.  

F rom the coro l la ry  and  the l emma  we i m m e d i a t e l y  ob ta in  the fo l lowing on-l ine  

po ta to - sack  theorem.  

Theorem. Le t  c~, . . . , c, be numbers  greater than 1 and, i f  n >- 2, let P2, �9 �9 �9 P,  be 

posi t ive integers whose  product  is smaller  than c~. Every  sequence o f  convex  bodies 

in E ~ with d iameters  at mos t  1 and  total vo lume  not greater than 

~ .  c l -  Pi - 1 + - - -  
i=2 i= Pi 

can be p a c k e d  on-line in the ( c ~ , . . . ,  cn)-container.  



6 M. Lassak and J. Zhang 

4. Comparison of  the Methods  for a Cube as a Container 

In this sect ion the cube C"acE " of  edge length d > l  is cons ide red  as the 
conta iner .  We discuss  only  the case of  sequences  of  boxes ,  each of  all n widths 
at most  1. The fo l lowing no ta t ion  is convenien t  for  the c ompa r i son  o f  our  methods  
as d-~oo.  I f  for two func t ions  f~(d) and f2(d) we have limd~o~f~(d)/f2(d)= 1, 
then  we wri te  f , (d )  df2(d) ,  or s imply  f~ d f2. 

F rom the  p a p e r  o f  G r o e m e r  [2] it fol lows that  his non-on- l ine  pack ing  me thod  
guaran tees  a pack ing  effect iveness o f  g = gn(d) for C,] such that  g d d"  for  every 
d i m e n s i o n  n. A s imple  ca lcu la t ion  shows that  w d d"  also,  where  w is def ined 
in (2), for  every (P2 . . . .  , p n ) - m e t h o d  a p p l i e d  to C,]. This means  that all our  
on- l ine  me thods  are just  as effective as the non-on- l ine  me thod  o f  Groemer ,  as 
d ~ o o .  

An a t t empt  to de t e rmine  genera l ly  which o f  our  on- l ine  me thods  is the  most 
effective for  C,] leads  to some inequal i t ies  which are difficult to solve. Fo r  any 
pa r t i cu l a r  con ta ine r  the mos t  effective me thod  can be easily found  by using a 
compute r .  For  instance,  i f  n = 2 and  i f  d is an integer  be tween 2 and 250 the 
fo l lowing  (p2) -method  is the  most  effective: the (1 ) -method  for  d-< 5, the (2)- 
me thod  for  6 -<- d -< 19, the (3 ) -me thod  for  20-< d -< 47, the (4 ) -method  for 48 -< d -< 
97, the (5 ) -me thod  for 98 <- d -< 174, the (6 ) -me thod  for 175 -< d. Similar ly ,  if  n = 3 
and  if  d is an integer  be tween  2 and  500, then the fo l lowing (P2, p3)-method is 
the  most  effective: the (1, 1 ) -method for d-<  5, the (1, 2 ) -method  for 6 <  d <-16, 
the (2, 2 ) -me thod  for 17 -<d -<68 ,  the (2, 3 ) -me thod  for 69-<-d < - 147, the (3 ,3)-  
me thod  for  148 -< d -< 396, the  (3, 4 ) -me thod  for  397 -< d. And,  finally, an example  
o f  the effectiveness:  for C3oo we have w = 6 4 9 5 3 9  for the (1, 1 ) -method and 
w ~ 711786 for the most  effective (2, 3 ) -method .  

We are  able  to p rov ide  an a sympto t i c  compa r i son  o f  the ( p , . . .  , p ) - m e t h o d s  
for  C~ as d ~ 0o. Fo r  every posi t ive integer  p < d ~/tn ~ the (p  . . . . .  p ) - m e t h o d  is 
def ined and  the n u m b e r  w is a func t ion  o f  two var iables  d and p: 

w , , ( d , p ) = ( d - p " - ' )  - l + - -  p ~ / p /  �9 

In par t i cu la r ,  for  the o n e - c o m p a r t m e n t  m e t h o d  this n u m b e r  is 

(d  - 1 ) ( v / ~ -  1) 2("- ')  ' 

F o r  c o m p a r i s o n  we need a more  sensi t ive tool  than the l imit  l i m d ~  w.(d, p ) / d  n. 
For  this p u r p o s e  cons ide r  the  n u m b e r  

u . ( d , p ) = d " - w . ( d , p )  

which es t imates  the  vo lume  which remains  unfi l led in C,~. It is easy to see that  

l im u.(d, p ) / d  "-'/2 = 2(n - 1)/x/p.  (4) 
d o o c  
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Consequently, 

a 2 ( n -  1) d" 1/2 (5) 
~ola, p) ,1~ 

Moreover, from (4) and from ,,/-fi < x/p + 1 we see that for every positive integer 
p there is a number dp such that for every d >dp the ( p +  1 , . . . , p +  1)-method 
is more effective than the ( p , . . . ,  p)-method.  

A simple calculation shows that, asymptotically as d--, ~ ,  the best choice for 
p is [dl/~2n-~J, where [ .J  means the integer part. From (5) we get 

u.(d, [ d l / ! 2 " - l ) J )  a ( 2 n - 1 ) d "  ~.1~2. 1)) 

In particular, 

u2(d , Ldl/3J)~ 3 d  4/3, 

while for a fixed p we have 

u2(d,p) d 2 dS/2" 
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