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Abstract. We discuss packings of sequences of convex bodies of Euclidean n-space
E" in a box and particularly in a cube. Followiag an Auerbach-Banach-Mazur-
Ulam problem from the well-known Scottish Book, results of this kind are called
potato-sack theorems. We consider on-line packing methods which work under the
restriction that during the packing process we are given each succeeding *‘potato”
only when the preceding one has been packed. One of our on-line methods enables
us to pack into the cube of side d > 1 in E" every sequence of convex bodies of
diameters at most 1 whose total volume does not exceed (d — 1)(vd —1)*""V/n!.
Asymptotically, as d » o0, this volume is as good as that given by the non-on-line
methods previously known.

1. Introduction

We denote Euclidean n-space by E". Let (K,,)=K,, K5, ... be a sequence of
sets in E”. We say that (K,,) can be packed in a set K < E" if there are rigid
motions o,, such that all the sets ¢,K,,, where m=1,2,..., are subsets of K
and such that they have pairwise disjoint interiors. The above packing is called
translative if only translations are allowed here as rigid motions.

In this paper we consider packing methods which work under the restriction
that at the beginning we are given only K, and that we are given K,, only after
K, has been packed, m =2, 3,.... Packing methods under this restriction are
called on-line packing methods.

* This research was done during the academic year 1987/88, while the first author was visiting
the City College of the City University of New York. The second author was supported in part by
Office of Naval Research Grant N00014-85-K-0147.
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The potato-sack theorem of Auerbach et al. [1] guarantees that every sequence
of convex bodies in E" of diameters at most 1, the sum of whose volumes is
finite, can be packed in a cube. The proofs of Kosinski [5], Moon and Moser
[6], and Groemer {2] estimate the total volume of a sequence that can be packed
in a cube of side d. There is a survey paper {3] on this subject.

Our aim is to prove the potato-sack theorem under the on-line restriction and
to estimate the total volume of convex bodies which can be packed. Thanks to
the following result this task can be simplified to the problem of packing sequences
of boxes.

Lemma [4], [5]. Every convex body in E" of diameter 1 and volume v is a subset

of a rectangular parallelotope of volume at most n! v and edge lengths at most 1.

2. On-Line Packing Methods

Let an orthogonal coordinate system in E" be given. Every set of the form
{{x1,....,x,); s,sx;=t fori=1,..., n},

where s; <t for i=1,...,n, is called a box. The number t, —s; is called the ith
width, i=1, ..., n, and the nth width of this box is called its height. The set

{(xy,....x,); si=x;=<t,fori=1,...,n—1and x,=y,}
is called the bottom of this box for y, =5, and the rop for y, =1,.
Sequences of boxes of all n widths at most 1 and sequences of convex bodies
of diameters at most 1 will be packed in a box
C={(x;,....x,);0=x;=c¢fori=1,..., n},
where ¢;>1,..., ¢,> 1, called the (c¢,,..., c,)-container or simply a container.

If n> 2, we define a few additional notions. Let p,, ..., p, be positive integers
such that

Il p<e.
i=2
We dissect C into p, sets
- 1c, jCn :
Qz{(xl,...,x,,);-(—J——)—C—sx,sL—andOSxiSc,-fort=2,...,n},
Pn Pn

where j=1,...,p,, called compartments of C. Let

1
r=1———————
VpuCi —pnt1



An On-Line Potato-Sack Theorem 3

By layers of C we understand sets of the form
{(xl’~"9xn)€Dj;ngnSg+rk},

where je{l,...,p,}, k is a nonnegative integer, and where g=0 is a number
such that g+ r* = ¢,. It is clear what is meant by the height, bottom, and top of
a container, a compartment, or a layer because each of them is a box. If the
height of a box is greater than r**' but not greater than r*, then layers of height
r* are called proper for this box.

We are ready to describe on-line methods of packing sequences of boxes of
ail n widths at most 1 in a container C < E". We proceed by induction with
respect to n.

(a,) The segment-to-segment method in E'. Let a be a sequence of one-
dimensional boxes of heights at most 1 (i.e., of closed segments of lengths at
most 1). The first box of « is packed in C ={x,; 0= x, < ¢} such that 0 becomes
its left endpoint. Every succeeding box of a is packed such that its left endpoint
coincides with the right endpoint of the box packed just before; of course, if
there is enough space in C. If there is not enough space in C when a new box
Z of « is given, we say that the packing is stopped by Z.

(a,) The (p,,...,p,.)-method in E", where n=2. Assume that the method
(a,_,) has been described in E""'. Let a be a sequence of boxes in E" of all n
widths at most 1 and let C be the (c,,..., ¢,)-container. Every box A can be
packed only in a layer L which is proper for it and with its bottom in the bottom
of L. This packing is provided according to the (p,, ..., p,_,)-method in E"""
applied to the bottom of L as the (n—1)-dimensional container and the bottom
of A as an (n—1)-dimensional box. But if n =2, we use here the segment-to-
segment method (a,). Every box A of « is packed in the last created layer which
is proper for A; of course, if such a layer exists and if there is enough space. If
in this layer there is not enough space for this, we say that the layer is full. In
this case, as well as in the case when no proper layer for A has been created yet,
we create a new proper layer L, for A (if this is possible) and we pack A in Ly,.
The bottom of L, must coincide with the top of the last layer in a compartment,
or with the bottom of this compartment if no layer has been created in this
compartment yet. This layer L, can be created in any compartment where it is
possible; the choice of this compartment does not matter. If in every compartment
there is not enough space to create a new proper layer when necessary for a
succeeding box Z € a, we stop the packing. We say that the packing is stopped
by Z.

Remark. When discussing the (p,, ..., p,)-method forthe (¢, ..., ¢,)-container
we always tacitly assume that ¢,>1,...,¢,>1, and that p,, ..., p, are positive
integers whose product is smaller than c,. Moreover, when discussing the
(ps,..., p,)-methodin E", where n = 1, we mean the segment-to-segment method
when n=1.
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The segment-to-segment method in E' and the (1, ..., 1)-method in E", where
n =2, are called one-compartment methods.

(b,) The related combined method for packing a sequence B8 of convex bodies
of diameters at most 1 in a container C = E". We combine the lemma and method
{a,). The successive body B of B is first packed in a box A according to the
lemma and then, if there is enough space in C, the box A is packed in C by
method (a,).

Of course, (a,) and (b,) are on-line methods. Observe that (a,) guarantees a
translative packing.

3. How Effective Are the On-Line Methods?

Proposition. Let o be a sequence of boxes in E", each having all n widths at
most 1. The (p,,...,p,)-method enables us to pack the next box of a in the
(cy, ..., c,)-container if the sum of volumes of all boxes packed before does not exceed

(o= i) i (et ) @

where w is understood to be ¢,—1 for n=1.

Proof. We apply induction with respect to n. For the segment-to-segment method
in E' (see the remark) the proposition is obvious. Assume that the proposition
holds true in E""', where n =2, and consider the packing of a by the (p,, ..., p,)-
method in the (¢, ..., ¢,)-container C < E". In order to prove the proposition
for the above situation it is sufficient to show that if the packing is stopped by
a box of a, then the total volume of the preceding boxes of « is greater than w.

Assume that the packing is stopped by a box Z of a. There is a nonnegative
integer g such that the height of Z is greater than r? but not greater than r¢™".
Observe that for every nonnegative integer k at most one nonfull layer of height
r* exists. Moreover, no nonfull layer of height r? exists. Since the packing is
stopped by Z, we have

h>pnc,—pr®— [( y rk> —r"],
K=1

where h denotes the sum of heights of full layers of C. Thus from

x© 1
kz rf= =vVp.c,—pat1
=1

T 1-r
and since r? <1 we see that

h>Pncn‘Pn+1‘~PnCn"‘Pn+1- (3)
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By our induction hypothesis, every full layer of C contains boxes of a with
total (n —1)-dimensional volume of their bottoms greater than

)

{(where b should be understood as c¢,/p.—1 for n=2), and thus of total n-
dimensional volume greater than br times the volume of the layer. Hence the
volume of boxes packed in C before stopping the packing process by the box Z
is greater than brh. Using (3) and the equality

r — 1 1\’
M(pncn_pn_}_l_ pncnup!|+1): Cn—1+__ —_
Pn Dn P

we see that brh > w, which completes the proof. O

Corollary. Every sequence of boxes of E” with all n widths at most 1 and the total
volume not greater than w can be packed on-line in the (c,,. .., c,)-container by
the (p,, ..., pn)-method.

The estimate given in the proposition and in the corollary is the best possible
for the (p,, ..., p,)-method applied to the (c,, ..., ¢,)-container C. The reason
is that for every £ >0 we can construct a sequence of boxes, each with all n
widths at most 1, of total volume w+ ¢, which cannot be packed in C by the
(P2, - .-, p.)-method. We leave such a construction for the reader as an exercise.

Observe that usually the order of the axes matters for the effectiveness of the
(p,,...,p,)-method; our first axis is special. If before applying the (p.,..., p,)-
method a permutation 7 re-orders the axes, we call this approach the (p,, ..., p,)-
method under the permutation 7. If for a fixed container C the number w (defined
in (2)) is greater for the (p,, ..., p,)-method under a permutation = than for the
(p5,..., p.)-method under a permutation =, then we say that the (p,,..., p.)-
method under 7 is more effective for C than the (p;, ..., p,)-method under =,
Finding a general rule for determining which of the methods is the most effective
for the (c,, ..., ¢,)-container seems to be a difficult task. Some partial results for
the case of the cube as the container are presented in the next section.

From the corollary and the lemma we immediately obtain the following on-line
potato-sack theorem.

Theorem. Letc,,...,c, be numbers greater than 1 and, if n=2,letp,,..., p, be

positive integers whose product is smaller than c,. Every sequence of convex bodies
in E" with diameters at most 1 and total volume not greater than

e fie) fi(Vemr3-V5)

can be packed on-line in the (c,, ..., c,)-container.
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4. Comparison of the Methods for a Cube as a Container

In this section the cube Cj< E" of edge length d>1 is considered as the
container. We discuss only the case of sequences of boxes, each of all n widths
at most 1. The following notation is convenient for the comparison of our methods
as d » 0. If for two functions fi(d) and f,(d) we have lim,_ . f,(d)/f2(d) =1,
then we write f,(d) < fo(d), or simply £, 2 f,.

From the paper of Groemer [2] it follows that his non-on-line packing method
guarantees a packing effectiveness of g = g,(d) for CJ such that g < d" for every
dimension n. A simple calculation shows that w2 d" also, where w is defined
in (2), for every (p,,..., p,)-method applied to C. This means that all our
on-line methods are just as effective as the non-on-line method of Groemer, as
d - 0.

An attempt to determine generally which of our on-line methods is the most
effective for C7 leads to some inequalities which are difficult to solve. For any
particular container the most effective method can be easily found by using a
computer. For instance, if n=2 and if d is an integer between 2 and 250 the
following ( p,)-method is the most effective: the (1)-method for d =5, the (2)-
method for 6 = d < 19, the (3)-method for 20 < d =47, the (4)-method for48 = d =
97, the (5)-method for 98 = d = 174, the (6)-method for 175 =< d. Similarly, if n =3
and if d is an integer between 2 and 500, then the following ( p,, p;)-method is
the most effective: the (1, 1)-method for d <35, the (1, 2)-method for 6=d =16,
the (2, 2)-method for 17 < d <68, the (2, 3)-method for 69=d =< 147, the (3, 3)-
method for 148 = d =396, the (3, 4)-method for 397 = d. And, finally, an example
of the effectiveness: for C3,, we have w=649539 for the (1, 1)-method and
w=T711786 for the most effective (2, 3)-method.

We are able to provide an asymptotic comparison of the (p, ..., p)-methods
for C} as d » 0. For every positive integer p<d"" " the (p, ..., p)-method is
defined and the number w is a function of two variables d and p:

1 \/T 2n—1)
Wn(d,p):(d—P"”)<\/d—1+'— —) .
4 p

In particular, for the one-compartment method this number is
(d-1)(d-1)*""".

For comparison we need a more sensitive tool than the limit lim, . w,(d, p)/d".
For this purpose consider the number

u,(d,p)=d"—w,(d, p)
which estimates the volume which remains unfilled in Cj. It is easy to see that

lim u,(d, p)/d""""?=2(n-1)/Vp. 4)
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Consequently,

u4¢p)13¥%;ld“”% (s)

Moreover, from (4) and from vp <vp+1 we see that for every positive integer
p there is a number d, such that for every d >d, the (p+1,..., p+1)-method
is more effective than the (p,..., p)-method.

A simple calculation shows that, asymptotically as d —» o, the best choice for
pis [dV?" V], where |-} means the integer part. From (5) we get

u,(d {dl/(anl)J) 4 (zn_l)dn—(n/(zn—l)).

In particular,
u(d, [d"* )L 34",

while for a fixed p we have

2
u:(d, p) = = d
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